US3831872A - Traverse winding apparatus - Google Patents

Traverse winding apparatus Download PDF

Info

Publication number
US3831872A
US3831872A US00325982A US32598273A US3831872A US 3831872 A US3831872 A US 3831872A US 00325982 A US00325982 A US 00325982A US 32598273 A US32598273 A US 32598273A US 3831872 A US3831872 A US 3831872A
Authority
US
United States
Prior art keywords
yarn
trail
traverse
reversal
given value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00325982A
Inventor
D Bowen
D Fisher
P Knauff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Co
Original Assignee
Monsanto Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/085,930 external-priority patent/US3964724A/en
Application filed by Monsanto Co filed Critical Monsanto Co
Priority to US00325982A priority Critical patent/US3831872A/en
Application granted granted Critical
Publication of US3831872A publication Critical patent/US3831872A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/28Traversing devices; Package-shaping arrangements
    • B65H54/2806Traversing devices driven by cam
    • B65H54/2809Traversing devices driven by cam rotating grooved cam
    • B65H54/2812Traversing devices driven by cam rotating grooved cam with a traversing guide running in the groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/38Arrangements for preventing ribbon winding ; Arrangements for preventing irregular edge forming, e.g. edge raising or yarn falling from the edge
    • B65H54/385Preventing edge raising, e.g. creeping arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • Circling thrust members are provided to intercept a yarn being reciprocably traversed and forwarded to a bobbin in a winding zone to acceleratively control the reversal displacement of the yarn on the bobbin.
  • a yarn package having a high resolution of symmetry is produced, the package being characterized in that the majority of the reversal curves of the helical windings are comprised essentially of camber curves generated substantially to a point of projected intersection of the diagonal linear extensions of the helical windings.
  • the objective of the invention is to improve upon present textile traverse winding machines and methods to permit use of higher operational speeds and to produce more precisely wound, improved yarn packages.
  • a yarn package is formed by traversing a yarn linearly across the face of a bobbin being driven at a constant peripheral speed so that the yarn is taken up in helically displaced windings or wraps.
  • Yarn traversing is effected by a reciprocating guide slidably constrained to move linearly between guide surfaces and driven by an attached cam follower to which motion is imparted by a grooved barrel roll cam.
  • the speed of reversal of the reciprocating guide is controlled by the angularity of the curve of the cam groove in the reversals.
  • Sharp cam curves provide faster reversals but they subject guide-follower assemblies to excessive disintegrating accelerative loads. Therefore, the degree of angularity that may be employed in profiling a reverse cam groove curve is restrictive.
  • a typical high-speed yarn packaging process may require traversing speeds of 600 or more cycles per minute and yarn take-up speeds of 2,000 or more yards per minute.
  • a yarn package produced by a traverse device operating at slower speeds in the reversals has more yarn per unit of package length deposited on the ends.
  • the result is a package having a reduced central diameter portion and raised or bulged larger diameter end portions.
  • the bulged ends are hard compared to the intermediate portion, and particularly in a winding operation where a bobbin is driven surfacely by a conventional peripheral bobbin drive assembly, the hardness differential progressively increases as the package is built to a larger diameter. Variations in package hardness are undesirable and are known to be a cause of streaking when the packaged yarn is subsequently converted into fabric and dyed. Hardness variations in a yarn package may also cause tension barrel in fabric production.
  • a further unsatisfactory feature of conventional traverse winding apparatus is the relatively long trail length of yarn required in operation.
  • the yarn trail length is that free length of yarn traveling from the point of contact with a traverse guide or surface and the first point of contact with a take-up bobbin or associated wind-up roll such as a drive roll. Since the yarn trail length is a free running length of yarn, it is subject to undesirable vibration and tension fluctuations that increase in magnitude with an increase in the trial length of yarn. Ideally, the shortest attainable yarn trail length is desirable.
  • Another object is to provide a yarn package having the yarn distributed around a bobbin in helices comprising substantially linear, diagonally extending lengths joined at the ends of the package by reversal curves.
  • the majority or most of the reversal curves are characterized by being essentially camber curves generated around linear projections of the diagonal lengths and extending substantially to the point of projected intersections of the latter.
  • the traverse winding apparatus and method comprise traverse means for traversingly displacing a yarn being forwarded to and being taken up on a driven bobbin.
  • the yarn is traversed at a substantially constant rate of speed with an exception of a reduction in traverse speed in the reversals.
  • a pair of camming pins or guides are arranged between the point of reciprocation of the yarn and the bobbin and are adapted to circulate angularly relative to the plane of traversal of the yarn. Each pin is located in the reversal zone of the traversing yarn and is driven to circulate at a faster relative speed than the rate of traversal of the yarn in the reversal.
  • each pin is synchronized to smoothly contact the yarn and to impart an arcuate, sliding thrust against the yarn applying a sideward and downward vectorial component thereto.
  • the thrust applied accelerates and increases the lateral displacment of the yarn, shortens the trail length and cooperatively with the traverse means effects a reversal of the yarn.
  • the pins are synchronized to disengage from theyarn after the yarn has been reversed by the traverse means and substantially established a predetermined reverse trail angle.
  • yarn trail angle refers to the angle formed between the free trail length of yarn and a peripheral line of contact of the yarn on a rotating roll traced as the yarn is traversed back and forth across the roll.
  • the rotating roll may be a bobbin, drive roll or bail roll and is the first roll contacted in the wind-up assembly.
  • a yarn will have a constant trail angle in one direction of traverse and a similar reverse constant trail angle in the opposite direction of traverse. In the reversals, the yarn trail length passes through a reversal arc from one to the reverse constant trail angle and through a perpendicular or trail angle position.
  • Yarn trail angles 6A and 0B are illustrated in FIGS. 3 and 12, respectively, in the accompanying drawings.
  • the yarn package produced has a high resolution of geometric symmetry and physical property uniformity.
  • the windings on the yarn packages are laid in helices reversal curves that are comprised essentially of camber curves built about projected, theoretical angular V reversals.
  • FIG. I is a perspective view with portions broken away illustrating the traverse winding apparatus of the invention.
  • FIG. 2 is a plan view of the traverse winding apparatus
  • FIGS. 3-12 are elevation views schematically illustrating a sequential operation of a circulating pin com ponent of the invention
  • FIG. 13 is a developed view of several helical traversals of yarn wound on a bobbin illustrating the camber curve provided in the reversals, and
  • FIGS. 14-16 are developed views illustrating several different configurations of a reversal curve wound or laid on a bobbin according to the invention.
  • the traverse winding apparatus embodying the invention comprises a conventional yarn traverse device 2 including a barrel roll 4 driven by a motor 6, and a helical cam groove 8.
  • Cam groove 8 imparts-motion to a cam follower 10 positioned slidably in cam groove 8.
  • a yarn guide 12 is connected to cam follower 118 and forms a traverse guide that is constrained to travel slidably in a longitudinal slot provided between spaced guide rails 14.
  • Yarn guide 12 has a yarn slot 16 and, operatively, reciprocates back and forth between guide rails 14.
  • a conventional yarn winding, collecting or take-up device 18 is positioned below traverse device 2.
  • Winding device 18 includes a drive roll 20 driven by a motor 22, and a bobbin 24 mounted rotatably on a pivotal bobbin chuck assembly 26, illustrated schematically.
  • Bobbin 24 is pivotally movable toward and away from drive roll 20 and, in operation, rests on the drive roll in parallel, axial alignment therewith.
  • Reference numeral 24 identifies both the yarn package and bobbin.
  • a yarn 28, forwarded to traverse device 2 is laced to pass through yarn slot 16 and to extend engagingly around the bottom of drive roll 20, FIG. ll, before passing through the nip between drive roll 20 and bobbin 24.
  • Drive roll 20 is driven in one direction to drive bobbin 20 in the opposite direction. If desired, an alternate lace-up where yarn 28 extends directly through the nip between drive roll 28 and bobbin 24 may be used rather than lacing the yarn initially around drive roll 28.
  • a pair of rotatably driven discs, 30 and 32 are positioned between yarn guide 12 and drive roll 20.
  • the discs are symmetrically arranged in lateral, spaced relation closely adjacent to drive roll 28.
  • Each disc has a frontal side facing drive roll 20, and each is driven by a shaft 34 and 36, respectively from the back side thereof in opposed directions.
  • Disc 30 rotates in a counterclockwise direction while disc 32 rotates in a clockwise direction, FIG. 1.
  • Discs 28 and 32 are positioned upstandingly and inopposed oblique relation relative to the plane of traversal of the yarn so that their frontal sides angularly face each other.
  • Each disc 38 and 32 has a post or pin 38 and 40, respectively, projecting from its frontal side.
  • Each pin 38 and 40 is positioned a predetermined distance from the axis of rotation of its respective disc, and each extends substantially perpendicularly from the frontal side thereof.
  • the pins are tapered and if desired they may be mounted rotatably.
  • Discs 30 and 32 are positioned to circulate pins 38 and 48 laterally beyond the reversal limits of the yarn guide slot E6.
  • Pins 38 and 48 cooperate with the traverse and winding devices 2 and 18, respectively, to operate in the following manner. Assume yarn 28 is being traversed by yarn guide 12 and is traveling under tension to and being taken up on bobbin 2 and that discs 38 and 32 are driven to circulate pins 38 and 48 at a predetermined higher rate of speed than a selected linear rate of traversal of guide 112. Accordingly, then, each pin 38 and 40, traveling at a high speed of rotation or circulation and in an angular path relative to the plane of traversal of yarn 28, contacts the yarn while the yarn guide I2 is in a reduced speed reversal either before or after the exact moment of guide 12 reversal depending on whether a lower or higher ratio of pin 38 and 48 revolutions to yarn guide 12 cycles is employed.
  • each pin 38 and 4t slidingly engages the yarn through an arcuate degree of circulating motion of the pin and applies an outward lateral thrust thereto displacing the yarn beyond the outer limit or displacement of the yarn by reciprocating guide I2.
  • Each pin 38 and 48 disengages from the yarn 28 substantially at a time coincident with the yarn guide 12 having made a reversal and having regained its normal constant speed of traversal.
  • the length of the yarn trversal stroke normally provided by yarn guide 12 is extended or lengthened by pins 38 and 40 without varying the normal rate of periodic traversal of the yarn by guide 12 because pins 38 and 48 accelerate the displacement of the yarn through the reversals.
  • pins 38 and 40 on discs 30 and 32 may be varied to provide a multiplicity of operative solutions.
  • Yarn guide 112 reaches the limit of its leftward stroke, and after reversing, FIG. 7, carries the contacted yarn portion rightwardly while pin 38 continues to push against the yarn and to displace the yarn leftwardly.
  • Pin 38 applies horizontal leftward and vertical downward velocity displacement components to the yarn as the latter is traversed across drive roll 20.
  • the downward velocity displacement component is effected because the yarn travels angularly under pin 38 due to the established trail angle of the yarn as it moves leftwardly.
  • Pin 38 reaches a lower point or circular travel and because of the high pin velocity and oblique angularity of disc 38, pin 38 is carried out of the plane of traversal of the yarn and disengages therefrom, FIGS. 18-12.
  • FIGS. 18-12 At approximately the time of disengagement of pin 38 from yarn 28, FIG.
  • the yarn will have substantially assumed a reverse trail angle, 68, FIG. 12.
  • Pin 35% is arranged and synchronized to disengage from the yarn, preferably, and approximately at the moment yarn guide 12 passes through its slower reversal phase and has reached its normal speed of travel rightwardly.
  • pin 38 while contacting the yarn establishes a progressively diminishing shortened trail length because of the moving arcuate contact of pin 3% with the yarn, the trail length being considered that length extending from the point of contact with pin 38 to the point of contact with roll 20.
  • the shortened trail length provides more effective control of the yarn in the reversals.
  • the displacement of the yarn at the point of contact with pin 38 may be described as circular, harmonic motion displacement or as sinusoidal.
  • the velocity of displacement of the yarn through the reversal at the point of contact of the yarn with drive roll as controlled by pins 36 and 40 may be described as the sum of the sideward or horizontal, and downward or vertical displacement component being a function of the interac' tion between the trail angle (6A and 6B) of the yarn and a respective pin.
  • Traverse speed differential between pins 38 and 40 and yarn guide 12 should, preferably, be in the range of 6 to 15 cycles or revolutions of the pin to one cycle of guide 12 where one back and forth displacement of guide 12 equals one guide 12 cycle-for a 9 /2 inch traverse stroke.
  • a yarn was taken up at 3,000 yards per minute and the yarn guide 12 was adapted to traverse at 900 cycles per minute.
  • Discs 30 and 32 had pins 38 and 40 arranged approximately 1 inch from the center or axis of rotation thereof, and the discs where driven to circulate the pins at approximately 7,200 revolutions or cycles per minute.
  • Pins 38 and 40 had a length and a diameter of approximately one-fourth inch. The discs were angled to cause pins 38 and 40 to engage the disengage from the yarn substantially as illustrated in FIGS. 3-12.
  • the yarn packages produced have a high resolution of cylindricity and a uniform compaction of yarn linearly and radially of the package. Typical surface end bulges do not appear on the packages.
  • the yarn package comprises a multiplicity of wraps or windings comprised of helical segments or helices 42 illustrated in a developed view in FIG. 13.
  • the helices 42 are compressed.
  • Helices 42 have linear diagonal lengths 44 that are wound or laid on the package at a substantially constant helix angle with connecting reversal curves 46 formed according to the invention and illustrated on a larger scale in F163. T4-ll6.
  • a reversal curve 46 is characterized in that essentially most or the greater portion of the curve consists of a camber curve 48 or convex curve built about a linear production or extension 50 of a diagonal length 44 of the winding to the end of the package.
  • the camber curved portion 48 is the first laid portion of yarn on the package at each reversal curve end extends, preferably, and substantially to the apical point of intersection 52 of linear extension 50 of adjacent diagonal lengths 44.
  • the reversal curves 46 closely simulate an ideal, an gular V reversal: It will be noted that the camber curved portions 48 of the reversal curves 46 comprise the major segment of the reversal curves 46, and that one diagonal length 44 extends linearly a greater dis tance to the end of the package than the adjacent diagonal length 44 having the camber curve 48 developed at its end thereof.
  • the preciseness of right-circular cylindricity and improved quality of the yarn produced by the invention is attributed to the improved control of the trail length of the yarn in the traverse reversals, and to the specific reversal curve 46 achieved on the yarn package by the velocity and displacement pattern of the yarn in the traverse reversals, as described.
  • yarn as used herein is intended to cover other similar strandular structures, and the term bobbin is intended to cover the various types of holders and cores used for collecting strand materials.
  • Apparatus for winding a yarn comprising in combination:
  • a rotating collecting mechanism for receiving said b. primary traverse means for distributing said yarn along the surface of said collecting mechanism, said primary traverse means being spaced from said collecting mechanism whereby said yarn forms a trail length and a trail angle, and
  • secondary traverse means positioned between said primary traverse means and said collecting mechanism, for varying said trail angle from a first given value in a first given direction at the beginning of a reversal period through to the second given value in a second given direction at the end of a reversal period, and for progressively decreasing said trail length during at least part of the period beginning when said trail angle becomes 90and ending when said trail angle reaches said second value.
  • said secondary traverse means includes means for decreasing said trail length until said trail angle reaches said second given value in said opposite direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Winding Filamentary Materials (AREA)

Abstract

The invention relates to high-speed yarn traverse winding apparatus, method and product. Circling thrust members are provided to intercept a yarn being reciprocably traversed and forwarded to a bobbin in a winding zone to acceleratively control the reversal displacement of the yarn on the bobbin. A yarn package having a high resolution of symmetry is produced, the package being characterized in that the majority of the reversal curves of the helical windings are comprised essentially of camber curves generated substantially to a point of projected intersection of the diagonal linear extensions of the helical windings.

Description

tlnited States Patent [191 Fisher et al,
[ TRAVERSE WHNIDHNG APPARATUS [75] Inventors: Don E. Fisher; Paul A. ltnauit;
David Bowen, .lr., all of Pensacola, Fla.
[73] Assignee: Monsanto Company, St. Louis, Mo. [22] Filed: Jan. 23, 1973 [21] Appl. No; 325,982
Related US. Application Data [62] Division of Ser. No. 85,930, Nov. 2, 1970, which is a division of Ser. No. 798,082, Feb. 10, 1969,
abandoned.
[52] US. Cl. 242/43 [51] int. (ll B65h 54/28 [58] Field oi Search 242/43, 18 DD, 18.1
[56] References Cited FOREIGN PATENTS OR APPLICATIONS 552,207 3/1943 Great Britain 242/43 Aug. 27, i974 Primary Examiner-Stanley N. Gilreath Attorney, Agent, or Firm-Kelly O. Corley [57] ABSTRACT The invention relates to high-speed yarn traverse winding apparatus, method and product.
Circling thrust members are provided to intercept a yarn being reciprocably traversed and forwarded to a bobbin in a winding zone to acceleratively control the reversal displacement of the yarn on the bobbin. A yarn package having a high resolution of symmetry is produced, the package being characterized in that the majority of the reversal curves of the helical windings are comprised essentially of camber curves generated substantially to a point of projected intersection of the diagonal linear extensions of the helical windings.
6 filaims, 16 Drawing Figures PAIENIEB 1112211924 saw .1 OF 2 FIG.
mums:=.......==........-
PAIENIED AUG 2 7 I974 SHEET 2 0F 2 FIG.
TRAVERSE WINDING APPATIUS BACKGROUND OF THE INVENTION This is a division of our copending patent application Ser. No. 85,930, filed Nov. 2, 1970, which in turn was a division of patent application Ser. No. 798,082, filed Feb. I0, 1969, now abandoned.
The objective of the invention is to improve upon present textile traverse winding machines and methods to permit use of higher operational speeds and to produce more precisely wound, improved yarn packages.
Conventionally, a yarn package is formed by traversing a yarn linearly across the face of a bobbin being driven at a constant peripheral speed so that the yarn is taken up in helically displaced windings or wraps. Yarn traversing is effected by a reciprocating guide slidably constrained to move linearly between guide surfaces and driven by an attached cam follower to which motion is imparted by a grooved barrel roll cam. The speed of reversal of the reciprocating guide is controlled by the angularity of the curve of the cam groove in the reversals. Sharp cam curves provide faster reversals but they subject guide-follower assemblies to excessive disintegrating accelerative loads. Therefore, the degree of angularity that may be employed in profiling a reverse cam groove curve is restrictive. Consequently, at high speeds of reciprocation, conventional barrel roll traverse devices inherently operate at slower speeds in the reversals. A typical high-speed yarn packaging process may require traversing speeds of 600 or more cycles per minute and yarn take-up speeds of 2,000 or more yards per minute.
A yarn package produced by a traverse device operating at slower speeds in the reversals has more yarn per unit of package length deposited on the ends. The result is a package having a reduced central diameter portion and raised or bulged larger diameter end portions. The bulged ends are hard compared to the intermediate portion, and particularly in a winding operation where a bobbin is driven surfacely by a conventional peripheral bobbin drive assembly, the hardness differential progressively increases as the package is built to a larger diameter. Variations in package hardness are undesirable and are known to be a cause of streaking when the packaged yarn is subsequently converted into fabric and dyed. Hardness variations in a yarn package may also cause tension barrel in fabric production.
A further unsatisfactory feature of conventional traverse winding apparatus is the relatively long trail length of yarn required in operation. The yarn trail length is that free length of yarn traveling from the point of contact with a traverse guide or surface and the first point of contact with a take-up bobbin or associated wind-up roll such as a drive roll. Since the yarn trail length is a free running length of yarn, it is subject to undesirable vibration and tension fluctuations that increase in magnitude with an increase in the trial length of yarn. Ideally, the shortest attainable yarn trail length is desirable.
Suggestions to accelerate the traversing of a yarn in the reversals are disclosed in patents issued to R. Y. Hays, U.S. Pat No. 3,059,874; P. J. Chaussy, U.S. Pat. No. 3,089,657; and L. A. Oberly, U.S. Pat. No. 3,097,805. The invention herein provides still another different solution for controlling a traversing yarn in the reversals.
It is an object of this invention to provide a yarn traverse apparatus having a reciprocating guide to pro duce the main span of a linear traversal of yarn, and synchronously driven circulating guides to produce the traverse reversals.
It is an object to provide a traverse winding method wherein a linearly traversing yarn is engaged in the reversals to effect a controlled, constantly decreasing trail length and, simultaneously, an accelerative lateral displacement thereof.
Another object is to provide a yarn package having the yarn distributed around a bobbin in helices comprising substantially linear, diagonally extending lengths joined at the ends of the package by reversal curves. The majority or most of the reversal curves are characterized by being essentially camber curves generated around linear projections of the diagonal lengths and extending substantially to the point of projected intersections of the latter.
BRIEF SUMMARY OF THE INVENTION The traverse winding apparatus and method comprise traverse means for traversingly displacing a yarn being forwarded to and being taken up on a driven bobbin. The yarn is traversed at a substantially constant rate of speed with an exception of a reduction in traverse speed in the reversals. A pair of camming pins or guides are arranged between the point of reciprocation of the yarn and the bobbin and are adapted to circulate angularly relative to the plane of traversal of the yarn. Each pin is located in the reversal zone of the traversing yarn and is driven to circulate at a faster relative speed than the rate of traversal of the yarn in the reversal. Before the traversing yarn reaches the limits of its strokes, each pin is synchronized to smoothly contact the yarn and to impart an arcuate, sliding thrust against the yarn applying a sideward and downward vectorial component thereto. The thrust applied accelerates and increases the lateral displacment of the yarn, shortens the trail length and cooperatively with the traverse means effects a reversal of the yarn. The pins are synchronized to disengage from theyarn after the yarn has been reversed by the traverse means and substantially established a predetermined reverse trail angle.
The term yarn trail angle" refers to the angle formed between the free trail length of yarn and a peripheral line of contact of the yarn on a rotating roll traced as the yarn is traversed back and forth across the roll. In general the rotating roll may be a bobbin, drive roll or bail roll and is the first roll contacted in the wind-up assembly. Commonly, a yarn will have a constant trail angle in one direction of traverse and a similar reverse constant trail angle in the opposite direction of traverse. In the reversals, the yarn trail length passes through a reversal arc from one to the reverse constant trail angle and through a perpendicular or trail angle position. Yarn trail angles 6A and 0B are illustrated in FIGS. 3 and 12, respectively, in the accompanying drawings.
The yarn package produced has a high resolution of geometric symmetry and physical property uniformity. The windings on the yarn packages are laid in helices reversal curves that are comprised essentially of camber curves built about projected, theoretical angular V reversals.
BRIEF DESCRIPTION OF THE DRAWINGS In the drawings:
FIG. I is a perspective view with portions broken away illustrating the traverse winding apparatus of the invention,
FIG. 2 is a plan view of the traverse winding apparatus,
FIGS. 3-12 are elevation views schematically illustrating a sequential operation of a circulating pin com ponent of the invention,
FIG. 13 is a developed view of several helical traversals of yarn wound on a bobbin illustrating the camber curve provided in the reversals, and
FIGS. 14-16 are developed views illustrating several different configurations of a reversal curve wound or laid on a bobbin according to the invention.
DESCRIPTION OF PREFERRED EMBODIMENTS Referring to FIGS. 1 and 2 of the drawings, the traverse winding apparatus embodying the invention comprises a conventional yarn traverse device 2 including a barrel roll 4 driven by a motor 6, and a helical cam groove 8. Cam groove 8 imparts-motion to a cam follower 10 positioned slidably in cam groove 8. A yarn guide 12 is connected to cam follower 118 and forms a traverse guide that is constrained to travel slidably in a longitudinal slot provided between spaced guide rails 14. Yarn guide 12 has a yarn slot 16 and, operatively, reciprocates back and forth between guide rails 14.
A conventional yarn winding, collecting or take-up device 18 is positioned below traverse device 2. Winding device 18 includes a drive roll 20 driven by a motor 22, and a bobbin 24 mounted rotatably on a pivotal bobbin chuck assembly 26, illustrated schematically. Bobbin 24 is pivotally movable toward and away from drive roll 20 and, in operation, rests on the drive roll in parallel, axial alignment therewith. Reference numeral 24 identifies both the yarn package and bobbin.
A yarn 28, forwarded to traverse device 2, is laced to pass through yarn slot 16 and to extend engagingly around the bottom of drive roll 20, FIG. ll, before passing through the nip between drive roll 20 and bobbin 24. Drive roll 20 is driven in one direction to drive bobbin 20 in the opposite direction. If desired, an alternate lace-up where yarn 28 extends directly through the nip between drive roll 28 and bobbin 24 may be used rather than lacing the yarn initially around drive roll 28.
A pair of rotatably driven discs, 30 and 32, are positioned between yarn guide 12 and drive roll 20. The discs are symmetrically arranged in lateral, spaced relation closely adjacent to drive roll 28. Each disc has a frontal side facing drive roll 20, and each is driven by a shaft 34 and 36, respectively from the back side thereof in opposed directions. Disc 30 rotates in a counterclockwise direction while disc 32 rotates in a clockwise direction, FIG. 1. Discs 28 and 32 are positioned upstandingly and inopposed oblique relation relative to the plane of traversal of the yarn so that their frontal sides angularly face each other.
Each disc 38 and 32 has a post or pin 38 and 40, respectively, projecting from its frontal side. Each pin 38 and 40 is positioned a predetermined distance from the axis of rotation of its respective disc, and each extends substantially perpendicularly from the frontal side thereof. Preferably, the pins are tapered and if desired they may be mounted rotatably. Discs 30 and 32 are positioned to circulate pins 38 and 48 laterally beyond the reversal limits of the yarn guide slot E6.
Pins 38 and 48 cooperate with the traverse and winding devices 2 and 18, respectively, to operate in the following manner. Assume yarn 28 is being traversed by yarn guide 12 and is traveling under tension to and being taken up on bobbin 2 and that discs 38 and 32 are driven to circulate pins 38 and 48 at a predetermined higher rate of speed than a selected linear rate of traversal of guide 112. Accordingly, then, each pin 38 and 40, traveling at a high speed of rotation or circulation and in an angular path relative to the plane of traversal of yarn 28, contacts the yarn while the yarn guide I2 is in a reduced speed reversal either before or after the exact moment of guide 12 reversal depending on whether a lower or higher ratio of pin 38 and 48 revolutions to yarn guide 12 cycles is employed. During its contact with the yarn, each pin 38 and 4t) slidingly engages the yarn through an arcuate degree of circulating motion of the pin and applies an outward lateral thrust thereto displacing the yarn beyond the outer limit or displacement of the yarn by reciprocating guide I2. Each pin 38 and 48 disengages from the yarn 28 substantially at a time coincident with the yarn guide 12 having made a reversal and having regained its normal constant speed of traversal. The length of the yarn trversal stroke normally provided by yarn guide 12 is extended or lengthened by pins 38 and 40 without varying the normal rate of periodic traversal of the yarn by guide 12 because pins 38 and 48 accelerate the displacement of the yarn through the reversals. It is to be understood that the location of pins 38 and 40 on discs 30 and 32, the size of pins 38 and 40, the determined oblique angularity of discs 30 and 32, the positioning of the discs relative to the yarn winding roll or rolls, and the ratio of yarn guide cycling speed to pin rotational speed may be varied to provide a multiplicity of operative solutions.
Referring to FIGS. 3-12, assume that traverse guide 12 is traversing the yarn leftwardly at an established constant trail angle, 0A, FIG. 3, and that the yarn is approaching pin 38 which is circulating in a counterclockwise direction. Because of the oblique angularity of disc 30, the yarn moving leftwardly first passes freely across the path and in front of pin 38, FIG. 3. Pin 38 having a high rate of rotational speed rapidly catches up with and contactingly intercepts the yarn, FIGS. 6-7, before yarn guide 12 reaches the end of its leftward stroke. Pin 38 applies a leftward accelerative thrust against yarn 28 and causes the yarn to course angularly around the surface of pin 38 in traveling to drive 'roll 28, FIGS. 8-9. Yarn guide 112 reaches the limit of its leftward stroke, and after reversing, FIG. 7, carries the contacted yarn portion rightwardly while pin 38 continues to push against the yarn and to displace the yarn leftwardly. Pin 38 applies horizontal leftward and vertical downward velocity displacement components to the yarn as the latter is traversed across drive roll 20. The downward velocity displacement component is effected because the yarn travels angularly under pin 38 due to the established trail angle of the yarn as it moves leftwardly. Pin 38 reaches a lower point or circular travel and because of the high pin velocity and oblique angularity of disc 38, pin 38 is carried out of the plane of traversal of the yarn and disengages therefrom, FIGS. 18-12. At approximately the time of disengagement of pin 38 from yarn 28, FIG. 10, the yarn will have substantially assumed a reverse trail angle, 68, FIG. 12. Pin 35% is arranged and synchronized to disengage from the yarn, preferably, and approximately at the moment yarn guide 12 passes through its slower reversal phase and has reached its normal speed of travel rightwardly.
It will be noted that pin 38 while contacting the yarn establishes a progressively diminishing shortened trail length because of the moving arcuate contact of pin 3% with the yarn, the trail length being considered that length extending from the point of contact with pin 38 to the point of contact with roll 20. The shortened trail length provides more effective control of the yarn in the reversals.
The displacement of the yarn at the point of contact with pin 38 may be described as circular, harmonic motion displacement or as sinusoidal. The velocity of displacement of the yarn through the reversal at the point of contact of the yarn with drive roll as controlled by pins 36 and 40 may be described as the sum of the sideward or horizontal, and downward or vertical displacement component being a function of the interac' tion between the trail angle (6A and 6B) of the yarn and a respective pin.
The invention may be operated at high speeds to provide superior, stable yarn packages. Traverse speed differential between pins 38 and 40 and yarn guide 12 should, preferably, be in the range of 6 to 15 cycles or revolutions of the pin to one cycle of guide 12 where one back and forth displacement of guide 12 equals one guide 12 cycle-for a 9 /2 inch traverse stroke.
In one workable arrangement, a yarn was taken up at 3,000 yards per minute and the yarn guide 12 was adapted to traverse at 900 cycles per minute. Discs 30 and 32 had pins 38 and 40 arranged approximately 1 inch from the center or axis of rotation thereof, and the discs where driven to circulate the pins at approximately 7,200 revolutions or cycles per minute. Pins 38 and 40 had a length and a diameter of approximately one-fourth inch. The discs were angled to cause pins 38 and 40 to engage the disengage from the yarn substantially as illustrated in FIGS. 3-12.
It will be understood that for different processing conditions operational adjustments may be required to synchronize the pin 38 and 40 rotation, circulation or revolution with the yarn guide T2 reciprocation to provide engagement and disengagement of the yarn in the reversals substantially as explained before.
The yarn packages produced have a high resolution of cylindricity and a uniform compaction of yarn linearly and radially of the package. Typical surface end bulges do not appear on the packages. Dye tests con ducted comparing yarn packaged according to the invention with yarn packaged conventionally without thrust pins 38 and 40 indicated an appreciable reduction in the incidence of dye streaks in the yarn packaged according to the invention. Dye streaks are areas of uneven coloration.
The yarn package comprises a multiplicity of wraps or windings comprised of helical segments or helices 42 illustrated in a developed view in FIG. 13. For illustrative purposes the helices 42 are compressed. Helices 42 have linear diagonal lengths 44 that are wound or laid on the package at a substantially constant helix angle with connecting reversal curves 46 formed according to the invention and illustrated on a larger scale in F163. T4-ll6.
According to the invention, a reversal curve 46 is characterized in that essentially most or the greater portion of the curve consists of a camber curve 48 or convex curve built about a linear production or extension 50 of a diagonal length 44 of the winding to the end of the package. The camber curved portion 48 is the first laid portion of yarn on the package at each reversal curve end extends, preferably, and substantially to the apical point of intersection 52 of linear extension 50 of adjacent diagonal lengths 44.
The reversal curves 46 closely simulate an ideal, an gular V reversal: It will be noted that the camber curved portions 48 of the reversal curves 46 comprise the major segment of the reversal curves 46, and that one diagonal length 44 extends linearly a greater dis tance to the end of the package than the adjacent diagonal length 44 having the camber curve 48 developed at its end thereof. The preciseness of right-circular cylindricity and improved quality of the yarn produced by the invention is attributed to the improved control of the trail length of the yarn in the traverse reversals, and to the specific reversal curve 46 achieved on the yarn package by the velocity and displacement pattern of the yarn in the traverse reversals, as described.
Since it is known that yarn wraps on a yarn package are not laid superimposed one on top of the other and that the yarn wraps slip into position between other wraps during the winding process, variations in configuration of the reversal curves 46 will normally be apparent as indicated in FIGS. 14-16. However, according to the invention, the majority of the reversal curves 46 will possess the camber curve 48, as described and illustrated.
It will be understood that variations in the form of rotating cams, or rotating arms and other yarn traversing structures may be used for the disc and pin arrangement illustrated herein.
The term yarn" as used herein is intended to cover other similar strandular structures, and the term bobbin is intended to cover the various types of holders and cores used for collecting strand materials.
We claim:
ll. Apparatus for winding a yarn, comprising in combination:
a. a rotating collecting mechanism for receiving said b. primary traverse means for distributing said yarn along the surface of said collecting mechanism, said primary traverse means being spaced from said collecting mechanism whereby said yarn forms a trail length and a trail angle, and
c. secondary traverse means, positioned between said primary traverse means and said collecting mechanism, for varying said trail angle from a first given value in a first given direction at the beginning of a reversal period through to the second given value in a second given direction at the end of a reversal period, and for progressively decreasing said trail length during at least part of the period beginning when said trail angle becomes 90and ending when said trail angle reaches said second value.
2. The apparatus defined in claim 1, wherein said secondary traverse means includes means for decreasing said trail length until said trail angle reaches said second given value in said opposite direction.
and means for moving said yarn-engaging member continuously in an arcuate path while said yarn-engaging member engages said yarn.
6. The apparatus defined in claim 5, wherein said last named means comprises means for moving said yarnengaging member continuously in simple rotary motion.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,831,872 Dated August 27, 74
- Don E; Fisher et 'al. Inventor(s) It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 3, line 22, "conventional" should read primer) line 50, before "pair" insert secondary traverse mec hanisem; including pin s mounted on a line 50, "are"shou1d read-- is Column 4, line 4, after "40" insert constitute secondary traverse meansand line 13,
i "and in an an gular path" should read in a plane oblique Signed and sealed this 3rd day of December 1974.
' (SEAL) Attest:
McCOY M. GIBSON JR. 0. MARSHALL DANN' Attesting Officer Commissioner of Patents FORM Po-105O (lO-69)- USCOMM-DC 60376-P69 u.s. sovsmmzm rnmnma OFFICE: 5 93 o

Claims (6)

1. Apparatus for winding a yarn, comprising in combination: a. a rotating collecting mechanism for receiving said yarn; b. primary traverse means for distributing said yarn along the surface of said collecting mechanism, said primary traverse means being spaced from said collecting mechanism whereby said yarn forms a trail length and a trail angle, and c. secondary traverse means, positioned between said primary traverse means and said collecting mechanism, for varying said trail angle from a first given value in a first given direction at the beginning of a reversal period through 90* to the second given value in a second given direction at the end of a reversal period, and for progressively decreasing said trail length during at least part of the period beginning when said trail angle becomes 90*and ending when said trail angle reaches said second value.
2. The apparatus defined in claim 1, wherein said secondary traverse means includes means for decreasing said trail length until said trail angle reaches said second given value in said opposite direction.
3. The apparatus defined in claim 2, wherein said second given value is substantially the same as said first given value.
4. The apparatus defined in claim 1, wherein said second given value is substantially the same as said first given value.
5. The apparatus defined in claim 1, wherein said secondary traverse means comprises a yarn-engaging member engaging said yarn during said reversal period, and means for moving said yarn-engaging member continuously in an arcuate path while said yarn-engaging member engages said yarn.
6. The apparatus defined in claim 5, wherein said last named means comprises means for moving said yarn-engaging member continuously in simple rotary motion.
US00325982A 1970-11-02 1973-01-23 Traverse winding apparatus Expired - Lifetime US3831872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00325982A US3831872A (en) 1970-11-02 1973-01-23 Traverse winding apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/085,930 US3964724A (en) 1969-02-10 1970-11-02 Traverse winding method
US00325982A US3831872A (en) 1970-11-02 1973-01-23 Traverse winding apparatus

Publications (1)

Publication Number Publication Date
US3831872A true US3831872A (en) 1974-08-27

Family

ID=26773246

Family Applications (1)

Application Number Title Priority Date Filing Date
US00325982A Expired - Lifetime US3831872A (en) 1970-11-02 1973-01-23 Traverse winding apparatus

Country Status (1)

Country Link
US (1) US3831872A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941644A (en) * 1973-10-09 1976-03-02 Deering Milliken Research Corporation Apparatus for guiding a strip to a support surface
US4116396A (en) * 1977-02-04 1978-09-26 Rieter Machine Works, Ltd. Yarn traversing apparatus
DE3035880A1 (en) * 1979-09-25 1981-04-09 The Terrell Machine Co., Charlotte, N.C. DEVICE AND METHOD FOR WINDING YARN FROM A STOCK TO A YARN BODY
US4712746A (en) * 1985-08-30 1987-12-15 Rieter Machine Works Limited Method and apparatus for forming cross-wound packages
CN105540326A (en) * 2015-12-28 2016-05-04 江阴市长泾花园毛纺织有限公司 Regular polygonal groove drum set

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB552207A (en) * 1941-12-12 1943-03-26 Mackie & Sons Ltd J Improvements in and relating to roll winding machines for flax, hemp, jute and the like

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB552207A (en) * 1941-12-12 1943-03-26 Mackie & Sons Ltd J Improvements in and relating to roll winding machines for flax, hemp, jute and the like

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941644A (en) * 1973-10-09 1976-03-02 Deering Milliken Research Corporation Apparatus for guiding a strip to a support surface
US4116396A (en) * 1977-02-04 1978-09-26 Rieter Machine Works, Ltd. Yarn traversing apparatus
DE3035880A1 (en) * 1979-09-25 1981-04-09 The Terrell Machine Co., Charlotte, N.C. DEVICE AND METHOD FOR WINDING YARN FROM A STOCK TO A YARN BODY
US4349160A (en) * 1979-09-25 1982-09-14 The Terrell Machine Company Apparatus and method for winding yarn to form a package
US4712746A (en) * 1985-08-30 1987-12-15 Rieter Machine Works Limited Method and apparatus for forming cross-wound packages
CN105540326A (en) * 2015-12-28 2016-05-04 江阴市长泾花园毛纺织有限公司 Regular polygonal groove drum set

Similar Documents

Publication Publication Date Title
US3861607A (en) High-speed cross-winding device
US3333782A (en) Winding machine
US3374961A (en) Traverse mechanism
US3831872A (en) Traverse winding apparatus
US3884426A (en) Winding and changeover device
US3964724A (en) Traverse winding method
US2972796A (en) Process and apparatus for handling yarns
US3945581A (en) High-speed cross-winding device
US2934284A (en) Thread traverse mechanism for a precision cross winding machine
US3659796A (en) Yarn winding apparatus
US3797767A (en) High-speed cross-winding device
US1926049A (en) Traversing device for winding machines
US3067961A (en) Traversing device
US1990620A (en) Traverse thread winder
US3069745A (en) Stretch-spooling machines
US3039708A (en) Traversing device
US3612428A (en) Traverse mechanism useful in textile machines
US2259364A (en) Winding device
US3589631A (en) A yarn winding process
US2234356A (en) Cop winding machine
US3061215A (en) Apparatus for winding yarn
US3523652A (en) Drum traverse winding machine
US3532279A (en) Yarn winding apparatus
US2358294A (en) Yarn winding machine and method
US3620464A (en) Traversing mechanism in use for fast yarn winding