US3835694A - Dies for making a self tapping fastener - Google Patents

Dies for making a self tapping fastener Download PDF

Info

Publication number
US3835694A
US3835694A US00398318A US39831873A US3835694A US 3835694 A US3835694 A US 3835694A US 00398318 A US00398318 A US 00398318A US 39831873 A US39831873 A US 39831873A US 3835694 A US3835694 A US 3835694A
Authority
US
United States
Prior art keywords
thread
forming
rolling
fastener
shank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00398318A
Inventor
E Skierski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emhart Industries Inc
Original Assignee
E Skierski
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Skierski filed Critical E Skierski
Priority to US00398318A priority Critical patent/US3835694A/en
Application granted granted Critical
Publication of US3835694A publication Critical patent/US3835694A/en
Assigned to EMHART ENTERPRISES CORP. reassignment EMHART ENTERPRISES CORP. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE DATE: MAY 8, 1987 Assignors: USM CORPORATION
Assigned to EMHART INDUSTRIES, INC. reassignment EMHART INDUSTRIES, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: EMHART ENTERPRISES CORP., A NJ CORP.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H3/00Making helical bodies or bodies having parts of helical shape
    • B21H3/02Making helical bodies or bodies having parts of helical shape external screw-threads ; Making dies for thread rolling
    • B21H3/027Rolling of self-tapping screws
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B25/00Screws that cut thread in the body into which they are screwed, e.g. wood screws
    • F16B25/0036Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by geometric details of the screw
    • F16B25/0042Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by geometric details of the screw characterised by the geometry of the thread, the thread being a ridge wrapped around the shaft of the screw
    • F16B25/0052Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by geometric details of the screw characterised by the geometry of the thread, the thread being a ridge wrapped around the shaft of the screw the ridge having indentations, notches or the like in order to improve the cutting behaviour

Definitions

  • ABSTRACT A self tapping threaded fastener, the method of making same and the rolling dies therefor wherein said fastener is adapted for assembly with a member in which a standard internal thread is formed by the fastener and in which a zero running torque or controlled prevailing torque is established between said fastener and member.
  • a plurality of thread forming lobes are disposed on an otherwise standard, substantially fully formed thread on the tapered work entering end, wherein predetermined lobes on said tapered end III/II I proximate the shank portion are rolled such that their ultimate projection is within the envelope of the imaginary projection of the convolution of the shank thread toward the tip of said fastener.
  • the method of making said fastener includes rolling a substantially continuous thread from said shank portion throughout said tapered work entering portion and simultaneously forming spaced apart thread forming lobes superimposed upon said thread in said work entering portion, then subsequently rerolling said threaded shank portion and said predetermined lobes on the work entering portion to the cylindrical thread convolution of said shank portion, as projected.
  • the dies for rolling said fastener include a first, and second rolling dies, said dies having a fastener entrance end and a fastener exit end, and disposed intermediate said ends thread forming surfaces including a plurality of parallel thread crest forming grooves and thread root forming ridges having a shank forming flat portion being bounded along one edge by an upwardly inclined tip forming surface, said first rolling die being the primary rolling die and having a shank and tip forming section including a lobe forming section wherein a plurality of regularly spaced lobe forming pockets are disposed in said thread forming grooves and ridges in said tip forming surface, a reroll support section wherein said thread forming surfaces match said shank forming flat portion and a release section, said reroll support section of a predetermined rolling length so as to reroll a predetermined number of said thread forming lobes, and a said second rolling die having shank and tip forming sections, and a reroll section so disposed asto
  • This invention relates to a self tapping threaded fastener which, according to preferred embodiments, provides a zero running or a controlled prevailing torque during insertion of the fastener into the receiver member.
  • fastener While the above described fastener is remarkably effective in its capacity as a low torque thread former, it suffers from characteristics inherent in the previously known methods of mass manufacture.
  • these fasteners are rolled between two thread rolling dies, each provided with a plurality of parallel thread root forming ridges and thread crest forming grooves and each adapted with lobe forming pockets, whereby in rolling between said dies under heavy pressure the material of the screw shank is moved (swaged) during a rolling action to form the thread convolution.
  • the thread crest forming grooves of the dies are provided with a series of pockets which are indentations or punched holes.
  • the fastener is formed with a thread convolution that'is of substantially uniform cross section (a common form) the thread forming lobes proximate that juncture swage an internal thread in the fastener receiving member larger than the actual thread on the shank portion of said fastener.
  • FIGS. 24 through 26 of the aforementioned patent illustrate an attempt to provide a self tapping screw which also provides a controlled prevailing torque (zero clearance or a positive interference between the fastener and the formed internal thread).
  • the prior art fastener contains a threaded work entering portion having a tapered thread formation with decreasing major and pitch diameters but a constant minor diameter. While the illustrated fastener might provide a prevailing torque since the height and thickness of the thread forming lobes diminish toward the work entering end from a value less than that of the thread formation on the shank portion, its overall efficiency and desirability as a self tapping screw are impaired.
  • the effectiveness of a self tapping screw is in large measure concentrated in the thread formation in the work entering portion.
  • the thread formation thereon must not only swage an internal thread for the approaching shank portion but also advance the fastener into the receiving member. Unless the thread form bites deeply enough into the side material of the receiving member to auger in, the fastener will notadvance and swage the desired thread. Rather, it will strip out, leaving the receiving member with no threads or an enlarged hole.
  • the fastener of the present invention overcomes both of the above problem areas by providing a fully formed thread on the work entering portion substantially down to the tip thereof, and a lobular construction which swages the internal thread in the receiving member with a minimum of torque, yet within the dimensional requirements of the shank thread.
  • each of the two thread rolling dies for forming the above described conventional fasteners is adapted with lobe forming pockets.
  • the dies In practice the dies must be carefully mounted in automatic rolling machines, being finally shimmed into position so that successive lobes on said thread convolutions are alternately and regularly placed.
  • said conventional rolling dies do not long retain their initial adjustment.
  • the fastener blank slips on one of the dies causing the dies to lose their relative adjustment and the regular spacing of the lobes is destroyed.
  • irregular spacing of the lobes interferes with the thread forming function.
  • the dies of the present invention insure regular placement of the lobes irrespective of relative die adjustment or blank slippage.
  • the overall objects of the invention include providing a self tapping fastener, a method of making same and dies therefor which fastener also possesses the capacity to swage an internal thread in a receiving member, wherein the fastener exhibits, according to the-preferred embodiment, zero running torque or a controlled prevailing torque upon insertion into the receiving member.
  • the fastener includes a cylindrical shank portion having a tapered work entering portion terminating in a tip.
  • a cylindrical helical thread is rolled on the shank portion and continued in aspiral helical thread in the work entering portion.
  • superimposed upon the continuing spiral helical thread on the work entering portion are thread forming lobes,.which are, in the preferred embodiments, ofuniform size and cross section, and similar in cross'section to the thread upon which they are disposed.
  • certain lobes are rerolled, being those which otherwise project beyond said shank thread envelope. Said rerolling is subsequent to initial forming, to cause said lobes to be within the imaginary envelope of the cylindrical helical thread of the shank as projected axially beyond said juncture.
  • the method of making said fastener includes rolling a continuous thread from said shank portion throughout said tapered work entering portion and forming spaced apart thread forming lobes superimposed upon the thread convolutions of said work entering portion, then subsequently rerolling said threaded shank portion and certain of said lobes on the work entering portion, to the cylindrical thread convolution of said shank portion, as projected tipwardly.
  • the dies for rolling said fastener include a first and a second rolling die, said dies having a fastener entrance end and a fastener exit end, and disposed intermediate said ends, thread forming surfaces including a plurality of parallel thread crest forming grooves and thread root forming ridges. Each of said thread forming surfaces has a shank forming flat portion which is bounded along one edge by an upwardly inclined tip forming surface.
  • Said first rolling die is the primary rolling die including a lobe forming section on said tip forming surface wherein a plurality of regularly spaced lobe forming pockets are disposed in said thread forming grooves.
  • Said first rolling die also includes a reroll support section wherein said thread forming surface matches said shank forming flat portion, and a release section, said reroll support section being of a predetermined rolling length so as to reroll certain of said thread forming lobes which otherwise project beyond the envelope of said shank thread convolution as projected tipwardly.
  • Said second rolling die has shank and tip forming sections and a reroll section so disposed as to reroll said certain thread forming lobes back to the envelope of said shank thread convolution.
  • FIG. 1 is a pictorial view of a fastener embodying the invention.
  • FIG. 2 is a partial sectional view of the fastener of FIG. 1 prior to the reroll step.
  • FIG. 2a is an end view of the fastener of FIG. 2.
  • FIG. 3 is a partial sectional view of the fastener of FIG. 2 but later in rolling sequence.
  • FIG. 3a is an end view of the fastener of FIG. 3.
  • FIG. 4 is a pictorial view of the dies for making a fastener according to the invention.
  • FIG. 5 is a partial sectional view of the dies of FIG. 4, but in rolling sequence.
  • FIG. 6 is a sequential view of the dies of FIG. 4 during rolling.
  • FIG. 7 is a sectional elevation showing the reroll sequence of said dies.
  • FIG. 8 is a sectional, sequential view of an alternative embodiment of the invention of FIG. 6.
  • reference number 10 indicates a self tapping screw illustrating one embodiment of the invention.
  • Screw 10 includes a cylindrical shank portion 12 having a head 14 at one end thereof and a tapered work entering portion 16 terminating in a tip 18 at the other end thereof. Tip 18 may terminate in a sharp point or may be blunted, as illustrated.
  • Head 14 is conveniently adapted with means such as a transverse rerf 20 to be drivingly engaged by a tool (not shown) such as a conventional screw driver. Head 14 is not necessarily enlarged.
  • Screw 10 has a thread convolution 22 commencing at tip 18 and extending as a spiral helical thread 24 on the tapered work entering portion 16, and extending at least part way up shank 12 as a cylindrical helical thread 26.
  • thread 26 is of cylindrical shape throughout its full extent on said shank 12.
  • Each of the thread forms includes a root r, flanks f and a crest c, which are identified in conjunction with the thread reference number, e.g., 22r, 24f, 26c.
  • Thread convolution 24 (FIG. 1) in work entering portion 16 contains thread forming lobes 30 extending from 24r along flanks 24f to crest 24c, appearing as bulges superimposed upon thread 24.
  • Lobes 30 exhibit an envelope 32 in cross section which generally parallels flanks 24f and crest 24c and, except as later defined in the region of the juncture 25 of shank 12 and work entering portion 16, exhibits a lobe crest 300 which extends beyond the crest 240 of thread 24.
  • Lobes 30 are preferably circumferentially spaced apart along the thread convolution, being arranged in axial rows (see FIGS. 1, 2 and 3) extending from tip 18 through work entering portion 16 to, but not on, shank portion 12.
  • the lobes 30 are illustrated as having leading and trailing surfaces 30a and 30t, (FIG. 2) respectively, gradually curving out of flanks 24f so as to be rounded.
  • the thread forming lobes may take a wide variety of shapes in addition to those shown, however, there are three principal requirements upon shape.
  • the first requirement is that the lobe profile exceed the thread profile upon which disposed in order to support the screw in that region so as to effect a reduction of friction between the screw and the receiving member as the internal thread is being swaged.
  • the second requirement upon lobe shape is that it rise gradually above the flanks 24f and crest 24c so as to not cause cutting of the material of the receiving member.
  • the third lobe structural requirement is that successive lobes on the work entering portion extend progressively further outward from the screw axis with the last lobe shankwardly being on said work entering portion and the projection of certain predetermined lobes being rerolled to be within the imaginary projection of the cylindrical shank thread convolution tipwardly.
  • the novel dies and method of manufacture of the self tapping fastener enables the novel structure of the present invention.
  • the self tapping fastener illustrated in FIGS. 1, 2 and 3 is made preferably by rolling the shank thread, work entering thread and lobes on a conventional cylindrical screw blank by apparatus illustrated in FIGS. 4 through 8.
  • the rolling dies include a primary rolling die 42 and a secondary rolling die 44. These dies each include a flat shank rolling section 46 extending longitudinally from fastener entrance ends 43 and 43a toward fastener exit ends 45 and 45a.
  • Shank rolling section 46 includes thread crest rolling grooves 48 and thread root forming ridges 50.
  • Each die is also adapted with an inclined taper rolling section 52generally coextensive with said shank rolling section 46 and forming a boundary thereof.
  • Said taper rolling section also includes grooves 43 and ridges 50.
  • Primary die 42 includes recesses or pockets 54 disposed in said grooves for forming lobes of FIGS. 1 3. Preferably, said recesses are arranged in rows (A, B and C).
  • Screw blank 40 is introduced in a conventional manner between thread rolling dies 42 and 44, as illustrated in FIG. 4.
  • shank rolling section 46 thread crest rolling grooves 48 and thread root forming ridges 50.
  • the same die members are adapted with taper rolling sections 52 having ridges 50 and grooves 48.
  • the tapered work entering portion 16 is rolled on the fastener simultaneously with the shank and the fastener thus provided with spiral helical thread 26 extending substantially to tip 18. Dies 42 and 44 and the rolling method described thus far are generally known.
  • Lobes 30 may be initially formed simultaneously with the rolling of thread 24 by providing crest forming grooves 48 with pockets 54 compelementarily shaped to the lobes 30 of FIGS. 1 and 2. During the rolling process upon screw blank 40 the movement of metal of blank 40 is forced into pockets 54 such that the lobes are expressed upon thread 24 appearing to be superimposed upon the flanks 24f and crest 240 of that thread.
  • lobes 30' are initially formed, (projecting beyond shank thread envelope 27) substantially simultaneously with the forming of spiral helical thread 24 (See FIG. 2). These lobes 30' are substantially uniform (in the preferred embodiments) from tip 18 to shank 12. Subsequent to initial formation finally formed lobes 30 are rerolled (See FIG. 6 at 30) to provide an accurately gauged thread swaging surface, particularly in the vicinity of the junction of work entering portion 16 with shank 12. Description of the die structure to accomplish this reroll appears later in this specification. Thus, lobes 30, which otherwise would project beyond the envelope of the thread convolution on the shank, are rolled back to that exact desired envelope.
  • the lobes are formed such that the envelope of each falls within the imaginary envelope of the cylindrical helical shank thread, as projected beyond the junction 25 of the shank 12 and work entering portion 16 tipwardly. Further, it should be noted that this reroll occurs concurrently on crests 30c and sides 30s of lobe 30', what the entire cross-sectional envelope of the lobe 30 is within the proper dimensions of the thread form 22 of the shank, which, in the present embodiment, provides a screw 10 with a controlled running torque, as the fastener is inserted into the receiving member, after the internal thread has been swaged.
  • Dies 42 and 44 which are adapted to produce the above described novel fastener of the invention have a reroll or sizing section 60 wherein the thread forming surface 62 is shaped to the desired final shape and size of the lobes.
  • die 42 has a reroll support section 61 with a thread forming surface 63.
  • these forming surfaces are provided with ridges and grooves 43 comparable to those in the shank thread forming section 46 wherein the cylindrical helical thread is rolled.
  • These reroll sections and 61 are disposed on dies 42 and 44 subsequent to said shank rolling sections 46 and taper rolling sections 52.
  • reroll sections 60 and 61 are merely a short extra section ond'ies' 42 and 44 adjacent the exit ends 45 and 45a.
  • The" length of the sections in the rolling direction is approximately equal to the circumference of the fastener 10. This insures a reroll over the entire circumference of the fastener 10, and thus of all lobe rows (specifically, of those lobes 30 of rows A, B and C which otherwise project beyond the envelope 27 of the shank thread; asprojected tipwardly).
  • the reroll support section 61 of die 44 may have a rolling length substantially shorter than the fastener circumference. In such embodiments, a reroll of fewer than all of the lobes 30 may be affected.
  • lobes 30' formedby recesses 54 of rows A and Y B will be rolled back to the predetermined form (cylin:-
  • the product of the above described dies is a self tapping screw which has the usual thread forming lobes 30 in the tipward 18 region of the work entering portion 16; however, in the region approaching the shank junction 2, one lobe row (C in the illustration) is oversized or projects beyond the thread form of the shank 12.
  • the lobes 30 of rows A and B may swage the internal thread of receiving member to exactly the cylindrical helical shank thread 26, and the oversized lobes 30 of row C tend to swage a larger internal thread.
  • This screw exhibits much of the reduced thread forming torque requirements of the first embodiment and swages an internal thread in the receiving member which provides essentially a zero running torque or a very low prevailing torque with the receiving member with the shank thread 24, yet provides very close tolerances, and uniformity of manufacture, screw to screw.
  • lobes are rolled by both dies, necessitating elaborate alignment procedures when setting the dies in the rolling machine.
  • a screw blank slips slightly on one die during the initial states of rolling, the circumferential alignment of lobes is disturbed.
  • a full row of lobes may be completely wiped or rolled off a screw (or seriously deformed) due to alignment or slippage problems.
  • the lobe forming recesses 54 of the present invention are disposed in one of the thread forming dies (See FIG. 4). By placing all of the lobe forming recesses 54 on one die, as on die 42, proper circumferential placement of the lobes may be assured which contributes to accurate rolling of thread forming lobes 30.
  • lobe forming recesses 54 and die structure provides a fastener having lobes which are necessarily properly placed and not subsequently, uncontrollably wiped or rolled off. All lobes 30 are placed upon thread 24 by a single die and the relative position or change thereof of the cooperating die has no effect on lobe placement.
  • a pair of rolling dies for producing a self tapping fastener comprising:
  • a primary die having a base portion bounded by a fastener entrance end and a fastener exit end and two sides; a thread forming surface on said base portion; said thread forming surface having a series of substantially parallel thread root forming ridges and thread crest forming grooves disposed and spaced at angles corresponding to the thread helix angle to be formed; said thread forming surface including a substantially flat shank forming region extending longitudinally thereof and bounded along one side by an inclined taper rolling region, said thread crest forming grooves in said.
  • taper rolling region having lobe forming pockets at predetermined locations generally proximate the exit end of each shank and taper rolling region; and said thread forming surface having a reroll support region disposed later in rolling sequence of said shank and taper rolling regions, said support region having thread root forming ridges and thread crest forming grooves being continuations of said ridges and grooves of said shank and taper rolling regions and being disposed entirely in substantially the same place as said shank rolling region; and a 2.
  • secondary die having a base portion bounded by a fastener entrance end and a fastener exit end and two sides, and a thread forming surface on said base portion; said thread forming surface having a series of substantially parallel thread root forming ridges and thread crest forming grooves disposed and spaced at angles corresponding to the thread helix angle to be formed, said thread forming surface including a substantially flat shank forming region extending longitudinally thereof and bounded along one side by an inclined taper rolling region, said shank and taper rolling region being devoid of lobe forming pockets and said thread forming surface having a reroll region generally proximate said exit end and disposed later in rolling sequence of said shank and taper rolling regions, said reroll region having ridges and grooves being continuations of said ridges and grooves of said shank and taper rolling regions and being disposed entirely in substantially the same plane as said shank rolling region; said reroll support region and reroll region of said dies being disposed on said thread forming surfaces so

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Forging (AREA)

Abstract

A self tapping threaded fastener, the method of making same and the rolling dies therefor wherein said fastener is adapted for assembly with a member in which a standard internal thread is formed by the fastener and in which a zero running torque or controlled prevailing torque is established between said fastener and member. A plurality of thread forming lobes are disposed on an otherwise standard, substantially fully formed thread on the tapered work entering end, wherein predetermined lobes on said tapered end proximate the shank portion are rolled such that their ultimate projection is within the envelope of the imaginary projection of the convolution of the shank thread toward the tip of said fastener. The method of making said fastener includes rolling a substantially continuous thread from said shank portion throughout said tapered work entering portion and simultaneously forming spaced apart thread forming lobes superimposed upon said thread in said work entering portion, then subsequently rerolling said threaded shank portion and said predetermined lobes on the work entering portion to the cylindrical thread convolution of said shank portion, as projected. The dies for rolling said fastener include a first, and second rolling dies, said dies having a fastener entrance end and a fastener exit end, and disposed intermediate said ends thread forming surfaces including a plurality of parallel thread crest forming grooves and thread root forming ridges having a shank forming flat portion being bounded along one edge by an upwardly inclined tip forming surface, said first rolling die being the primary rolling die and having a shank and tip forming section including a lobe forming section wherein a plurality of regularly spaced lobe forming pockets are disposed in said thread forming grooves and ridges in said tip forming surface, a reroll support section wherein said thread forming surfaces match said shank forming flat portion and a release section, said reroll support section of a predetermined rolling length so as to reroll a predetermined number of said thread forming lobes, and a said second rolling die having shank and tip forming sections, and a reroll section so disposed as to reroll a predetermined number of said thread forming lobes.

Description

United States Patent [191 Skierski [451 Sept. 17, 1974 Primary Examiner-Milton S. Mehr Attorney, Agent, or FirmAubrey C. Brine; Vincent A. White; Richard B. Megley [5 7] ABSTRACT A self tapping threaded fastener, the method of making same and the rolling dies therefor wherein said fastener is adapted for assembly with a member in which a standard internal thread is formed by the fastener and in which a zero running torque or controlled prevailing torque is established between said fastener and member. A plurality of thread forming lobes are disposed on an otherwise standard, substantially fully formed thread on the tapered work entering end, wherein predetermined lobes on said tapered end III/II I proximate the shank portion are rolled such that their ultimate projection is within the envelope of the imaginary projection of the convolution of the shank thread toward the tip of said fastener. The method of making said fastener includes rolling a substantially continuous thread from said shank portion throughout said tapered work entering portion and simultaneously forming spaced apart thread forming lobes superimposed upon said thread in said work entering portion, then subsequently rerolling said threaded shank portion and said predetermined lobes on the work entering portion to the cylindrical thread convolution of said shank portion, as projected.
The dies for rolling said fastener include a first, and second rolling dies, said dies having a fastener entrance end and a fastener exit end, and disposed intermediate said ends thread forming surfaces including a plurality of parallel thread crest forming grooves and thread root forming ridges having a shank forming flat portion being bounded along one edge by an upwardly inclined tip forming surface, said first rolling die being the primary rolling die and having a shank and tip forming section including a lobe forming section wherein a plurality of regularly spaced lobe forming pockets are disposed in said thread forming grooves and ridges in said tip forming surface, a reroll support section wherein said thread forming surfaces match said shank forming flat portion and a release section, said reroll support section of a predetermined rolling length so as to reroll a predetermined number of said thread forming lobes, and a said second rolling die having shank and tip forming sections, and a reroll section so disposed asto reroll a predetermined number of said thread forming lobes.
5 Claims, 10 Drawing Figures rIIII DIES FOR MAKING A SELF TAPPING FASTENER This is a division, of application Ser. No. 256,370, filed May 24, 1972.
BACKGROUND OF THE INVENTION This invention relates to a self tapping threaded fastener which, according to preferred embodiments, provides a zero running or a controlled prevailing torque during insertion of the fastener into the receiver member.
A wide variety of self tapping threaded fasteners are available in the market place today. Most of these various fasteners fall into one or the other of two principal categories of thread forming action: cutting or swaging. While both types of fasteners are effective in forming an internal thread in a receiving member, the swaging variety is now more common. One of the fasteners illustrative of the swaging types is disclosed in US. Pat. No. 3,426,642, issued Feb. 11, 1969. The thread forming vehicle in this type of swaging screw is a lobe structure (21 in FIGS. 1, 2 and 3 of the patent about referred to) which is superimposed over a substantially continuous thread convolution, from tip through shank.
While the above described fastener is remarkably effective in its capacity as a low torque thread former, it suffers from characteristics inherent in the previously known methods of mass manufacture. Presently, these fasteners are rolled between two thread rolling dies, each provided with a plurality of parallel thread root forming ridges and thread crest forming grooves and each adapted with lobe forming pockets, whereby in rolling between said dies under heavy pressure the material of the screw shank is moved (swaged) during a rolling action to form the thread convolution. In forming self tapping screws having thread forming lobes, the thread crest forming grooves of the dies are provided with a series of pockets which are indentations or punched holes. These pockets accommodate the moving plastic metal, forming a built-up portion which is essentially superimposed on the thread formed. Since the lobe forming portions of the die are in reality holes in the thread crest forming grooves, the envelope of the lobes naturally extends beyond the envelope of the thread convolution'in the region proximate the juncture of the shank and tapered portions of the fastener where the diameter of tapered portion approaches that of the shank (see FIG. 3, of the aforementioned patent). Where the fastener is formed with a thread convolution that'is of substantially uniform cross section (a common form) the thread forming lobes proximate that juncture swage an internal thread in the fastener receiving member larger than the actual thread on the shank portion of said fastener. Thus, as the fastener is inserted into the receiving member, no prevailing torque exists between the swaged internal thread of the receiving member and the shank thread of the fastener. Rather, there is somewhat of a loose fit between the fastener and the receiving member. It should be quickly recognized that such a characteristic may in some instances be considered a deficiency which restricts the universal utilization of the fastener.
This shortcoming has been recognized and an attempt made to overcome the described deficiency. FIGS. 24 through 26 of the aforementioned patent illustrate an attempt to provide a self tapping screw which also provides a controlled prevailing torque (zero clearance or a positive interference between the fastener and the formed internal thread). As illustrated, the prior art fastener contains a threaded work entering portion having a tapered thread formation with decreasing major and pitch diameters but a constant minor diameter. While the illustrated fastener might provide a prevailing torque since the height and thickness of the thread forming lobes diminish toward the work entering end from a value less than that of the thread formation on the shank portion, its overall efficiency and desirability as a self tapping screw are impaired.
The effectiveness of a self tapping screw is in large measure concentrated in the thread formation in the work entering portion. The thread formation thereon must not only swage an internal thread for the approaching shank portion but also advance the fastener into the receiving member. Unless the thread form bites deeply enough into the side material of the receiving member to auger in, the fastener will notadvance and swage the desired thread. Rather, it will strip out, leaving the receiving member with no threads or an enlarged hole.
The fastener of the present invention overcomes both of the above problem areas by providing a fully formed thread on the work entering portion substantially down to the tip thereof, and a lobular construction which swages the internal thread in the receiving member with a minimum of torque, yet within the dimensional requirements of the shank thread.
As previously mentioned, each of the two thread rolling dies for forming the above described conventional fasteners is adapted with lobe forming pockets. In practice the dies must be carefully mounted in automatic rolling machines, being finally shimmed into position so that successive lobes on said thread convolutions are alternately and regularly placed. Experience dictates that said conventional rolling dies do not long retain their initial adjustment. Also, often during actual rolling, e.g., in initial insertion, the fastener blank slips on one of the dies, causing the dies to lose their relative adjustment and the regular spacing of the lobes is destroyed. As may be expected, irregular spacing of the lobes interferes with the thread forming function. The dies of the present invention insure regular placement of the lobes irrespective of relative die adjustment or blank slippage.
SUMMARY OF THE INVENTION The overall objects of the invention include providing a self tapping fastener, a method of making same and dies therefor which fastener also possesses the capacity to swage an internal thread in a receiving member, wherein the fastener exhibits, according to the-preferred embodiment, zero running torque or a controlled prevailing torque upon insertion into the receiving member.
To these ends and in accordance with certain features of the invention, the fastener includes a cylindrical shank portion having a tapered work entering portion terminating in a tip. A cylindrical helical thread is rolled on the shank portion and continued in aspiral helical thread in the work entering portion. Superimposed upon the continuing spiral helical thread on the work entering portion are thread forming lobes,.which are, in the preferred embodiments, ofuniform size and cross section, and similar in cross'section to the thread upon which they are disposed. In the area of the juncture of the shank and work entering portion of said fastener, certain lobes are rerolled, being those which otherwise project beyond said shank thread envelope. Said rerolling is subsequent to initial forming, to cause said lobes to be within the imaginary envelope of the cylindrical helical thread of the shank as projected axially beyond said juncture.
The method of making said fastener includes rolling a continuous thread from said shank portion throughout said tapered work entering portion and forming spaced apart thread forming lobes superimposed upon the thread convolutions of said work entering portion, then subsequently rerolling said threaded shank portion and certain of said lobes on the work entering portion, to the cylindrical thread convolution of said shank portion, as projected tipwardly.
The dies for rolling said fastener include a first and a second rolling die, said dies having a fastener entrance end and a fastener exit end, and disposed intermediate said ends, thread forming surfaces including a plurality of parallel thread crest forming grooves and thread root forming ridges. Each of said thread forming surfaces has a shank forming flat portion which is bounded along one edge by an upwardly inclined tip forming surface. Said first rolling die is the primary rolling die including a lobe forming section on said tip forming surface wherein a plurality of regularly spaced lobe forming pockets are disposed in said thread forming grooves. Said first rolling die also includes a reroll support section wherein said thread forming surface matches said shank forming flat portion, and a release section, said reroll support section being of a predetermined rolling length so as to reroll certain of said thread forming lobes which otherwise project beyond the envelope of said shank thread convolution as projected tipwardly. Said second rolling die has shank and tip forming sections and a reroll section so disposed as to reroll said certain thread forming lobes back to the envelope of said shank thread convolution.
DESCRIPTION OF THE DRAWINGS FIG. 1 is a pictorial view of a fastener embodying the invention.
FIG. 2 is a partial sectional view of the fastener of FIG. 1 prior to the reroll step.
FIG. 2a is an end view of the fastener of FIG. 2.
FIG. 3 is a partial sectional view of the fastener of FIG. 2 but later in rolling sequence.
FIG. 3a is an end view of the fastener of FIG. 3. FIG. 4 is a pictorial view of the dies for making a fastener according to the invention.
FIG. 5 is a partial sectional view of the dies of FIG. 4, but in rolling sequence.
FIG. 6 is a sequential view of the dies of FIG. 4 during rolling.
FIG. 7 is a sectional elevation showing the reroll sequence of said dies.
FIG. 8 is a sectional, sequential view of an alternative embodiment of the invention of FIG. 6.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawings and FIG. 1 in particular, reference number 10 indicates a self tapping screw illustrating one embodiment of the invention. Screw 10 includes a cylindrical shank portion 12 having a head 14 at one end thereof and a tapered work entering portion 16 terminating in a tip 18 at the other end thereof. Tip 18 may terminate in a sharp point or may be blunted, as illustrated. Head 14 is conveniently adapted with means such as a transverse rerf 20 to be drivingly engaged by a tool (not shown) such as a conventional screw driver. Head 14 is not necessarily enlarged.
Screw 10 has a thread convolution 22 commencing at tip 18 and extending as a spiral helical thread 24 on the tapered work entering portion 16, and extending at least part way up shank 12 as a cylindrical helical thread 26. As viewed in cross section (see FIG. 2a) thread 26 is of cylindrical shape throughout its full extent on said shank 12. Each of the thread forms includes a root r, flanks f and a crest c, which are identified in conjunction with the thread reference number, e.g., 22r, 24f, 26c.
Thread convolution 24 (FIG. 1) in work entering portion 16 contains thread forming lobes 30 extending from 24r along flanks 24f to crest 24c, appearing as bulges superimposed upon thread 24. Lobes 30 exhibit an envelope 32 in cross section which generally parallels flanks 24f and crest 24c and, except as later defined in the region of the juncture 25 of shank 12 and work entering portion 16, exhibits a lobe crest 300 which extends beyond the crest 240 of thread 24.
Lobes 30 are preferably circumferentially spaced apart along the thread convolution, being arranged in axial rows (see FIGS. 1, 2 and 3) extending from tip 18 through work entering portion 16 to, but not on, shank portion 12.
Further, the lobes 30 are illustrated as having leading and trailing surfaces 30a and 30t, (FIG. 2) respectively, gradually curving out of flanks 24f so as to be rounded. However, it is to be understood that the thread forming lobes may take a wide variety of shapes in addition to those shown, however, there are three principal requirements upon shape. The first requirement is that the lobe profile exceed the thread profile upon which disposed in order to support the screw in that region so as to effect a reduction of friction between the screw and the receiving member as the internal thread is being swaged. The second requirement upon lobe shape is that it rise gradually above the flanks 24f and crest 24c so as to not cause cutting of the material of the receiving member. The third lobe structural requirement is that successive lobes on the work entering portion extend progressively further outward from the screw axis with the last lobe shankwardly being on said work entering portion and the projection of certain predetermined lobes being rerolled to be within the imaginary projection of the cylindrical shank thread convolution tipwardly. As will be subsequently disclosed, the novel dies and method of manufacture of the self tapping fastener enables the novel structure of the present invention.
The self tapping fastener illustrated in FIGS. 1, 2 and 3 is made preferably by rolling the shank thread, work entering thread and lobes on a conventional cylindrical screw blank by apparatus illustrated in FIGS. 4 through 8. The rolling dies include a primary rolling die 42 and a secondary rolling die 44. These dies each include a flat shank rolling section 46 extending longitudinally from fastener entrance ends 43 and 43a toward fastener exit ends 45 and 45a. Shank rolling section 46 includes thread crest rolling grooves 48 and thread root forming ridges 50. Each die is also adapted with an inclined taper rolling section 52generally coextensive with said shank rolling section 46 and forming a boundary thereof. Said taper rolling section also includes grooves 43 and ridges 50. Primary die 42 includes recesses or pockets 54 disposed in said grooves for forming lobes of FIGS. 1 3. Preferably, said recesses are arranged in rows (A, B and C).
Screw blank 40 is introduced in a conventional manner between thread rolling dies 42 and 44, as illustrated in FIG. 4. In shank rolling section 46, thread crest rolling grooves 48 and thread root forming ridges 50. roll a cylindrical helical thread 24 on shank portion 12 (as illustrated in FIGS. 1 3). Preferably the same die members are adapted with taper rolling sections 52 having ridges 50 and grooves 48. Thus, the tapered work entering portion 16 is rolled on the fastener simultaneously with the shank and the fastener thus provided with spiral helical thread 26 extending substantially to tip 18. Dies 42 and 44 and the rolling method described thus far are generally known.
Lobes 30 may be initially formed simultaneously with the rolling of thread 24 by providing crest forming grooves 48 with pockets 54 compelementarily shaped to the lobes 30 of FIGS. 1 and 2. During the rolling process upon screw blank 40 the movement of metal of blank 40 is forced into pockets 54 such that the lobes are expressed upon thread 24 appearing to be superimposed upon the flanks 24f and crest 240 of that thread.
As previously mentioned, the above described is the initial forming of lobes as is illustrated at 30' in FIG. 2. As, may be appreciated with the rolling die structure and method thus described, recesses 54 extend to a depth greater than the depth of thread crest forming grooves in which they are disposed. The net result of the method described thus far is to provide an, initial lobe 30' (FIGS. 2, 5 and 6) on the upper reaches of work entering portion 16 which extends radially beyond the envelope 27 of the cylindrical helical thread 26 as projected tipwardly. Such projections of lobes 30 beyond the shank thread envelope deprive the self tapping fastener of the desired zero clearance or controlled running torque with the internally threaded receiving member.
Certain oflobes 30' are initially formed, (projecting beyond shank thread envelope 27) substantially simultaneously with the forming of spiral helical thread 24 (See FIG. 2). These lobes 30' are substantially uniform (in the preferred embodiments) from tip 18 to shank 12. Subsequent to initial formation finally formed lobes 30 are rerolled (See FIG. 6 at 30) to provide an accurately gauged thread swaging surface, particularly in the vicinity of the junction of work entering portion 16 with shank 12. Description of the die structure to accomplish this reroll appears later in this specification. Thus, lobes 30, which otherwise would project beyond the envelope of the thread convolution on the shank, are rolled back to that exact desired envelope. By this reroll the lobes are formed such that the envelope of each falls within the imaginary envelope of the cylindrical helical shank thread, as projected beyond the junction 25 of the shank 12 and work entering portion 16 tipwardly. Further, it should be noted that this reroll occurs concurrently on crests 30c and sides 30s of lobe 30', what the entire cross-sectional envelope of the lobe 30 is within the proper dimensions of the thread form 22 of the shank, which, in the present embodiment, provides a screw 10 with a controlled running torque, as the fastener is inserted into the receiving member, after the internal thread has been swaged.
In the embodiment of FIGS. 1 and 3, where all rows (A, B and C) of lobes are rerolled (FIG. 3), very precise thread forming occurs in the final lobes. This is due in part to the controlled gauging of these final forming lobes and, in part, to the lower swaging loads encountered by these lobes,since their function is now in the nature of a final minor adjustment of the thread previously swaged by the earlier lobes. The overall effect of certain rerolled lobes during the thread swaging function is to equalize the torque load upon thread forming lobes. With equalized loads upon the lobes, adverse stresses are avoided in screw as it swages the internal thread, which, in turn, dramatically increases the drive vs. strip ratio. Fasteners made according to conventional methods demonstrate a ratio of approximately 3 to 1 whereas the fasteners of the present invention provide up to a 10 to 1 ratio.
Another significant advantage in thread operating characteristics is gained from a screwv formed per the preceding paragraph. It is known that a wide variety of materials into which these self tapping screws are inserted have memories. That is, the material has some resilience and, subsequent to subjection to the internal thread swaging by the fastener to the exact form of the shank thread, the internal thread exhibits a slight tendency to return to its original or filled in form. Thus, some interference between the internal swaged thread and the shank thread 26 exists when the screw is inserted into the threaded hole. This interference insures zero clearance and, in fact, a locking function. The degree of lock, or the amount of interference, may be directly controlled by the amount of roll-off performed upon each lobe row in reroll section 60 of die 44. The more of crest 30c and side 30s that is rolled off, the smaller the internal thread will be and thus the greater the interference or prevailing torque upon the screw.
Dies 42 and 44 which are adapted to produce the above described novel fastener of the invention have a reroll or sizing section 60 wherein the thread forming surface 62 is shaped to the desired final shape and size of the lobes. Likewise, die 42 has a reroll support section 61 with a thread forming surface 63. In the illustrated embodiments, these forming surfaces are provided with ridges and grooves 43 comparable to those in the shank thread forming section 46 wherein the cylindrical helical thread is rolled. These reroll sections and 61 are disposed on dies 42 and 44 subsequent to said shank rolling sections 46 and taper rolling sections 52. In the preferred embodiment, reroll sections 60 and 61 are merely a short extra section ond'ies' 42 and 44 adjacent the exit ends 45 and 45a. The" length of the sections in the rolling direction is approximately equal to the circumference of the fastener 10. This insures a reroll over the entire circumference of the fastener 10, and thus of all lobe rows (specifically, of those lobes 30 of rows A, B and C which otherwise project beyond the envelope 27 of the shank thread; asprojected tipwardly). In a further embodiment of the dies, the reroll support section 61 of die 44 may have a rolling length substantially shorter than the fastener circumference. In such embodiments, a reroll of fewer than all of the lobes 30 may be affected. By the diesillustrated in FIG. 8, lobes 30' formedby recesses 54 of rows A and Y B will be rolled back to the predetermined form (cylin:-
drical shank thread) and lobes 30 of row C will remain singly rolled. This is so since the thread forming surface 62 of this embodiment is of a limited length so as to not support and work the fastener beyond the first twothirds of the reroll. Naturally, primary die 42 supports the screw during this reroll and the amount of reroll may also be controlled by the length of support section 63.
The product of the above described dies is a self tapping screw which has the usual thread forming lobes 30 in the tipward 18 region of the work entering portion 16; however, in the region approaching the shank junction 2, one lobe row (C in the illustration) is oversized or projects beyond the thread form of the shank 12. Thus, the lobes 30 of rows A and B may swage the internal thread of receiving member to exactly the cylindrical helical shank thread 26, and the oversized lobes 30 of row C tend to swage a larger internal thread. This screw exhibits much of the reduced thread forming torque requirements of the first embodiment and swages an internal thread in the receiving member which provides essentially a zero running torque or a very low prevailing torque with the receiving member with the shank thread 24, yet provides very close tolerances, and uniformity of manufacture, screw to screw.
In conventional practice, lobes are rolled by both dies, necessitating elaborate alignment procedures when setting the dies in the rolling machine. As previously mentioned, if a screw blank slips slightly on one die during the initial states of rolling, the circumferential alignment of lobes is disturbed. Quite often in conventional practice, a full row of lobes may be completely wiped or rolled off a screw (or seriously deformed) due to alignment or slippage problems.
Contrary to previous practice, the lobe forming recesses 54 of the present invention are disposed in one of the thread forming dies (See FIG. 4). By placing all of the lobe forming recesses 54 on one die, as on die 42, proper circumferential placement of the lobes may be assured which contributes to accurate rolling of thread forming lobes 30.
Present arrangement of the lobe forming recesses 54 and die structure provides a fastener having lobes which are necessarily properly placed and not subsequently, uncontrollably wiped or rolled off. All lobes 30 are placed upon thread 24 by a single die and the relative position or change thereof of the cooperating die has no effect on lobe placement.
By the invention just disclosed, it should be understood that, now, self tapping screws having any of a variety of controlled running torques can be produced, in mass, and with a uniformity not previously known in the industry. While there have been described herein what, at present, are considered to be preferred embodiments of this invention, it will be evident to those skilled in the art that various changes and modifications may be made without departing from the true scope and spirit of the invention.
1 claim:
1. A pair of rolling dies for producing a self tapping fastener comprising:
1. a primary die having a base portion bounded by a fastener entrance end and a fastener exit end and two sides; a thread forming surface on said base portion; said thread forming surface having a series of substantially parallel thread root forming ridges and thread crest forming grooves disposed and spaced at angles corresponding to the thread helix angle to be formed; said thread forming surface including a substantially flat shank forming region extending longitudinally thereof and bounded along one side by an inclined taper rolling region, said thread crest forming grooves in said. taper rolling region having lobe forming pockets at predetermined locations generally proximate the exit end of each shank and taper rolling region; and said thread forming surface having a reroll support region disposed later in rolling sequence of said shank and taper rolling regions, said support region having thread root forming ridges and thread crest forming grooves being continuations of said ridges and grooves of said shank and taper rolling regions and being disposed entirely in substantially the same place as said shank rolling region; and a 2. secondary die having a base portion bounded by a fastener entrance end and a fastener exit end and two sides, and a thread forming surface on said base portion; said thread forming surface having a series of substantially parallel thread root forming ridges and thread crest forming grooves disposed and spaced at angles corresponding to the thread helix angle to be formed, said thread forming surface including a substantially flat shank forming region extending longitudinally thereof and bounded along one side by an inclined taper rolling region, said shank and taper rolling region being devoid of lobe forming pockets and said thread forming surface having a reroll region generally proximate said exit end and disposed later in rolling sequence of said shank and taper rolling regions, said reroll region having ridges and grooves being continuations of said ridges and grooves of said shank and taper rolling regions and being disposed entirely in substantially the same plane as said shank rolling region; said reroll support region and reroll region of said dies being disposed on said thread forming surfaces so as to be generally opposite each other during rolling sequence whereby said fastener previously rolled by said shank and taper thread forming surfaces is rerolled to the thread form of said reroll region.
2. A pair of rolling dies according to claim 1 wherein the longitudinal dimension of said reroll region of said secondary die is at least equal to the circumference of a fastener rolled thereon.
3. A pair of rolling dies according to claim 2 wherein said longitudinal dimension of said reroll support section of said primary die is at least equal to the circumference of a fastener rolled thereon.
4. A pair of rolling dies according to claim 1 wherein the longitudinal dimension of said reroll region of said secondary die is at least equal to one-half the circumference of a fastener rolled thereon.
- 5. A pair of rolling dies according to claim 4 wherein the longitudinal dimension of said reroll support dimension is at least equal to one-half the circumference of a fastener rolled thereon.

Claims (5)

1. A pair of rolling dies for producing a self tapping fastener comprising: 1. a primary die having a base portion bounded by a fastener entrance end and a fastener exit end and two sides; a thread forming surface on said base portion; said thread forming surface having a series of substantially parallel thread root forming ridges and thread crest forming grooves disposed and spaced at angles corresponding to the thread helix angle to be formed; said thread forming surface including a substantially flat shank forming region extending longitudinally thereof and bounded along one side by an inclined taper rolling region, said thread crest forming grooves in said taper rolling region having lobe forming pockets at predetermined locations generally proximate the exit end of each shank and taper rolling region; and said thread forming surface having a reroll support region disposed later in rolling sequence of said shank and taper rolling regions, said support region having thread root forming ridges and thread crest forming grooves being continuations of said ridges and grooves of said shank and taper rolling regions and being disposed entirely in substantially the same place as said shank rolling region; and a 2. secondary die having a base portion bounded by a fastener entrance end and a fastener exit end and two sides, and a thread forming surface on said base portion; said thread forming surface having a series of substantially parallel thread root forming ridges and thread crest forming grooves disposed and spaced at angles corresponding to the thread helix angle to be formed, said thread forming surface including a substantially flat shank forming region extending longitudinally thereof and bounded along one side by an inclined taper rolling region, said shank and taper rolling region being devoid of lobe forming pockets and said thread forming surface having a reroll region generally proximate said exit end and disposed later in rolling sequence of said shank and taper rolling regions, said reroll region having ridges and grooves being continuations of said ridges and grooves of said shank and taper rolling regions and being disposed entirely in substantially the same plane as said shank rolling region; said reroll support region and reroll region of said dies being disposed on said thread forming surfaces so as to be generally opposite each other during rolling sequence whereby said fastener previously rolled by said shank and taper thread forming surfaces is rerolled to the thread form of said reroll region.
2. A pair of rolling dies according to claim 1 wherein the longitudinal dimension of said reroll region of said secondary die is at least equal to the circumference of a fastener rolled thereon.
3. A pair of rolling dies according to claim 2 wherein said longitudinal dimension of said reroll support section of said primary die is at least equal to the circumference of a fastener rolled thereon.
4. A pair of rolling dies according to claim 1 wherein the longitudinal dimension of said reroll region of said secondary die is at least equal to one-half the circumference of a fastener rolled thereon.
5. A pair of rolling dies according to claim 4 wherein the longitudinal dimension of said reroll support dimension is at least equal to one-half the circumference of a fastener rolled thereon.
US00398318A 1972-05-24 1973-09-18 Dies for making a self tapping fastener Expired - Lifetime US3835694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00398318A US3835694A (en) 1972-05-24 1973-09-18 Dies for making a self tapping fastener

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25637072A 1972-05-24 1972-05-24
US00398318A US3835694A (en) 1972-05-24 1973-09-18 Dies for making a self tapping fastener

Publications (1)

Publication Number Publication Date
US3835694A true US3835694A (en) 1974-09-17

Family

ID=26945328

Family Applications (1)

Application Number Title Priority Date Filing Date
US00398318A Expired - Lifetime US3835694A (en) 1972-05-24 1973-09-18 Dies for making a self tapping fastener

Country Status (1)

Country Link
US (1) US3835694A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4546639A (en) * 1983-09-26 1985-10-15 Colt Industries Operating Corp Thread rolling dies for forming self tapping screws and the like
US20090110513A1 (en) * 2007-10-31 2009-04-30 Hilti Aktiengesellschaft Self-tapping screw
US20100061824A1 (en) * 2008-09-10 2010-03-11 Chang Chin Industry Corp. Screw
US20210040976A1 (en) * 2018-10-11 2021-02-11 Wei-Chih Chen Method for integrally forming a stop flange on a self-tapping screw by threading dies
CN113103003A (en) * 2020-10-11 2021-07-13 李文彬 Cold stamping die capable of automatically tapping in die

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2293930A (en) * 1939-06-17 1942-08-25 Groov Pin Corp Screw
US3308645A (en) * 1960-08-12 1967-03-14 Columbus Bolt And Forging Co Die for producing self-locking threaded fastener
US3426642A (en) * 1962-02-05 1969-02-11 Res Eng & Mfg Self-tapping screws with threadforming projections

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2293930A (en) * 1939-06-17 1942-08-25 Groov Pin Corp Screw
US3308645A (en) * 1960-08-12 1967-03-14 Columbus Bolt And Forging Co Die for producing self-locking threaded fastener
US3426642A (en) * 1962-02-05 1969-02-11 Res Eng & Mfg Self-tapping screws with threadforming projections

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4546639A (en) * 1983-09-26 1985-10-15 Colt Industries Operating Corp Thread rolling dies for forming self tapping screws and the like
US20090110513A1 (en) * 2007-10-31 2009-04-30 Hilti Aktiengesellschaft Self-tapping screw
US8182185B2 (en) * 2007-10-31 2012-05-22 Hilti Aktiengesellschaft Self-tapping screw
US20100061824A1 (en) * 2008-09-10 2010-03-11 Chang Chin Industry Corp. Screw
US20210040976A1 (en) * 2018-10-11 2021-02-11 Wei-Chih Chen Method for integrally forming a stop flange on a self-tapping screw by threading dies
US11739784B2 (en) * 2018-10-11 2023-08-29 Wei-Chih Chen Method for integrally forming a stop flange on a self-tapping screw by threading dies
CN113103003A (en) * 2020-10-11 2021-07-13 李文彬 Cold stamping die capable of automatically tapping in die

Similar Documents

Publication Publication Date Title
US3426642A (en) Self-tapping screws with threadforming projections
EP1066473B1 (en) Improved self-tapping thread fastener and a blank therefor
US4194430A (en) Thread-forming screw with step taper
US3186464A (en) Thread forming screw and method and apparatus for making the same
US3878759A (en) Bi-lobular self-thread forming fastener
US3180126A (en) Self-tapping screw and method of manufacture
US3935785A (en) Thread swaging screw
US3794092A (en) Locking fastener
US3195156A (en) Method of producing thread swaging devices
US3209383A (en) Fluted lobular thread-forming members
US3875780A (en) Method of making a thread forming screw
US5044855A (en) Thread-forming fasteners
US3537288A (en) Method of manufacturing self-tapping screws
US3218905A (en) Self-tapping or thread-forming screw
US3942406A (en) Slab-sided self-tapping screw
US4315340A (en) Method and apparatus for making a self-thread creating fastener
JPH0757405B2 (en) Thread forming screw
US3681963A (en) Self-thread forming threaded fasteners and method and apparatus for making the same
US3550255A (en) Method of making rotary threaded fasteners
US3831415A (en) Self tapping fastener and method and dies for making same
US4046051A (en) Thread forming screw
US4430036A (en) Thread forming fastener
US6899500B2 (en) Fastner having multiple-bossed lead
US3835694A (en) Dies for making a self tapping fastener
US3803889A (en) Self-thread forming threaded fasteners and method for making same

Legal Events

Date Code Title Description
AS Assignment

Owner name: EMHART INDUSTRIES, INC., A CONNECTICUT STOCK CORP.

Free format text: MERGER;ASSIGNOR:EMHART ENTERPRISES CORP., A NJ CORP.;REEL/FRAME:004870/0112

Effective date: 19871216

Owner name: EMHART ENTERPRISES CORP.

Free format text: CHANGE OF NAME;ASSIGNOR:USM CORPORATION;REEL/FRAME:004876/0901

Effective date: 19871104

Owner name: EMHART INDUSTRIES, INC.,CONNECTICUT

Free format text: MERGER;ASSIGNOR:EMHART ENTERPRISES CORP., A NJ CORP.;REEL/FRAME:004870/0112

Effective date: 19871216