US3831040A - Temperature-dependent current supplier - Google Patents

Temperature-dependent current supplier Download PDF

Info

Publication number
US3831040A
US3831040A US00305317A US30531772A US3831040A US 3831040 A US3831040 A US 3831040A US 00305317 A US00305317 A US 00305317A US 30531772 A US30531772 A US 30531772A US 3831040 A US3831040 A US 3831040A
Authority
US
United States
Prior art keywords
transistor
base
transistors
source
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00305317A
Inventor
Y Nanba
M Sahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Application granted granted Critical
Publication of US3831040A publication Critical patent/US3831040A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities

Definitions

  • the base of a first transistor is connected to a connecting point between two resistors which are connected in series to each other in a collector circuit of said transistor, the voltage between the base and the collector of said transistor being selected at about kT/q where the charge quantity is q, the Boltzmanns constant is k and the absolute temperature is T; and the base of a second transistor is connected to the collector of said first transistor, respective temperature coefficients of the base-emitter voltages of .said first and second transistors being selected to differ from each other; and also current-outputs of the quantity proportional to the absolute temperature is taken out from the collector circuit of said second transistor.
  • This invention relates to a temperature-dependent current supply circuit capable of stably supplying a current output having a magnitude proportional to the absolute temperature, irrespective of fluctuations in the source voltage.
  • a constant current circuit as shown in FIG. 1 is widely used.
  • a conventional constant current circuit if there happens to be a fluctuation in the source voltage B, there will occur a change, though small, in the voltage between the terminals of thediode D as well as in the base potential of the transistor Q, and it will cause a change in the current output I flowing in the load L, thus failing to attain fully the desired object of obtaining the constant current condition.
  • a circuit configuration has a temperature-dependent characteristic, it is impossible to stably obtain therefrom a current output proportional to the absolute temperature.
  • This invention has as a main objective to overcome the foregoingdrawbacks.
  • a temperature-dependent current supply circuit is constituted in such a manner that the base of a first NPN transistor (Q1) is connected to a connecting point (P)'between two resistors (R1 and R2) which are connected in series to the collector of said transistor (Q1), the voltage between the base and the collector of said transistor (Q1) being selected at about kT/q, where the charge quantityis q, the Boltzmanns constant is k and the absolute temperature is T.
  • the base of a second NPN transistor (Q2) is connectedto the collector of said first transistor (Q1), respective temperature coefficients of the base-emitter voltage of said first and second transistors (Q1 and Q2) being selected to differ from each other, and also the current outputs of the quantity proportional to the absolute temperature is taken out from the collector circuit of said second transistor (Q2).
  • FIG. I is a schematic circuit diagram of a conventional current supply circuit
  • FIG. 2 is a schematic circuit diagram of an example of the present invention.
  • FIG. 3 is a graph of general characteristics of the transistor
  • FIG. 4 is a graph of characteristic curves for explanation of an apparatus by this invention.
  • FIGS. 5 and 6 are schematic circuit diagrams of other examples of this invention.
  • the value of resistor R2 is arranged to satisfy the condition of the above equation, the current I2 can be maintained constant irrespective of fluctuations of the current I1. Taking a temperature of 25C. for instance, the value of resistor R2 maybe arranged to produce about 26 mV across both terminals of the resistor R2 to fulfill the condition of the above equation.
  • VBE (kT/q) In ([Ie/ls] I) (kT/q) In Ie i (kT/q) In Is 1 (4)
  • each base-emitter voltage VBE will show a value always different from each other depending on the fluctuations of each absolute temperature.
  • the transistors Q1 and Q2 having sufficiently large amplification factors and the same characteristics can be selected, and each value of the resistors R1, R2 and R3 set so that at the temperature'25C., the current ll be comes 160 A, the voltage across the terminals of the resistor R2 becomes 26 mV and the current I2 becomes A.
  • the voltage VBE of the transistor 01 to be larger than that of Q2 by about 71.2 mV, and the voltage across the resistor R3 at about 45.2 mV.
  • the voltage VBE of the transistor Q2 is smaller than that of the transistor Q1, and hence, as shown in FIG.
  • the transistor Q2 has a larger absolute value of temperature coefficient. Due to such a difference in the temperature coefficients corresponding to the respective base-emitter voltages VBE of the transistors Q1 and Q2, the difference in the voltages VBE being 71.2 mV, the currents I1 and I2 differ considerably.
  • the relations between the current I2 and the absolute temperature show a near-proportional characteristic, as indicated by the broken line, contrasted with the full line showing exact proportionate characteristic in FIG. 4, the largest variation being about l5 percent seen at 243K.
  • the emitter of the second equivalent transistor Q4 is connected to the source terminal E through a resistor R5, and the collector of the equivalent transistor Q4 (namely, the emitter 'of an NPN transistor Q17 as a constituent element) is connected to the negative source terminal through the load L.
  • the emitter of the transistor Q17 is also connected to the collector of said PNPtransistor Q5.
  • the first and second equivalent transistors Q3 and Q4 are similarly constituted by the transistors provided closely to each other on the same monolithic IC, the current amplification factors between both PNP transistors and those between both NPN transistors, respectively, 'are considered to be equal.
  • VBEQ(16) RS I3 IBQ(16)
  • the base currents of the first and second equivalent PNP transistors Q3 and Q4 flow in the transistor Q5, respectively.
  • the amplification factor of the transistor Q5 amounts to only about 1 to 2.
  • the composite base current of the first and second equivalent PNP transistors 03 and Q4 is divided about evenly and each bomes a part of the currents [2 of the transistor Q2 and Q3 of the load L, respectively.
  • the base of the transistor O5 is connected to the base of the transistor Q2, the emitter of the transistor O5 is grounded through the resistor R6, the base of the transistor Q14 in the first equivalent PNP transistor O3 is connected to the base of the NPN transistor Q6, the transistor Q6 is connected by its emitter to the collector of the transistor Q5 and is connected by its collector to the positive source E, and the commonly connected bases of the first and second equivalent PNP transistors Q3 and Q4 are connected to the emitter of the transistor Q6 through diodes D1 and D2, respectively.
  • the composite base current of the first and second equivalent PNP transistors Q3 and Q4 becomes a part of the collector current of the transistor Q5 through the diodes D1 and D2.
  • the difference between the collector current of the transistor Q5 and the base currents of the equivalent transistors Q3 and Q4 flow through the transistor Q6.
  • the transistor Q6 being an NPN. transistor, its amplifying factor is high and its base current is very small, and consequently, it has almost no effect on the current [2.
  • the base currents of the first and second equivalent PNP transistors Q3 and Q4 flow into the collector of the transistor Q5, they give almost no effect on the currents l2 and [3.
  • the current 13 fluctuates similarly to the current 12, and therefore, a current output (l3) which is proportional to the absolute temperature can be supplied to the load L.
  • a current output proportional to the absolute temperature can be obtained stably irrespective of fluctuations in the source voltage (E), and not only the compensation of a circuit employing, for instance, a transistor can be made very precisely, but also excellent merits can be achieved, especially in the application to an integrated circuit.
  • a temperature dependent current supply circuit comprising first and second transistors, a source of supply voltage, first and second resistors connected in series to said first transistor across said source of supply voltage, the base of said second transistor being connected to the collector of said first transistor, the base of said first transistor being connected to a point between said first and second resistors, a third resistor connected in series with the emitter of said second transistor to one side of said source of supply voltage and a load connected in series with the collector of said second transistor to the other side of said source, said first and second resistors having values such that the base-collector voltage of said first transistor is approximately kT/q, where the charge quantity is q, the Boltzmanns constant is k and the absolute temperature is T.
  • a temperature dependent current supply circuit comprising first and second transistors, a source of supply voltage, first and second resistors connected in series to said first transistor across said source of supply voltage, the base of said second transistor being connected to the collector of said first transistor, the base of said first transistor being connected to a point between said first and second resistors, said first and second resistors having values such that the base-collector voltage of said first transistor is approximately kT/q, where the charge quantity is q, the Boltzmanns constant is k and the absolute temperature is T, a third transistor and third and fourth resistors connected in series with said second transistor across said source of supply voltage, said third resistor being connected between the emitter of said second transistor and one side of said source of supply voltage, a fourth transistor connected in series with a load and a fifth resistor across said source of supply voltage, the bases of said third and fourth transistors being connected together, and a fifth transistor having its base connected to the collector of said second transistor, its emitter being connected to the bases of said third and fourth transistors and its collector being
  • a temperature dependent current supply circuit comprising first and second transistors, a source of supply voltage, first and second resistors connected in series to said first transistor across said source of supply voltage, the base of said second transistor being connected to the collector of said first transistor, the base of said first transistor being connected to a point between said first and second resistors, said first and second resistors having values such that the base-collector voltage of said first transistor is approximately kT /q, where the charge quantity is q, the Boltzmanns constant is k and the absolute temperature is T, a third resistor and third and fourth resistors connected in series with said second transistor across said source of supply voltage, said third resistor being connected between the emitter of said second transistor and one side of said source of supply voltage, a fourth transistor connected in series with a load and a fifth resistor across said source of supply voltage, the bases of said third and fourth transistors being connected together, fifth and sixth transistors connected together through a sixth resistor in series across said source of supply voltage, a pair of diodes connecting the bases of said

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

A temperature-dependent current supplier specially suitable for application to an integrated circuit is characterized as follows. The base of a first transistor is connected to a connecting point between two resistors which are connected in series to each other in a collector circuit of said transistor, the voltage between the base and the collector of said transistor being selected at about kT/q where the charge quantity is q, the Boltzmann''s constant is k and the absolute temperature is T; and the base of a second transistor is connected to the collector of said first transistor, respective temperature coefficients of the baseemitter voltages of said first and second transistors being selected to differ from each other; and also current-outputs of the quantity proportional to the absolute temperature is taken out from the collector circuit of said second transistor.

Description

United States Patent 1 91 Nanba et a1.
1111 3,831,040 1451 Aug. 20, 1974 [75] Inventors: Yasuhiro Nanba; Masayoshi Sahara,
both of Sakai, Japan [73] Assignee: Minolta Camera Kabushiki Kaisha, Osaka City, Japan 22 Filed: Nov. 10,1972
21 Appl.No.:305,317
[30] Foreign Application Priority Data Nov. 11, 1971 Japan 46-90203 [52] U.S. Cl 307/296, 307/297, 307/210, 317/235 Q [51] I111. Cl.. H03k 17/00 [58] Field of Search.. 330/22, 23; 307/296, 297, 307/310; 317/235 Q Frederiksen 330/22 10/1972 Grogy ..330/22 1/1973 Sahara ..307/297 Primary Examiner-Stanley D. Miller, Jr. Assistant Examiner--B. P. Davis Attorney, Agent, or Firm-Craig & Antonelli [57] ABSTRACT A temperature-dependent current supplier specially suitable for application to an integrated circuit is characterized as follows. The base of a first transistor is connected to a connecting point between two resistors which are connected in series to each other in a collector circuit of said transistor, the voltage between the base and the collector of said transistor being selected at about kT/q where the charge quantity is q, the Boltzmanns constant is k and the absolute temperature is T; and the base of a second transistor is connected to the collector of said first transistor, respective temperature coefficients of the base-emitter voltages of .said first and second transistors being selected to differ from each other; and also current-outputs of the quantity proportional to the absolute temperature is taken out from the collector circuit of said second transistor.
11 Claims, 6 Drawing Figures PAIENIEnmszomn Fl I PRIOR ART 1 TEMPERATURE-DEPENDENT CURRENT SUPPLIER BACKGROUND OF THE INVENTION This invention relates to a temperature-dependent current supply circuit capable of stably supplying a current output having a magnitude proportional to the absolute temperature, irrespective of fluctuations in the source voltage.
In electric circuits employing transistors, unlike those employing vacuum tubes, it is always necessary to provide a circuit for compensating for the fluctuations of v the transistor characteristic due to temperature changes. It is generally known that if the characteristic of such a compensating circuit is such as to maintain a current which is constant in spite of fluctuations of the source voltage, but variable in proportion to theabsolute temperature, the circuit construction will be simplified and effective for providing the desired circuit temperature compensation. Such temperature compensation has been attained in practice by utilizing thermistor elements or other thermally variable resistance elements of copper wire, etc, However, in the case where monolithic integrated circuits are employed for the circuit, the above-mentioned elements arenot usable, and hence, the special characteristic of a thermally variable nature of a transistor or diode must be utilized. For such purpose, a constant current circuit as shown in FIG. 1 is widely used. In such a conventional constant current circuit, however, if there happens to be a fluctuation in the source voltage B, there will occur a change, though small, in the voltage between the terminals of thediode D as well as in the base potential of the transistor Q, and it will cause a change in the current output I flowing in the load L, thus failing to attain fully the desired object of obtaining the constant current condition. Moreover, although such a circuit configuration has a temperature-dependent characteristic, it is impossible to stably obtain therefrom a current output proportional to the absolute temperature.
SUMMARY OF THE INVENTION This invention has as a main objective to overcome the foregoingdrawbacks.
A temperature-dependent current supply circuit is constituted in such a manner that the base of a first NPN transistor (Q1) is connected to a connecting point (P)'between two resistors (R1 and R2) which are connected in series to the collector of said transistor (Q1), the voltage between the base and the collector of said transistor (Q1) being selected at about kT/q, where the charge quantityis q, the Boltzmanns constant is k and the absolute temperature is T. The base of a second NPN transistor (Q2) is connectedto the collector of said first transistor (Q1), respective temperature coefficients of the base-emitter voltage of said first and second transistors (Q1 and Q2) being selected to differ from each other, and also the current outputs of the quantity proportional to the absolute temperature is taken out from the collector circuit of said second transistor (Q2).
BRIEF EXPLANATIONOF THE DRAWING FIG. I is a schematic circuit diagram of a conventional current supply circuit;
FIG. 2 is a schematic circuit diagram of an example of the present invention;
FIG. 3 is a graph of general characteristics of the transistor;
FIG. 4 is a graph of characteristic curves for explanation of an apparatus by this invention; and
FIGS. 5 and 6 are schematic circuit diagrams of other examples of this invention.
DETAILED DESCRIPTION OF THE INVENTION creases), Also by the decrease (or increase) of said current, the voltage across the resistor R2 decreases (or increases). Therefore by selecting the value of the resistor R2 to cause the decreased (or increased) portion of said voltageVBE(Q1) and the decreased (or increased) portion of said voltage across the resistor R2 to compensate each other, the base potential of the transistor Q2 can be maintained constant. Consequently, a current I2 flowing through the load L can be maintained constant, irrespective of fluctuations in the source voltage.
Assuming the amplification factors of both transistors Q1 and O2 to be adequately high, and'defining the saturation currents of the transistors Q1 and Q2 as Isl and Is2, respectively, the charge quantity as q, the Boltzmanns constant as k and the absolute temperature as T, then from the relations between the base-emitter voltage VBE(Q1)'0f the transistor Q1 and the baseemitter voltage VBE(Q2) of the transistor Q2:
The condition tomaintain the current I2 constant,
against the change-of the current ll due to the change of the source voltage is that Accordingly, by arranging the value of resistor R2 to satisfy the condition of the above equation, the current I2 can be maintained constant irrespective of fluctuations of the current I1. Taking a temperature of 25C. for instance, the value of resistor R2 maybe arranged to produce about 26 mV across both terminals of the resistor R2 to fulfill the condition of the above equation.
Relations betweenthe absolute temperature in this circuit and the collector current of the transistor Q2 will be described hereunder. Generally, the following relations exist between the base-emitter voltage VBE of a transistor and the emitter current Ie:
VBE (kT/q) In ([Ie/ls] I) (kT/q) In Ie i (kT/q) In Is 1 (4) By differentiating both sides of the equation with respect to the absolute temperature T, the temperature coefficient of VBE can be obtained as follows:
dVBE/aT (k/q) ln Ie (k/q) In Is (kT/q) d In Is/dl" VBE/T (kT/q) d In Is/dT As is shown in the curve of FIG. 3 indicating the preceding characteristic, the temperature coefficient of VBE proves that the larger VBE is, the smaller the absolute value of the temperature coefficient dVBE/Jl" is. Now in FIG. 2, a difference is created in the current density in each emitter layer of both transistors Q1 and Q2, by regulating the values of the currents I1 and I2 through properly selecting the value of each of the resistors R1 and R2, or by creating a difference in the area of each emitter region of the transistors Q1 and Q2. By creating such a difference in current densities,
each base-emitter voltage VBE will show a value always different from each other depending on the fluctuations of each absolute temperature. For an example, the transistors Q1 and Q2 having sufficiently large amplification factors and the same characteristics can be selected, and each value of the resistors R1, R2 and R3 set so that at the temperature'25C., the current ll be comes 160 A, the voltage across the terminals of the resistor R2 becomes 26 mV and the current I2 becomes A. Also set the voltage VBE of the transistor 01 to be larger than that of Q2 by about 71.2 mV, and the voltage across the resistor R3 at about 45.2 mV. As a result of these settings, the voltage VBE of the transistor Q2 is smaller than that of the transistor Q1, and hence, as shown in FIG. 3, the transistor Q2 has a larger absolute value of temperature coefficient. Due to such a difference in the temperature coefficients corresponding to the respective base-emitter voltages VBE of the transistors Q1 and Q2, the difference in the voltages VBE being 71.2 mV, the currents I1 and I2 differ considerably. As a characteristic obtainable, in the case of R3 0, that is, in case a voltage difference corresponding to a voltage across the terminals of the'resistor R2 appears between each voltage VBE of the transistors Q1 and Q2, the relations between the current I2 and the absolute temperature show a near-proportional characteristic, as indicated by the broken line, contrasted with the full line showing exact proportionate characteristic in FIG. 4, the largest variation being about l5 percent seen at 243K.
In the preceding examples of numeral values, if the difference between each voltage VBE of the transistors Q1 and O2 is set at several tens of millivolts and the voltage across the terminals of the resistor R3 is set at about 30 mV, the variation becomes about 1 percent at 243K, and thus, in the usual temperature range of from to +60C., a characteristic of high precision can be obtained. Especially when the above-mentioned difference of voltage VBE is set at about 100 mV and the voltage across the terminals of the resistor R3 is set at about 75 mV, the collector current of the transistor 02 can be maintained proportional to the absolute temperature with a wide range of from about 30C. to about 60C.
The above explanation describes an example of the use of NPN transistors. However, also in case of PNP transistors applied to this invention, a current output proportional to the absolute temperature can be stably obtained irrespective of fluctuations of the source voltage. An example of a circuit of this invention applying PNP transistors in a monolithic integrated circuit (hereinafter called monolithic IC) will be explained in detail in the following.
In general, with PNP transistors in the monolithic IC, the current amplification factors are very low, being usually only in the order of 2 to 5. Therefore, if a circuit corresponding to that of FIG. 2 is constituted only with such elements, it cannot perform its function sufficiently. Accordingly, in the examples of FIGS. 5 and 6, circuits are provided wherein the emitter and the collector of a PNP transistor on a monolithic IC is connected to the collectorand the base of another NPN transistor, respectively, both PNP and NPN transistors being provided closely to each other on the same monolithic IC. Since this circuit configuration performs an equivalent function to the function of a PNP transistor of high performance, the circuits of FIGS. 5 and 6 are constituted considering this composition as an equivalent PNP transistor.
In FIG. 5, parts corresponding to those in FIG. 2 are designated with the same symbols. To the collector of the equivalent PNP transistor Q3 (namely, the emitter of the constituent-element NPN transistor Q14) is connected the collector of the transistor Q2 shown in FIG. 2. On the other hand, the emitter of the equivalent PNP transistor Q3 (namely, the point commonly connecting the emitter of the constituent-element PNP'transistor Q13 and the collector of the element NPN transistor Q14) is connected to a positive power source terminal B through a resistor R4. l
A PNP transistor Q16 and an NPN transistor Q17, provided near the PNP transistor Q13 and the NPN transistor Q14, respectively on the same monolithic IC, constitute a second constituent circuit, namely, a second equivalent PNP transistor Q4. Both bases of the equivalent PNP transistors Q13 and Q16 are connected in common to the emitter of a PNP transistor Q5 also on the same monolithic IC, and the base of this transistor Q5 is connected to the collector of saidtransistor Q2.
The emitter of the second equivalent transistor Q4 is connected to the source terminal E through a resistor R5, and the collector of the equivalent transistor Q4 (namely, the emitter 'of an NPN transistor Q17 as a constituent element) is connected to the negative source terminal through the load L. The emitter of the transistor Q17 is also connected to the collector of said PNPtransistor Q5.
In said circuit, since the first and second equivalent transistors Q3 and Q4 are similarly constituted by the transistors provided closely to each other on the same monolithic IC, the current amplification factors between both PNP transistors and those between both NPN transistors, respectively, 'are considered to be equal. Hence, the following relations are formed- VBEQ(16) RS (I3 IBQ(16)) Therefore, v I3 (R4/R5) I2 (R4/R5) IBQ(13) IBQ(16) VBEQ(13) VBEQ(16) resistances of resistors R4 and R5 in emitter circuits of the equivalent transistors Q3 and Q4, respectively.
On the other hand, the base currents of the first and second equivalent PNP transistors Q3 and Q4 flow in the transistor Q5, respectively. However, these currents being very small, the amplification factor of the transistor Q5 amounts to only about 1 to 2. On the other hand, the composite base current of the first and second equivalent PNP transistors 03 and Q4 is divided about evenly and each bomes a part of the currents [2 of the transistor Q2 and Q3 of the load L, respectively.
Now defining R4 R5, and if the amplification factor of each transistor of the same type is considered equal, then the operating currents of the transistors Q13 and Q16 are equal. Hence, VBEQ(13) VBEQ( 16), IBQ(13) IBQ(16) and I2 I3.
Also 12 [2 (1/2) (IBQ(13) IBQ(16)) l3 =13 (1/2) (IBQ(13) lBQ(16)) Hence, 13 I2, and a current output faithfully responding to the current output of the transistor Q2, which is proportional to the absolute temperature, is obtained from the collector circuit of the second equivalent PNP transistor Q4 as a load current which flows through the load L.
In the example of this invention shown in FIG. 6, which is a variation of the example of FIG. 5, the base of the transistor O5 is connected to the base of the transistor Q2, the emitter of the transistor O5 is grounded through the resistor R6, the base of the transistor Q14 in the first equivalent PNP transistor O3 is connected to the base of the NPN transistor Q6, the transistor Q6 is connected by its emitter to the collector of the transistor Q5 and is connected by its collector to the positive source E, and the commonly connected bases of the first and second equivalent PNP transistors Q3 and Q4 are connected to the emitter of the transistor Q6 through diodes D1 and D2, respectively.
According to such circuit constitution as the above, the composite base current of the first and second equivalent PNP transistors Q3 and Q4 becomes a part of the collector current of the transistor Q5 through the diodes D1 and D2. Hence, the difference between the collector current of the transistor Q5 and the base currents of the equivalent transistors Q3 and Q4 flow through the transistor Q6. However, the transistor Q6 being an NPN. transistor, its amplifying factor is high and its base current is very small, and consequently, it has almost no effect on the current [2. Moreover, since the base currents of the first and second equivalent PNP transistors Q3 and Q4 flow into the collector of the transistor Q5, they give almost no effect on the currents l2 and [3. Hence, the current 13 fluctuates similarly to the current 12, and therefore, a current output (l3) which is proportional to the absolute temperature can be supplied to the load L.
As has been made clear from the above explanations, according to the present invention, a current output proportional to the absolute temperature can be obtained stably irrespective of fluctuations in the source voltage (E), and not only the compensation of a circuit employing, for instance, a transistor can be made very precisely, but also excellent merits can be achieved, especially in the application to an integrated circuit.
What is claimed is:
l. A temperature dependent current supply circuit comprising first and second transistors, a source of supply voltage, first and second resistors connected in series to said first transistor across said source of supply voltage, the base of said second transistor being connected to the collector of said first transistor, the base of said first transistor being connected to a point between said first and second resistors, a third resistor connected in series with the emitter of said second transistor to one side of said source of supply voltage and a load connected in series with the collector of said second transistor to the other side of said source, said first and second resistors having values such that the base-collector voltage of said first transistor is approximately kT/q, where the charge quantity is q, the Boltzmanns constant is k and the absolute temperature is T.
2. A temperature dependent current supply circuit as defined in claim 1, wherein the areas of the emitter layers of said first and second transistors are different so as to cause a desired difference between the temperature coefficient of the base-emitter junction of said first transistor and the temperature coefficient of the baseemitter junction of said second transistor.
3. A temperature dependent current supply circuit as defined in claim 1, wherein said third resistor has a re sistance value sufficient to restrict the current flow through the second transistor so as to cause a desired difference between the temperature coefficient of the base-emitter junction of said first transistor and that of said second transistor.
4. A temperature dependent current supply circuit comprising first and second transistors, a source of supply voltage, first and second resistors connected in series to said first transistor across said source of supply voltage, the base of said second transistor being connected to the collector of said first transistor, the base of said first transistor being connected to a point between said first and second resistors, said first and second resistors having values such that the base-collector voltage of said first transistor is approximately kT/q, where the charge quantity is q, the Boltzmanns constant is k and the absolute temperature is T, a third transistor and third and fourth resistors connected in series with said second transistor across said source of supply voltage, said third resistor being connected between the emitter of said second transistor and one side of said source of supply voltage, a fourth transistor connected in series with a load and a fifth resistor across said source of supply voltage, the bases of said third and fourth transistors being connected together, and a fifth transistor having its base connected to the collector of said second transistor, its emitter being connected to the bases of said third and fourth transistors and its collector being connected to the emitter of said fourth transistor.
5. A temperature dependent current supply circuit as defined in claim 4, wherein said third and fourth transistors are each formed as composite transistors comprising interconnected NPN and PNP transistors.
6. A temperature dependent current supply circuit as defined in claim 4, wherein said third resistor has a resistance value sufficient to restrict the current flow through the second transistor so as to cause a desired difference between the temperature coefficient of the base-emitter junction of said first transistor and that of said second transistor. 1
. 7. A temperature dependent current supply circuit as defined in claim 4, wherein the areas of the emitter layers of said first and second transistors are different so as to cause a desired difference between the temperature coefficient of the base-emitter junction of said first transistor and the temperature coefficient of the baseemitter junction of said second transistor.
8. A temperature dependent current supply circuit comprising first and second transistors, a source of supply voltage, first and second resistors connected in series to said first transistor across said source of supply voltage, the base of said second transistor being connected to the collector of said first transistor, the base of said first transistor being connected to a point between said first and second resistors, said first and second resistors having values such that the base-collector voltage of said first transistor is approximately kT /q, where the charge quantity is q, the Boltzmanns constant is k and the absolute temperature is T, a third resistor and third and fourth resistors connected in series with said second transistor across said source of supply voltage, said third resistor being connected between the emitter of said second transistor and one side of said source of supply voltage, a fourth transistor connected in series with a load and a fifth resistor across said source of supply voltage, the bases of said third and fourth transistors being connected together, fifth and sixth transistors connected together through a sixth resistor in series across said source of supply voltage, a pair of diodes connecting the bases of said third and fourth transistors to a point between said fifth and sixth transistors, the base of said fifth transistor being connected to the base of said second transistor and the base of said sixth transistor being connected to said third transistor.
9. A temperature dependent current supply circuit as defined in claim 8, wherein said third and fourth transistors are each formed as composite transistors comprising interconnected NPN and PNP transistors.
10. A temperature dependent current supply circuit as defined in claim 8, wherein said third resistor has a resistance value sufficient to restrict the current flow through the second transistor so as to cause a desired difference between the temperature coefficient of the base-emitter junction of said first transistor and that of said second transistor.
11. A temperature dependent current supply circuit as defined in claim 8, wherein the areas of the emitter layers of said first and second transistors are different so as to cause a desired difference between the temperature coefficient of the base-emitter junction of said first transistor and the temperature coefficient of the base-emitter junction of said second transistor.

Claims (11)

1. A temperature dependent current supply circuit comprising first and second transistors, a source of supply voltage, first and second resistors connected in series to said first transistor across said source of supply voltage, the base of said second transistor being connected to the collector of said first transistor, the base of said first transistor being connected to a point between said first and second resistors, a third resistor connected in series with the emitter of said second transistor to one side of said source of supply voltage and a load connected in series with the collector of said second transistor to the other side of said source, said first and second resistors having values such that the base-collector Voltage of said first transistor is approximately kT/q, where the charge quantity is q, the Boltzmann''s constant is k and the absolute temperature is T.
2. A temperature dependent current supply circuit as defined in claim 1, wherein the areas of the emitter layers of said first and second transistors are different so as to cause a desired difference between the temperature coefficient of the base-emitter junction of said first transistor and the temperature coefficient of the base-emitter junction of said second transistor.
3. A temperature dependent current supply circuit as defined in claim 1, wherein said third resistor has a resistance value sufficient to restrict the current flow through the second transistor so as to cause a desired difference between the temperature coefficient of the base-emitter junction of said first transistor and that of said second transistor.
4. A temperature dependent current supply circuit comprising first and second transistors, a source of supply voltage, first and second resistors connected in series to said first transistor across said source of supply voltage, the base of said second transistor being connected to the collector of said first transistor, the base of said first transistor being connected to a point between said first and second resistors, said first and second resistors having values such that the base-collector voltage of said first transistor is approximately kT/q, where the charge quantity is q, the Boltzmann''s constant is k and the absolute temperature is T, a third transistor and third and fourth resistors connected in series with said second transistor across said source of supply voltage, said third resistor being connected between the emitter of said second transistor and one side of said source of supply voltage, a fourth transistor connected in series with a load and a fifth resistor across said source of supply voltage, the bases of said third and fourth transistors being connected together, and a fifth transistor having its base connected to the collector of said second transistor, its emitter being connected to the bases of said third and fourth transistors and its collector being connected to the emitter of said fourth transistor.
5. A temperature dependent current supply circuit as defined in claim 4, wherein said third and fourth transistors are each formed as composite transistors comprising interconnected NPN and PNP transistors.
6. A temperature dependent current supply circuit as defined in claim 4, wherein said third resistor has a resistance value sufficient to restrict the current flow through the second transistor so as to cause a desired difference between the temperature coefficient of the base-emitter junction of said first transistor and that of said second transistor.
7. A temperature dependent current supply circuit as defined in claim 4, wherein the areas of the emitter layers of said first and second transistors are different so as to cause a desired difference between the temperature coefficient of the base-emitter junction of said first transistor and the temperature coefficient of the base-emitter junction of said second transistor.
8. A temperature dependent current supply circuit comprising first and second transistors, a source of supply voltage, first and second resistors connected in series to said first transistor across said source of supply voltage, the base of said second transistor being connected to the collector of said first transistor, the base of said first transistor being connected to a point between said first and second resistors, said first and second resistors having values such that the base-collector voltage of said first transistor is approximately kT/q, where the charge quantity is q, the Boltzmann''s constant is k and the absolute temperature is T, a third resistor and third and fourth resistors connected in series with said second transistOr across said source of supply voltage, said third resistor being connected between the emitter of said second transistor and one side of said source of supply voltage, a fourth transistor connected in series with a load and a fifth resistor across said source of supply voltage, the bases of said third and fourth transistors being connected together, fifth and sixth transistors connected together through a sixth resistor in series across said source of supply voltage, a pair of diodes connecting the bases of said third and fourth transistors to a point between said fifth and sixth transistors, the base of said fifth transistor being connected to the base of said second transistor and the base of said sixth transistor being connected to said third transistor.
9. A temperature dependent current supply circuit as defined in claim 8, wherein said third and fourth transistors are each formed as composite transistors comprising interconnected NPN and PNP transistors.
10. A temperature dependent current supply circuit as defined in claim 8, wherein said third resistor has a resistance value sufficient to restrict the current flow through the second transistor so as to cause a desired difference between the temperature coefficient of the base-emitter junction of said first transistor and that of said second transistor.
11. A temperature dependent current supply circuit as defined in claim 8, wherein the areas of the emitter layers of said first and second transistors are different so as to cause a desired difference between the temperature coefficient of the base-emitter junction of said first transistor and the temperature coefficient of the base-emitter junction of said second transistor.
US00305317A 1971-11-11 1972-11-10 Temperature-dependent current supplier Expired - Lifetime US3831040A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP46090203A JPS4854460A (en) 1971-11-11 1971-11-11

Publications (1)

Publication Number Publication Date
US3831040A true US3831040A (en) 1974-08-20

Family

ID=13991917

Family Applications (1)

Application Number Title Priority Date Filing Date
US00305317A Expired - Lifetime US3831040A (en) 1971-11-11 1972-11-10 Temperature-dependent current supplier

Country Status (3)

Country Link
US (1) US3831040A (en)
JP (1) JPS4854460A (en)
DE (1) DE2253636A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3886435A (en) * 1973-08-03 1975-05-27 Rca Corp V' be 'voltage voltage source temperature compensation network
US3983473A (en) * 1974-05-06 1976-09-28 Inventronics, Inc. Series direct-current voltage regulator
FR2323188A1 (en) * 1975-09-04 1977-04-01 Rca Corp CURRENT SOURCE ACHIEVED IN INTEGRATED CIRCUIT
US4032839A (en) * 1975-08-26 1977-06-28 Rca Corporation Current scaling circuits
US4063149A (en) * 1975-02-24 1977-12-13 Rca Corporation Current regulating circuits
DE2736915A1 (en) * 1976-08-16 1978-02-23 Rca Corp REFERENCE VOLTAGE GENERATOR
US4114053A (en) * 1977-01-12 1978-09-12 Johnson & Johnson Zero temperature coefficient reference circuit
US4138616A (en) * 1977-01-12 1979-02-06 Johnson & Johnson Variable slope temperature transducer
US4242693A (en) * 1978-12-26 1980-12-30 Fairchild Camera & Instrument Corporation Compensation of VBE non-linearities over temperature by using high base sheet resistivity devices
DE3038538A1 (en) * 1979-10-13 1981-04-30 Matsushita Electric Works, Ltd., Kadoma, Osaka LOADING DEVICE
US4283641A (en) * 1977-10-21 1981-08-11 Plessey Handel Und Investments Ag Feedback biasing circuit arrangement for transistor amplifier
US4323854A (en) * 1980-01-30 1982-04-06 Control Data Corporation Temperature compensated current source
US4335346A (en) * 1980-02-22 1982-06-15 Robert Bosch Gmbh Temperature independent voltage supply
US4409558A (en) * 1980-02-25 1983-10-11 U.S. Philips Corporation Gain compensated transistor amplifier
EP0116995A1 (en) * 1983-02-10 1984-08-29 Koninklijke Philips Electronics N.V. Current stabilizing arrangement
DE3321556A1 (en) * 1983-06-15 1984-12-20 Telefunken electronic GmbH, 7100 Heilbronn BANDGAP SWITCHING
US4542305A (en) * 1983-02-22 1985-09-17 Signetics Corporation Impedance buffer with reduced settling time
US4578633A (en) * 1983-08-31 1986-03-25 Kabushiki Kaisha Toshiba Constant current source circuit
US4833344A (en) * 1986-02-07 1989-05-23 Plessey Overseas Limited Low voltage bias circuit
US5334929A (en) * 1992-08-26 1994-08-02 Harris Corporation Circuit for providing a current proportional to absolute temperature
US5710519A (en) * 1996-03-29 1998-01-20 Spectrian Circuit for automatically biasing RF power transistor by use of on-chip temperature-sensing transistor
US20030169093A1 (en) * 2002-02-08 2003-09-11 Juergen Bruck Circuit arrangement for controlling a constant current through a load
US7436242B1 (en) * 2005-01-13 2008-10-14 National Semiconductor Corporation System and method for providing an input voltage invariant current source
US20090091373A1 (en) * 2007-10-05 2009-04-09 Epson Toyocom Corporation Temperature-sensor circuit, and temperature compensated piezoelectric oscillator
US20230110657A1 (en) * 2020-07-07 2023-04-13 Eosemi Limited Temperature sensor for a tcxo

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581403B2 (en) * 1973-06-23 1983-01-11 ミノルタ株式会社 Automatic exposure time control circuit using photovoltaic elements
JPS5534794A (en) * 1978-09-05 1980-03-11 Matsushita Electric Ind Co Ltd Constant voltage circuit
JPS5582320A (en) * 1978-12-18 1980-06-21 Matsushita Electric Ind Co Ltd Constant voltage circuit
JPS61231616A (en) * 1985-04-05 1986-10-15 Fuji Electric Co Ltd Constant current circuit
US5304918A (en) * 1992-01-22 1994-04-19 Samsung Semiconductor, Inc. Reference circuit for high speed integrated circuits
JP2800720B2 (en) * 1995-05-19 1998-09-21 日本電気株式会社 Starting circuit
WO2010023421A1 (en) * 2008-08-28 2010-03-04 Adaptalog Limited Temperature sensitive circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2822434A (en) * 1954-02-15 1958-02-04 Honeywell Regulator Co Amplifying apparatus
US3440351A (en) * 1966-09-09 1969-04-22 Bell Telephone Labor Inc Telephone transmitter circuit employing variable capacitance microphone
US3538449A (en) * 1968-11-22 1970-11-03 Motorola Inc Lateral pnp-npn composite monolithic differential amplifier
US3659121A (en) * 1970-11-16 1972-04-25 Motorola Inc Constant current source
US3699467A (en) * 1969-12-29 1972-10-17 Gen Electric Bias circuit for a complementary transistor output stage
US3714543A (en) * 1970-11-21 1973-01-30 Minolta Camera Kk Constant current circuit constituted on a monolithic ic

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2822434A (en) * 1954-02-15 1958-02-04 Honeywell Regulator Co Amplifying apparatus
US3440351A (en) * 1966-09-09 1969-04-22 Bell Telephone Labor Inc Telephone transmitter circuit employing variable capacitance microphone
US3538449A (en) * 1968-11-22 1970-11-03 Motorola Inc Lateral pnp-npn composite monolithic differential amplifier
US3699467A (en) * 1969-12-29 1972-10-17 Gen Electric Bias circuit for a complementary transistor output stage
US3659121A (en) * 1970-11-16 1972-04-25 Motorola Inc Constant current source
US3714543A (en) * 1970-11-21 1973-01-30 Minolta Camera Kk Constant current circuit constituted on a monolithic ic

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3886435A (en) * 1973-08-03 1975-05-27 Rca Corp V' be 'voltage voltage source temperature compensation network
US3983473A (en) * 1974-05-06 1976-09-28 Inventronics, Inc. Series direct-current voltage regulator
US4063149A (en) * 1975-02-24 1977-12-13 Rca Corporation Current regulating circuits
US4032839A (en) * 1975-08-26 1977-06-28 Rca Corporation Current scaling circuits
FR2323188A1 (en) * 1975-09-04 1977-04-01 Rca Corp CURRENT SOURCE ACHIEVED IN INTEGRATED CIRCUIT
DE2736915A1 (en) * 1976-08-16 1978-02-23 Rca Corp REFERENCE VOLTAGE GENERATOR
US4114053A (en) * 1977-01-12 1978-09-12 Johnson & Johnson Zero temperature coefficient reference circuit
US4138616A (en) * 1977-01-12 1979-02-06 Johnson & Johnson Variable slope temperature transducer
US4283641A (en) * 1977-10-21 1981-08-11 Plessey Handel Und Investments Ag Feedback biasing circuit arrangement for transistor amplifier
US4242693A (en) * 1978-12-26 1980-12-30 Fairchild Camera & Instrument Corporation Compensation of VBE non-linearities over temperature by using high base sheet resistivity devices
DE3038538A1 (en) * 1979-10-13 1981-04-30 Matsushita Electric Works, Ltd., Kadoma, Osaka LOADING DEVICE
US4323854A (en) * 1980-01-30 1982-04-06 Control Data Corporation Temperature compensated current source
US4335346A (en) * 1980-02-22 1982-06-15 Robert Bosch Gmbh Temperature independent voltage supply
US4409558A (en) * 1980-02-25 1983-10-11 U.S. Philips Corporation Gain compensated transistor amplifier
EP0116995A1 (en) * 1983-02-10 1984-08-29 Koninklijke Philips Electronics N.V. Current stabilizing arrangement
US4554503A (en) * 1983-02-10 1985-11-19 U.S. Philips Corporation Current stabilizing circuit arrangement
US4542305A (en) * 1983-02-22 1985-09-17 Signetics Corporation Impedance buffer with reduced settling time
DE3321556A1 (en) * 1983-06-15 1984-12-20 Telefunken electronic GmbH, 7100 Heilbronn BANDGAP SWITCHING
US4644257A (en) * 1983-06-15 1987-02-17 Telefunken Electronic Gmbh Band gap circuit
US4578633A (en) * 1983-08-31 1986-03-25 Kabushiki Kaisha Toshiba Constant current source circuit
US4833344A (en) * 1986-02-07 1989-05-23 Plessey Overseas Limited Low voltage bias circuit
US5334929A (en) * 1992-08-26 1994-08-02 Harris Corporation Circuit for providing a current proportional to absolute temperature
US5710519A (en) * 1996-03-29 1998-01-20 Spectrian Circuit for automatically biasing RF power transistor by use of on-chip temperature-sensing transistor
US20030169093A1 (en) * 2002-02-08 2003-09-11 Juergen Bruck Circuit arrangement for controlling a constant current through a load
US6816002B2 (en) * 2002-02-08 2004-11-09 Tyco Electronics Amp Gmbh Circuit arrangement for controlling a constant current through a load
US7436242B1 (en) * 2005-01-13 2008-10-14 National Semiconductor Corporation System and method for providing an input voltage invariant current source
US20090091373A1 (en) * 2007-10-05 2009-04-09 Epson Toyocom Corporation Temperature-sensor circuit, and temperature compensated piezoelectric oscillator
US7755416B2 (en) * 2007-10-05 2010-07-13 Epson Toyocom Corporation Temperature-sensor circuit, and temperature compensated piezoelectric oscillator
US20230110657A1 (en) * 2020-07-07 2023-04-13 Eosemi Limited Temperature sensor for a tcxo

Also Published As

Publication number Publication date
DE2253636A1 (en) 1973-05-17
JPS4854460A (en) 1973-07-31

Similar Documents

Publication Publication Date Title
US3831040A (en) Temperature-dependent current supplier
US4087758A (en) Reference voltage source circuit
US4714872A (en) Voltage reference for transistor constant-current source
US3809929A (en) Temperature sensing device
US4350904A (en) Current source with modified temperature coefficient
US4506208A (en) Reference voltage producing circuit
US4100436A (en) Current stabilizing arrangement
JPH0570326B2 (en)
US4516081A (en) Voltage controlled variable gain circuit
US4021722A (en) Temperature-sensitive current divider
US5334929A (en) Circuit for providing a current proportional to absolute temperature
US4587478A (en) Temperature-compensated current source having current and voltage stabilizing circuits
JPS635923B2 (en)
JPS5926046B2 (en) Low voltage reference source circuit
US4490669A (en) Circuit configuration for generating a temperature-independent reference voltage
US4461992A (en) Temperature-compensated current source circuit and a reference voltage generating circuit using the same
US4675592A (en) Voltage output circuit
US3573504A (en) Temperature compensated current source
JPH0635559A (en) Constant current circuit
JPH0680486B2 (en) Constant voltage circuit
US3829789A (en) Microampere current source
JPH0252892B2 (en)
JP3194625B2 (en) Constant current source circuit
US3148337A (en) Temperature compensated signal-controlled current source
JP2849086B2 (en) Integrated bias circuit