US3830142A - Coin wrapper forming apparatus - Google Patents

Coin wrapper forming apparatus Download PDF

Info

Publication number
US3830142A
US3830142A US00227452A US22745272A US3830142A US 3830142 A US3830142 A US 3830142A US 00227452 A US00227452 A US 00227452A US 22745272 A US22745272 A US 22745272A US 3830142 A US3830142 A US 3830142A
Authority
US
United States
Prior art keywords
paper
cavity
hook
coin
arm assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00227452A
Inventor
R Johnson
V Ristvedt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00227452A priority Critical patent/US3830142A/en
Priority to US429952A priority patent/US3908525A/en
Priority to CA192,341A priority patent/CA1007498A/en
Application granted granted Critical
Publication of US3830142A publication Critical patent/US3830142A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31CMAKING WOUND ARTICLES, e.g. WOUND TUBES, OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31C1/00Making tubes or pipes by feeding at right angles to the winding mandrel centre line

Definitions

  • This invention relates to machines for forming strips of papers into wrappers for coins and more particularly to apparatus for selectively making coin wrappers for different size coins.
  • a further object of this invention is to provide an improved apparatus for forming or manufacturing coin wrappers which is of relatively simple construction, is relatively jam-proof and can be operated by unskilled personnel.
  • a roll of paper of a width to form a desired size coin wrapper is fed by a feed roller to a paper cutter which repetitively cuts the paper into predetermined lengths or strips. These strips are then fed into a cylindrical cavity which thus forms the strip into a cylinder conforming to the size of the cavity.
  • a crimping tool operated synchronously with the forming of the paper cylinder engages an edge of it as it is being formed and crimps one end of it. After crimping the now formed coin wrapper is extracted through an open end of the cavity and the operation repeated at a rate of approximately 37 per minute.
  • FIG. 5 is a perspective view of a detail of construction of the portion of the machine employed to adjust the machine for different coin wrapper sizes.
  • FIG. 6 is a perspective view of a portion of the crimping and ejection mechanisms of the machine.
  • FIG. 7 is a perspective view of a cam mechanism employed in the synchronization of the operation of the paper drive roller and crimper and ejector mechanisms of the machine.
  • FIG. 8 is a perspective view of a portion of the wrapper forming mechanism of the machine.
  • FIG. 9 is a timing chart relating the various operations of the machine.
  • FIG. 10 is an electrical schematic diagram of the electrical interconnections of the machine.
  • FIG. 1 a perspective view of coin wrapper machine 10.
  • Machine 10 is mounted on a rectangular base plate 12, with components supported by two vertically disposed mounting plates 14 and 16.
  • Vertical plate 14, equal in width dimension to base plate 12, is secured thereto at each end 18 and 20 by extension members 22 and 24, being positioned near forward edge 26 of base plate 12.
  • Vertical plate 16 is centrally secured at rear end 28 to base plate 12 by extension member 30 and is supported at opposite or forward end 32 by vertical plate 14. Portions of vertical plates 14 and 16, as shown in FIG. 1,.
  • Speed reducer 48 is powered by an electric motor, as indicated by phantom lines 52 from V-pulley 54, mounted to motor shaft 56, and input pulley 58 of speed reducer 48 coupled by V- belt 60.
  • Paper roll stock 62 to be processed is supported by paper roll support 64.
  • Paper roll support 64 moved to the side for clarity, consists of mounting bracket66-in turn supported by vertical plate 14 andincludes central shaft 68.
  • a conical core support 70 is rotatably secured to end 72 of shaft 68.
  • a removable core support 74 is attached to the other end 76 and it is slidably retained on shaft 68 being locked thereto by knurled knob 83 attached to locking means not shown.
  • Attached to the vertical plate 14, and spring biased by tension spring 77, is a brake rod assembly 78, which frictionally engages the outer surfaceof roll 62 and acts as a brake to dampen rotational movements of roll stock 62.
  • Paper strip 82 to be processed is drawn from rollstock 62 around arcuate guide member 84 by feed roller 40, securely attached to end 50 of timing shaft 38, and a cooperating pressure roller 86 (FIG. 4).
  • Two spaced high friction strips 88 are applied about the outer periphery 90 of feed roller 40 which engage paper strip 82 and are of sufficient length to assure that paper strip 82 is fed the desired length of one wrapper blank 92 (FIG. 3).
  • Spaced parallel strips 88 are positioned such that leading ends 94 are in alignment with zero timing mark 96 on feed roller 40, edges 98 and 100 being positioned near ends 102 and 104, respectively, of feed roller 40.
  • Feed roller 40 includes inner turret assembly 106 provided with four selectable printing pads Pl through P4 (FIG. 4), and is centrally supported by a throughshaft 110, and locked in rotary position by detent spring 112 engaging indentations 114 of locking ring 116.
  • Pads P1-P4 are mounted to curved surfaces 118 of riser portions 120 of turret assembly 106 and project outward through aperture 122 of cylindrical feed roller 40.
  • pads 108 are supplied with ink by cylindrical ink pad 124, rotatably journalled by shaft 126, and adjustably mounted by eccentric stud 130 to vertical plate 14 in the position shown by phantom lines 128 (FIG. 1).
  • inked pads 108 apply pressure against upper surface 132 (FIG. 3) of paper strip 82 as it is passed between feed roller 40 and pressure roller 86 to print a suitable legend 134 on wrapper blank 92 (FIG. 3).
  • Turret assembly 106 is manually positioned by external adjust knob 136 secured to throughsupport-shaft 110.
  • Pressure roller 86 is rotatably supported by through-pin 138 within transverse slot 140 formed in elongated paper guide plate 142 (FIG. 4).
  • Paper guide plate 142 is adjustably. secured at one end 144 by C shaped screw clamps 146 (only one being shown) to paper guide mounting bracket assembly 148.
  • Guide bracket assembly 148 is pivotally attached to vertical support plate 14 by elongatedmounting stud 150, threadably retained by an eccentric adjusting pin, not shown.
  • Paper guide plate 142 is biased upward by tension spring 152 to contact an adjustable upper limit stop, not shown, which limits guide plate 142 in a position to assure that. sufficient pressure is applied between pressure roller 86 and feed roller 40, to feed paper strip 82.
  • Forward end 154 of guide plate 142 is configured, as shown in FIG. 1, into intersecting diagonal edges 156 and 158.
  • guide plate 142 is manually pivoted to disengage pressure roller 86, by extension tab 160 attached to under surface 162 near forward end 154 of plate 142.
  • an upper guide bracket 164 is secured to vertical plate 14 in close proximity to upper surface 132 ofpaper strip 82.
  • An upper guide bracket 170 is mounted in close proximity to wrapper blank 92 and is provided with compartment 172 dimensioned to contain a lubricant block 174 such as parafiin, retained by spring clip 176. Lubricant block 174 is in gravity force contact with blank 92 and provides a surface lubricant for the subsequent forming operation.
  • pointed end 178 of blank 92 is injected a short distance into a selected forming cavity C1C4 (FIG. 1), to be further described, and is severed from strip by cutter 166, shown in greater detail in FIG. 3'.
  • Cutter 166 includes two underlying cutter bars 180 and 182 in shearing engagement with cutting edges 184 and 186 respectively, of upper cooperating blade member 188.
  • the trailing edge 190 of wrapper blank 92 is diagonally cut in one continuous line 192 as the leading edge 194 of the following strip 92 is configured into a point 178 by removal of triangular scrap 179.
  • Cutter assembly 166 is securely attached by bolt 196 (FIG. 1) to vertical guide rod 200.
  • Elongated cutter bar 180 is secured to-upper portion 202 of tubular mounting bracket 198 by screws 204 and extends diagonally across and beneath the path of paper strip 82, being spaced intermediate support plates 142 and 168, and with cutting edge 206 adjacent pivotally mounted paper support plate 142.
  • Wrapper blank 92 is configured into a pointed edge 178, as previously mentioned, by a second intersecting cutter bar 182 pivotally supported near forward end 154 by bolt 208 to mounting arm 210 of support plate 142, and projecting beneath paper strip 92 into undercut recess 212 of elongated cutter bar 180.
  • Cutterbar 182 is mounted such that cutting edge 214 faces mounting bracket 198.
  • Upper cooperating blade member 188 is secured to and about guide rod 200 and has longitudinal cutting edge 184 held in spring biased engagement with cutting edge 206 of cutter bar 180.
  • Transverse cutting edge 186 of upper blade member 188 is adapted to engage cutting edge 214 of intersection cutter bar 182.
  • Cutter bar 182 is held in a shearing engagement with upper blade member 188 by U- shaped spring 218, inserted between edge 220 of cutter bar 186 and leading edge 154 of support plate 142.
  • Cutter blade 188 is biased upward by compression spring 222 allowing space 224 for free passage of paper strip 82 between upper blade member 188 and lower cutter bars 180 and 182.
  • Upper blade member 188 is depressed by rocker arm 226 having pressure roller 228 mounted near end 230 in contact with upper cylindrical portion 232 of guide rod 200 and is pivotally supported at a point 234 intermediate ends 230 and 236 by stud mount 238, threadably secured to vertical plate 14 (FIG. 1).
  • Cam follower roller 240 mounted near vertically inclined end 236 of rocker arm 226 is adapted to engage cutter control cam 42 secured to timing shaft 38. As riser portion 242 of control cam 42 elevates roller 240, rocker arm 226 is pivoted clockwise, applying a downward motion to guide rod 200 and thus cutter blade 188 to sever a wrapper blank 92.
  • drive roller 224 captures severed wrapper blank 92 and pushes it into one of selected forming cavities C1 through C4. This action occurs as follows.
  • idler roller 280 Disposed directly below drive roller 244, and axially adjustable thereto, is idler roller 280 journalled by idler shaft 282 threadably attached to vertical plate 14. Idler 280 cooperates with drive roller 244 to grip wrapper blank 92, pushing it into one of selected forming cavities C1-C4 of forming turret assembly 284.
  • Forming turret assembly 284 includes cylindrical forming body member 286 provided with selectable longitudinal cavities C1, C2, C3 and C4, bored to a diameter suitable for forming tubes of desired sizes, and provided with access slots S1, S2, S3 and S4, respectively, through which wrapper blank 92 is inserted and formed.
  • Forming turret assembly 284 is supported by elongated bar mounting bracket 288, pivotally attached to vertical plate 14 by bolt 290 and provided with centrally attached bearing 292 adapted to journal selector shaft 294.
  • Forming assembly 284 is locked in normal operating position by spring slip 285 attached to outer end 287 of mounting bracket 288, in latching engagement with catch 289, adjustably mounted to vertical plate 14.
  • Forming body member 286 is secured to end 296 of selector shaft 294 through central mounting bore 298 and is locked in a selectable radial position by annular locking ring 300.
  • Annular locking ring 300 secured adjacent mounting bar 288 to selector shaft 294, is provided with appropriately spaced transverse peripheral notches 302 adapted to accept locking pin 304, threadably secured to vertical mounting plate 14.
  • Forming body 286, shown in the normal operating position, is selectably rotated, in a manner to be described by knurled knob 306 secured to selector shaft .294.
  • a multiple ply paper tube 308, FIG. 6, is formed and continues to rotate within cavity C1, being driven by forming roller 244.
  • the outer edge 310 of this tube 308 is crimped or rolled into an inwardly disposed toroid configuration 312 (FIG. 6) by crimper assembly 314 under the control of crimper-ejector control cam 46 is a manner to be described.
  • Crimper assembly 314 comprises two hookshaped cooperating crimping members 316 and 318.
  • An upper member 316 is slidably supported within tubular mounting fixture 320 and a second member 318 is rigidly affixed thereto.
  • Movable upper member 316 is provided with shank portion 322 overlying fixed member 318 and has bias cut surface 326 configured to engage the outer periphery 328 of rotating tube 308 and has an inner edge contacting surface 330, generally circular, so as to initially form edge 310 of tube 308 inwardly.
  • Fixed crimping member 318 is provided with an opposing circular edge contacting surface 332 which forms edge 310 outwardly toward circular inner surface 330 of movable forming member 316. When the crimp members 316 and 318 are thus engaged the rolling operation is performed repeatedly to form a multiple roll edge 312.
  • Movable crimping member 316 is disengaged by compression spring 334 acting between outer end 336 of mounting fixture 320 and spring retainer 338 secured to outer end 340 of movable crimping member 316.
  • Crimp member 316 is spring biased into a crimping engagement with member 318 by flexible spring coupler 360 adjustably mounted at one end 362 to function selector arm 364, and has free end 366 in contact with spring retainer 388 at outer end 340 of crimp member 316. As multiple rolls are formed during the crimp operation, toroidal portion 312 increases in diameter, urging upper crimp member 316 outward against spring coupler 360.
  • Selector arm 364 is pivotally attached through aligned apertures 368 of mounting lugs 370 to mounting arm 354 by through pin 372, and is controlled by selector rod 374 attached to vertically disposed mounting tab 376. Selector rod 374 is spring biased by compression spring 334 into engagement with roller 378, vertically attached to mounting arm 380, threadably supported by vertical plate 14.
  • Guide rod 348 slidably supported by linear bearing 382, FIG. 1, is coupled to crimper control lever 384 by linkage assembly 386 which includes linear bearing 388, slidably engaged with actuating arm 390, attached to rear end 392 of guide rod 348, and pivotally attached to forward end 394 of crimper control lever 384.
  • Control lever 384 is pivotally attached at a point 396 intermediate ends 394 and 398 to aft end 400 of paper edge sensing lever 402, and is spring biased counterclockwise by tension spring 404 acting between rear end 398 and vertical plate 14 (FIG. 7). Clockwise rotation is controlled by cam follower roller 406, secured to control lever 384 at a point intermediate pivotal point 396 and end 398.
  • control lever 384 As cam follower roller 406 engages riser portion 408 of crimper-ejector control cam 46, control lever 384 is rotated clockwise, and thus through actuating arm 390, extends guide rod 348.
  • the operating range of guide rod 348 is controlled by paper edge sensing lever 402 pivotally suspended at a point 410 intermediate ends 412 and 400 to vertical plate 16 by mounting bracket 414.
  • Sensing lever 402 is biased clockwise by spring 404 acting through control lever 384 pivotally suspended at rear end 400 of sensing lever 402, and thus end 412 is held in contacting engagement with one of spaced range select studs 415, 416, 518 and 420 projecting rearward from the secured to adjust knob 306, FIG. 5.
  • Fault detection microswitches 424 and 426 are mounted to vertical plate 14 and have switch actuating arms 428 and 430 extending immediately forward of feed roller 40 and drive roller 244, respectively, which detect malfunctions of feeding and forming operations. If paper accumulates forward of feed roller 40 or drive roller 244 switches are opened to inhibit drive motor and halt operation.
  • FIG. 10 is a schematic representation of the electrical wiring of coin wrapper machine 10.
  • VAC is coupled to input terminals T and T
  • a circuit breaker 432 in series with common line T provides overload protection for drive motor M.
  • Master switch 434 is connected between input terminal T and junction of switches 81 and 426.
  • One end 438 of coil L of relay 437 is connected to common line T and switch 424 feeds opposite end 436.
  • Paper exhaust microswitch 81 is closed when a supply of paper remains, and cover door interlock 442 is opened when access door of cover (not shown) is opened.
  • Power switch 444 is shown in power off position. As coil L of relay 437 is energized contacts 446 complete the circuit to drive motor M.
  • the denomination of wrapper 34 to be made is selected and the proper forming cavity, Cl for instance, is appropriately positioned as follows.
  • Crimper assembly mounting bracket 354 is pulled fully forward. While holding guide rod 348 in this position, tube forming assembly 284 is released by disengaging spring clip 285. Assembly 284 is lowered and forming body 286 is rotated to align selected forming cavity C1-C4, with idler 280. Crimper assembly is then pushed upward and latched in place, then crimper 354 is slowly returned to full in position. Finally knob 136 is rotated to select the correct legend to be printed on wrapper 34.
  • Coin wrappers for various denominations of coins are formed of predetermined widths of roll stock- 62. Once the proper width roll 62 has been selected, it is installed and locked on paper roll support 64, shown detached from machine in FIG. 1.
  • brake rod assembly 78 is lifted and front core support 74 is disengaged by loosening locking knob 83. Core support 74 and place roll stock 62 about rear conical support 70 so that paper unrolls in a clockwise direction.
  • front support 74 is replaced by pressing firmly against roll stock 62 and twisting knob 77 to lock the roll stock 62 in place.
  • momentarily depress and release master switch 434 until zero mark 96 of feed roller 40 is in approximately the 2 oclock position as shown in FIG. 1.
  • Feed roller 40 rotates counterclockwise as indicated by arrow 434. As zero timing mark 96 of feed roller 40 approaches the 6 oclock position and is in alignment with zero reference line 436, of paper guide 142, machine 10 is said to be in a zero rotational position, as illustrated by 0 line of function chart, F 1G. 9. As feed roller 40 begins one cycle of rotation in a counterclockwise direction, paper strip 82 is frictionally engaged between strips 88 of feed roller 40 and pressure roller 86.
  • the forming operation begins at 235 as wrapper blank 92 is gripped between high friction forming roller 244 and idler roller 280, as roller 244 is lowered into engagement by rocker arm 256, under control of forming roller control cam 44.
  • the leading edge 178 of blank 92 is forced into cavity C1 encircling idler 280 and underlapping the next portion of blank 92, forming a two or three ply paper tube, depending upon the size of the cavity selected.
  • This tube continues to rotate in a clockwise direction, becoming perfectly formed, during a portion of cycle between 235 and 305 (Waveform E). Note that between 230 and 305, upper blade 188 of cutter assembly 166 returns to the fully up position so as to accept another blank 92 (Waveform D).
  • guide rod 348 is retracted by tension spring 404, at a rate determined by the shape of riser portion 408 of crimper control cam 46.
  • crimper assembly 314 moves inward and crimp member 316 engages outer edge 310 of rotating tube 308 (FIG. 6) to form a multiple roll crimp 312, as previously described.
  • the crimping operation continues through 360 and is completed at approximately 1 12 rotation of the next cycle of feed roller 40 (Waveform F) as guide rod 348 is fully retracted. Note that .drive roller 244 is again lifted at 122 by rocker arm 256, releasing paper tube 308.
  • a second feed cycle begins (Waveform A) wherein paper is again drawn from roll 62, provided with a suitable legend between 20 and 40, and pushed along guide plates 142 and 168.
  • Coin wrapper 34 is now completed and crimping members 316 and 318 are locked to the rolled edge 312 of tube 308.
  • tube 308 is extracted from cavity C1 between and rotation (Waveform G).
  • selector rod 374 is disengaged from rolller 378.
  • Upper crimp member 316 is then disengaged by compression spring 334, unlocking rolled end 312 and allowing coin wrapper to drop away.
  • cavity C1 is now free to accept the leading edge 178 of the following blank 92 at 180 degrees, and thence the cycle repeats as described above.
  • a coin wrapper forming apparatus comprising:
  • cutter means for repetitively cutting predetermined lengths of paper supplied by said drive means
  • wrapper forming means comprising:
  • a forming member having at least one cavity including an end opening and a side opening, the latter opening being adapted to receive the width dimension of a said length of paper
  • feed means for receiving a said length of paper and feeding same through said side opening into said cavity, and around the inner periphery of said cavity for forming a paper cylinder, and
  • crimping and ejection means comprising:
  • a first hook shaped member affixed to said arm assembly and adapted to extend, bluntly, into an end of a said cavity when said arm assembly is positioned in a first, inner, crimping, positron,
  • a second hook shaped member having a shank portion slidably suppported by said arm assembly for movement parallel to the axis of a said cavity and wherein the hook portions of said first and second hook shaped members are positioned in a spaced complementary relation
  • operating means responsive to the position of said arm assembly and coupled to the said shank portion of said second hook member for positioning the hook portion of said second hook member in close, crimping, position to the hook portion of said first hook shaped member when said arm assembly is in an inward position and spaced from said first hooked member when said arm assembly is in an outward position,
  • a coin wrapper forming apparatus as set forth in claim 1 further comprising biasing means for biasing the relative position of said hook members to a minimum selected spacing and enabling the spacing to increase as a crimped edge grows between the complementary surfaces of said hook members.
  • a coin wrapper forming apparatus comprising:
  • wrapper forming means generally cylindrical in configuration, and comprising:
  • each cavity including an end opening and a side opening, the latter opening being adapted to receive the wwidth dimension of a said length of paper;
  • feed means for receiving a said length of paper and feeding same through said side opening into said selected cylindrical cavity, and around the inner periphery of said cavity for forming a paper cylinder;
  • crimping means operating synchronously with the formation of a said paper cylinder for crimping one end of a said paper cylinder;
  • ejection means operating synchronously with the completion of the crimping of a said paper cylinder for ejecting a said paper cylinder from said cavity as a completed coin wrapper;
  • a coin wrapper forming apparatus as set forth in claim 3 wherein said wrapper forming means includes an idler roller of smaller diameter than the smallest of said cavities positionable within a said cavity and a driven roller positioned external to said cavity and rotatably coupled to said idler roller whereby a said length of paper from said cutting means is fed between said rollers into and around the surface of a said cavity.

Landscapes

  • Making Paper Articles (AREA)

Abstract

A machine for forming coin wrappers in which paper from a roll is cut into prescribed lengths and formed into paper cylinders within a selected cavity of a drum or turret having several cylindrical cavities, each with a diameter corresponding to a currently used coin. A paper cylinder is so formed, a crimpingejection device engages one end of it, crimps that end and then ejects it as a completed coin wrapper.

Description

United States Patent Ristvedt et al.
COIN WRAPPER FORMING APPARATUS Inventors: Victor G. Ristvedt, Rt. 2, Forest Wood Dr.; Roy B. Johnson, 603 Adams St., both of Manchester, Tenn. 37355 Filed: Feb. 18, 1972 Appl. No.: 227,452
U.S. Cl. 93/81 MT, 93/77 R Int. Cl. B3lc 3/00 Field of Search 93/77 R, 80, 81 R, 81 MT,
References Cited UNITED STATES PATENTS Petri 93/81 MT Aug. 20, 1974 3,237,536 3/1966 Risvedt et al. 93/81 R 3,489,069 1/1970 Bucholz et al. 93/81 R 3,518,923 7/1970 Bucholz et a1. 93/77 R Primary ExaminerAndrew R. Juhasz Assistant Examiner-Leon Gilden ABSTRACT A machine for forming coin wrappers in which paper from a roll is cut into prescribed lengths and formed into paper cylinders within a selected cavity of a drum or turret having several cylindrical cavities, each with a diameter corresponding to a currently used coin. A paper cylinder is so formed, a crimping-ejection device engages one end of it, crimps that end and then ejects it as a completed coin wrapper.
6 Claims, 10 Drawing Figures PAIENIEBMIBZOIBH 3.930.142
SHEET 3 0f 4 FIG. 8
1 COIN WRAPPER FORMING APPARATUS BACKGROUND OF THE INVENTION This invention relates to machines for forming strips of papers into wrappers for coins and more particularly to apparatus for selectively making coin wrappers for different size coins.
DESCRIPTION OF THE PRIOR ART Establishments, such as banks which handle a large volume of coins generally purchase wrappers ready made. One difficulty with this arrangement is that the wrappers require a substantial amount of storage space. Second, they are relatively expensive to purchase when one would consider the significantly lower cost of the paper involved. Thus it is clearly of an advantage to be able to fabricate the wrappers at point of usage, that is by the establishment which fills the wrappers with coins. While a number of machines have been proposed for this purpose the applicants are unaware of the general acceptance by wrapper users'of any of the heretofore proposed such machines.
One of the reasons it is believed for such failure has been that prior machines have generally only had the capability of manufacturing one size wrapper and thus a typical user would require four machines to handle current denominations of the most used U.S. coins. Another reason appears to be that such machines have been bulky, cumbersome, difficult to operate and expensive.
SUMMARY OF THE INVENTION Accordingly it is an object of this invention to provide a machine for the manufacture of coin wrappers which accommodates four sizes of coins and thus enabling the user to purchase only a single machine instead of four.
A further object of this invention is to provide an improved apparatus for forming or manufacturing coin wrappers which is of relatively simple construction, is relatively jam-proof and can be operated by unskilled personnel.
These and other objects, features and advantages are accomplished by the present invention which may be briefly described as follows. A roll of paper of a width to form a desired size coin wrapper is fed by a feed roller to a paper cutter which repetitively cuts the paper into predetermined lengths or strips. These strips are then fed into a cylindrical cavity which thus forms the strip into a cylinder conforming to the size of the cavity. A crimping tool operated synchronously with the forming of the paper cylinder engages an edge of it as it is being formed and crimps one end of it. After crimping the now formed coin wrapper is extracted through an open end of the cavity and the operation repeated at a rate of approximately 37 per minute.
BRIEF DESCRIPTION OF THE DRAWINGS of a coin wrapper manu- FIG. 5 is a perspective view of a detail of construction of the portion of the machine employed to adjust the machine for different coin wrapper sizes.
FIG. 6 is a perspective view of a portion of the crimping and ejection mechanisms of the machine.
FIG. 7 is a perspective view of a cam mechanism employed in the synchronization of the operation of the paper drive roller and crimper and ejector mechanisms of the machine.
FIG. 8 is a perspective view of a portion of the wrapper forming mechanism of the machine.
FIG. 9 is a timing chart relating the various operations of the machine.
FIG. 10 is an electrical schematic diagram of the electrical interconnections of the machine.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to the drawings, there is shown in FIG. 1 a perspective view of coin wrapper machine 10. Machine 10 is mounted on a rectangular base plate 12, with components supported by two vertically disposed mounting plates 14 and 16. Vertical plate 14, equal in width dimension to base plate 12, is secured thereto at each end 18 and 20 by extension members 22 and 24, being positioned near forward edge 26 of base plate 12. Vertical plate 16 is centrally secured at rear end 28 to base plate 12 by extension member 30 and is supported at opposite or forward end 32 by vertical plate 14. Portions of vertical plates 14 and 16, as shown in FIG. 1,.
38 is centrally joumalled and driven by speed reducer 48, shown with portions of case removed, mounted to vertical plate l6 by means not shown. Shaft 38 is further supported at forward end 50 by bearing, not shown, in vertical plate 14. Speed reducer 48 is powered by an electric motor, as indicated by phantom lines 52 from V-pulley 54, mounted to motor shaft 56, and input pulley 58 of speed reducer 48 coupled by V- belt 60.
Paper roll stock 62 to be processed is supported by paper roll support 64. Paper roll support 64, moved to the side for clarity, consists of mounting bracket66-in turn supported by vertical plate 14 andincludes central shaft 68. A conical core support 70 is rotatably secured to end 72 of shaft 68. A removable core support 74 is attached to the other end 76 and it is slidably retained on shaft 68 being locked thereto by knurled knob 83 attached to locking means not shown. Attached to the vertical plate 14, and spring biased by tension spring 77, is a brake rod assembly 78, which frictionally engages the outer surfaceof roll 62 and acts as a brake to dampen rotational movements of roll stock 62. As paper is exhausted, switch actuating pin 79 attached to brake rod assembly 78, opens microswitch-8l to halt machine operation. Paper strip 82 to be processed is drawn from rollstock 62 around arcuate guide member 84 by feed roller 40, securely attached to end 50 of timing shaft 38, and a cooperating pressure roller 86 (FIG. 4). Two spaced high friction strips 88, such as constructed of rubber, polyurethane, etc., are applied about the outer periphery 90 of feed roller 40 which engage paper strip 82 and are of sufficient length to assure that paper strip 82 is fed the desired length of one wrapper blank 92 (FIG. 3).
Spaced parallel strips 88 are positioned such that leading ends 94 are in alignment with zero timing mark 96 on feed roller 40, edges 98 and 100 being positioned near ends 102 and 104, respectively, of feed roller 40.
Feed roller 40 includes inner turret assembly 106 provided with four selectable printing pads Pl through P4 (FIG. 4), and is centrally supported by a throughshaft 110, and locked in rotary position by detent spring 112 engaging indentations 114 of locking ring 116. Pads P1-P4 are mounted to curved surfaces 118 of riser portions 120 of turret assembly 106 and project outward through aperture 122 of cylindrical feed roller 40. As feed roller 40 rotates, pads 108 are supplied with ink by cylindrical ink pad 124, rotatably journalled by shaft 126, and adjustably mounted by eccentric stud 130 to vertical plate 14 in the position shown by phantom lines 128 (FIG. 1). As paper strip 82 is being fed to machine 10, inked pads 108 apply pressure against upper surface 132 (FIG. 3) of paper strip 82 as it is passed between feed roller 40 and pressure roller 86 to print a suitable legend 134 on wrapper blank 92 (FIG. 3). Turret assembly 106 is manually positioned by external adjust knob 136 secured to throughsupport-shaft 110. Pressure roller 86 is rotatably supported by through-pin 138 within transverse slot 140 formed in elongated paper guide plate 142 (FIG. 4).
Paper guide plate 142 is adjustably. secured at one end 144 by C shaped screw clamps 146 (only one being shown) to paper guide mounting bracket assembly 148. Guide bracket assembly 148 is pivotally attached to vertical support plate 14 by elongatedmounting stud 150, threadably retained by an eccentric adjusting pin, not shown. Paper guide plate 142 is biased upward by tension spring 152 to contact an adjustable upper limit stop, not shown, which limits guide plate 142 in a position to assure that. sufficient pressure is applied between pressure roller 86 and feed roller 40, to feed paper strip 82. Forward end 154 of guide plate 142 is configured, as shown in FIG. 1, into intersecting diagonal edges 156 and 158. To facilitate loading machine 10, guide plate 142 is manually pivoted to disengage pressure roller 86, by extension tab 160 attached to under surface 162 near forward end 154 of plate 142. To prevent strip 82 from wrinkling, an upper guide bracket 164 is secured to vertical plate 14 in close proximity to upper surface 132 ofpaper strip 82.
As paper strip 82 is pushed along paper guide 142 by feed roller 40 it passes through cutter assembly 166 (FIG. 3) and is supported by a second and stationary paper guide 168, mounted to vertical plate 14 (FIG. 1), in horizontal alignment with but at a lower elevation than pivotally mounted guide plate 142. v 7
An upper guide bracket 170 is mounted in close proximity to wrapper blank 92 and is provided with compartment 172 dimensioned to contain a lubricant block 174 such as parafiin, retained by spring clip 176. Lubricant block 174 is in gravity force contact with blank 92 and provides a surface lubricant for the subsequent forming operation. At the termination *of each feed cycle, pointed end 178 of blank 92 is injected a short distance into a selected forming cavity C1C4 (FIG. 1), to be further described, and is severed from strip by cutter 166, shown in greater detail in FIG. 3'. Cutter 166 includes two underlying cutter bars 180 and 182 in shearing engagement with cutting edges 184 and 186 respectively, of upper cooperating blade member 188. The trailing edge 190 of wrapper blank 92 is diagonally cut in one continuous line 192 as the leading edge 194 of the following strip 92 is configured into a point 178 by removal of triangular scrap 179. Cutter assembly 166 is securely attached by bolt 196 (FIG. 1) to vertical guide rod 200. Elongated cutter bar 180 is secured to-upper portion 202 of tubular mounting bracket 198 by screws 204 and extends diagonally across and beneath the path of paper strip 82, being spaced intermediate support plates 142 and 168, and with cutting edge 206 adjacent pivotally mounted paper support plate 142.
Wrapper blank 92 is configured into a pointed edge 178, as previously mentioned, by a second intersecting cutter bar 182 pivotally supported near forward end 154 by bolt 208 to mounting arm 210 of support plate 142, and projecting beneath paper strip 92 into undercut recess 212 of elongated cutter bar 180. Cutterbar 182 is mounted such that cutting edge 214 faces mounting bracket 198. Upper cooperating blade member 188 is secured to and about guide rod 200 and has longitudinal cutting edge 184 held in spring biased engagement with cutting edge 206 of cutter bar 180. Transverse cutting edge 186 of upper blade member 188 is adapted to engage cutting edge 214 of intersection cutter bar 182. Cutter bar 182 is held in a shearing engagement with upper blade member 188 by U- shaped spring 218, inserted between edge 220 of cutter bar 186 and leading edge 154 of support plate 142. Cutter blade 188 is biased upward by compression spring 222 allowing space 224 for free passage of paper strip 82 between upper blade member 188 and lower cutter bars 180 and 182. Upper blade member 188 is depressed by rocker arm 226 having pressure roller 228 mounted near end 230 in contact with upper cylindrical portion 232 of guide rod 200 and is pivotally supported at a point 234 intermediate ends 230 and 236 by stud mount 238, threadably secured to vertical plate 14 (FIG. 1). Cam follower roller 240 mounted near vertically inclined end 236 of rocker arm 226 is adapted to engage cutter control cam 42 secured to timing shaft 38. As riser portion 242 of control cam 42 elevates roller 240, rocker arm 226 is pivoted clockwise, applying a downward motion to guide rod 200 and thus cutter blade 188 to sever a wrapper blank 92.
As the cutting operation is completed, drive roller 224 captures severed wrapper blank 92 and pushes it into one of selected forming cavities C1 through C4. This action occurs as follows. Drive roller 244, having high frictionouter surface 246 formed of live rubber,
intermediate ends 254 and 270 to mounting stud 272, threadably secured to vertical plate 14. End 270 of rocker arm 256 extends beneath timing shaft 38 and is equipped with cam follower roller 274, adapted to engage forming roller control cam 44. As riser portion 276 of control cam 44 depresses cam follower roller 274, rocker arm 256 is rotated counterclockwise and thus lifts drive roller 244. Drive roller 244 is spring biased clockwise by tension spring 278.
Disposed directly below drive roller 244, and axially adjustable thereto, is idler roller 280 journalled by idler shaft 282 threadably attached to vertical plate 14. Idler 280 cooperates with drive roller 244 to grip wrapper blank 92, pushing it into one of selected forming cavities C1-C4 of forming turret assembly 284.
Forming turret assembly 284 includes cylindrical forming body member 286 provided with selectable longitudinal cavities C1, C2, C3 and C4, bored to a diameter suitable for forming tubes of desired sizes, and provided with access slots S1, S2, S3 and S4, respectively, through which wrapper blank 92 is inserted and formed. Forming turret assembly 284 is supported by elongated bar mounting bracket 288, pivotally attached to vertical plate 14 by bolt 290 and provided with centrally attached bearing 292 adapted to journal selector shaft 294. Forming assembly 284 is locked in normal operating position by spring slip 285 attached to outer end 287 of mounting bracket 288, in latching engagement with catch 289, adjustably mounted to vertical plate 14. Forming body member 286 is secured to end 296 of selector shaft 294 through central mounting bore 298 and is locked in a selectable radial position by annular locking ring 300. Annular locking ring 300, secured adjacent mounting bar 288 to selector shaft 294, is provided with appropriately spaced transverse peripheral notches 302 adapted to accept locking pin 304, threadably secured to vertical mounting plate 14. Forming body 286, shown in the normal operating position, is selectably rotated, in a manner to be described by knurled knob 306 secured to selector shaft .294.
As wrapper blank 92 is injected into one of selected forming cavity C1, FIG. 1, a multiple ply paper tube 308, FIG. 6, is formed and continues to rotate within cavity C1, being driven by forming roller 244. The outer edge 310 of this tube 308 is crimped or rolled into an inwardly disposed toroid configuration 312 (FIG. 6) by crimper assembly 314 under the control of crimper-ejector control cam 46 is a manner to be described. Crimper assembly 314 comprises two hookshaped cooperating crimping members 316 and 318. An upper member 316 is slidably supported within tubular mounting fixture 320 and a second member 318 is rigidly affixed thereto. Movable upper member 316 is provided with shank portion 322 overlying fixed member 318 and has bias cut surface 326 configured to engage the outer periphery 328 of rotating tube 308 and has an inner edge contacting surface 330, generally circular, so as to initially form edge 310 of tube 308 inwardly. Fixed crimping member 318 is provided with an opposing circular edge contacting surface 332 which forms edge 310 outwardly toward circular inner surface 330 of movable forming member 316. When the crimp members 316 and 318 are thus engaged the rolling operation is performed repeatedly to form a multiple roll edge 312. Movable crimping member 316 is disengaged by compression spring 334 acting between outer end 336 of mounting fixture 320 and spring retainer 338 secured to outer end 340 of movable crimping member 316.
One end 336 of mounting fixture 320 exttends through and is securely affixed within aperture 350 formed in one end 352 of bar mounting arm 354 which is secured at the opposite end 356 to guide rod 348, by similar mounting aperture 358. Crimp member 316 is spring biased into a crimping engagement with member 318 by flexible spring coupler 360 adjustably mounted at one end 362 to function selector arm 364, and has free end 366 in contact with spring retainer 388 at outer end 340 of crimp member 316. As multiple rolls are formed during the crimp operation, toroidal portion 312 increases in diameter, urging upper crimp member 316 outward against spring coupler 360. Selector arm 364 is pivotally attached through aligned apertures 368 of mounting lugs 370 to mounting arm 354 by through pin 372, and is controlled by selector rod 374 attached to vertically disposed mounting tab 376. Selector rod 374 is spring biased by compression spring 334 into engagement with roller 378, vertically attached to mounting arm 380, threadably supported by vertical plate 14.
Guide rod 348, slidably supported by linear bearing 382, FIG. 1, is coupled to crimper control lever 384 by linkage assembly 386 which includes linear bearing 388, slidably engaged with actuating arm 390, attached to rear end 392 of guide rod 348, and pivotally attached to forward end 394 of crimper control lever 384. Control lever 384 is pivotally attached at a point 396 intermediate ends 394 and 398 to aft end 400 of paper edge sensing lever 402, and is spring biased counterclockwise by tension spring 404 acting between rear end 398 and vertical plate 14 (FIG. 7). Clockwise rotation is controlled by cam follower roller 406, secured to control lever 384 at a point intermediate pivotal point 396 and end 398. As cam follower roller 406 engages riser portion 408 of crimper-ejector control cam 46, control lever 384 is rotated clockwise, and thus through actuating arm 390, extends guide rod 348. The operating range of guide rod 348 is controlled by paper edge sensing lever 402 pivotally suspended at a point 410 intermediate ends 412 and 400 to vertical plate 16 by mounting bracket 414. Sensing lever 402 is biased clockwise by spring 404 acting through control lever 384 pivotally suspended at rear end 400 of sensing lever 402, and thus end 412 is held in contacting engagement with one of spaced range select studs 415, 416, 518 and 420 projecting rearward from the secured to adjust knob 306, FIG. 5.
Fault detection microswitches 424 and 426 (FIGS. 4 and 8) are mounted to vertical plate 14 and have switch actuating arms 428 and 430 extending immediately forward of feed roller 40 and drive roller 244, respectively, which detect malfunctions of feeding and forming operations. If paper accumulates forward of feed roller 40 or drive roller 244 switches are opened to inhibit drive motor and halt operation.
FIG. 10 is a schematic representation of the electrical wiring of coin wrapper machine 10. VAC is coupled to input terminals T and T A circuit breaker 432 in series with common line T provides overload protection for drive motor M. Master switch 434 is connected between input terminal T and junction of switches 81 and 426. One end 438 of coil L of relay 437 is connected to common line T and switch 424 feeds opposite end 436.'Paper fault detection microswitches 424 and 426 are normally closed. Paper exhaust microswitch 81 is closed when a supply of paper remains, and cover door interlock 442 is opened when access door of cover (not shown) is opened. Power switch 444 is shown in power off position. As coil L of relay 437 is energized contacts 446 complete the circuit to drive motor M.
OPERATION Before loading paper into machine 10, the denomination of wrapper 34 to be made is selected and the proper forming cavity, Cl for instance, is appropriately positioned as follows. Crimper assembly mounting bracket 354 is pulled fully forward. While holding guide rod 348 in this position, tube forming assembly 284 is released by disengaging spring clip 285. Assembly 284 is lowered and forming body 286 is rotated to align selected forming cavity C1-C4, with idler 280. Crimper assembly is then pushed upward and latched in place, then crimper 354 is slowly returned to full in position. Finally knob 136 is rotated to select the correct legend to be printed on wrapper 34.
Coin wrappers for various denominations of coins are formed of predetermined widths of roll stock- 62. Once the proper width roll 62 has been selected, it is installed and locked on paper roll support 64, shown detached from machine in FIG. 1. To install roll stock 62, brake rod assembly 78 is lifted and front core support 74 is disengaged by loosening locking knob 83. Core support 74 and place roll stock 62 about rear conical support 70 so that paper unrolls in a clockwise direction. Then front support 74 is replaced by pressing firmly against roll stock 62 and twisting knob 77 to lock the roll stock 62 in place. Before loading, momentarily depress and release master switch 434 until zero mark 96 of feed roller 40 is in approximately the 2 oclock position as shown in FIG. 1.
For operation, to feed leading end of roll 62, disengage pressure roller 86 by pushing release tab 160 of guide plate 142 downward. While holding it in this position route strip 82 around paper guide 84 and slide paper strip 82 between feed roller 40 and pressure roller 86. Be careful to place paper strip 82 between upper guide brackets 164 and 170 and lower guide plates 142 and 168, and to extend the end of the paper beneath lubricant bar 174. Push inward until rear edge 80 of strip 82 is in contact with vertical plate 14. While holding paper 82 firmly in this position, gently release tab 160. Again job master switch 434 until a segment of paper is completely severed from strip 82. Remove this segment by sliding it forward from between cover plate 170 and guide plate 168. Machine 10 is now ready to produce wrappers 34, as soon as power is applied.
Since a cutting operation has just been completed and the segment or scrap has been removed from forward guide plate 168, no wrapper blank 92 is available for processing, as power is applied to motor 52. Feed roller 40 rotates counterclockwise as indicated by arrow 434. As zero timing mark 96 of feed roller 40 approaches the 6 oclock position and is in alignment with zero reference line 436, of paper guide 142, machine 10 is said to be in a zero rotational position, as illustrated by 0 line of function chart, F 1G. 9. As feed roller 40 begins one cycle of rotation in a counterclockwise direction, paper strip 82 is frictionally engaged between strips 88 of feed roller 40 and pressure roller 86. Thus as paper is drawn from roll stock 62, it is pushed along guide plates 142 and 168, respectively (Waveform A). After approximately 20 of rotation printing pad Pl engages upper surface 132 of paper 82 and a suitable legend is printed between 200 and 40 near trailing edge 192 of wrapper blank 92 (Waveform B). At 1 12, forming roller 244 is lifted from engagement with idler roller 280 by rocker arm 256, under the control offorming drive roller control cam 44.
At approximately 180 the pointed end 178 of strip 82 is injected a short ddistance into forming cavity C1, passing between drive roller 244 and idler 280 (Waveform C). At 190, the paper feed cycle is complete as the trailing edges 438 of high friction strips 88 pass through zero reference line 436 of paper guide plate 142. Between 192 and 230 a wrapper blank 92 is severed from strip 82 as cutter blade 188 is depressed by rocker arm 226 under the control of cutter control cam 42 (Waveform D). As blank 92 is severed from strip 82 the leading edge 194 of the following blank is held in clamped position between upper blade member 188 and cutter bar 182, by tension spring 152, attached to paper guide plate 142.
The forming operation begins at 235 as wrapper blank 92 is gripped between high friction forming roller 244 and idler roller 280, as roller 244 is lowered into engagement by rocker arm 256, under control of forming roller control cam 44. The leading edge 178 of blank 92 is forced into cavity C1 encircling idler 280 and underlapping the next portion of blank 92, forming a two or three ply paper tube, depending upon the size of the cavity selected. This tube continues to rotate in a clockwise direction, becoming perfectly formed, during a portion of cycle between 235 and 305 (Waveform E). Note that between 230 and 305, upper blade 188 of cutter assembly 166 returns to the fully up position so as to accept another blank 92 (Waveform D). At 305, guide rod 348 is retracted by tension spring 404, at a rate determined by the shape of riser portion 408 of crimper control cam 46. As the guide rod is thus retracted, crimper assembly 314 moves inward and crimp member 316 engages outer edge 310 of rotating tube 308 (FIG. 6) to form a multiple roll crimp 312, as previously described. The crimping operation continues through 360 and is completed at approximately 1 12 rotation of the next cycle of feed roller 40 (Waveform F) as guide rod 348 is fully retracted. Note that .drive roller 244 is again lifted at 122 by rocker arm 256, releasing paper tube 308. As timing mark 96 again passes zero reference line 436 on guide plate 142, a second feed cycle begins (Waveform A) wherein paper is again drawn from roll 62, provided with a suitable legend between 20 and 40, and pushed along guide plates 142 and 168.
Coin wrapper 34 is now completed and crimping members 316 and 318 are locked to the rolled edge 312 of tube 308. As guide rod 348 is extended by crimping control lever 384, tube 308 is extracted from cavity C1 between and rotation (Waveform G). As guide rod 348 extends, selector rod 374 is disengaged from rolller 378. Upper crimp member 316 is then disengaged by compression spring 334, unlocking rolled end 312 and allowing coin wrapper to drop away.
Thus cavity C1 is now free to accept the leading edge 178 of the following blank 92 at 180 degrees, and thence the cycle repeats as described above.
It is believed that it will be apparent from the foregoing description that the machine of this invention overcomes the difficulties which such machines have had in the past. It not only provides for the manufacture of four sizes of coins instead of one but the construction is such that the operation is quite simple. Only minimum servicing is required and in the event of a paper jam in the machine nothing need be disassembled in order to remove the jammed paper since paper handling is by cantilevered members throughout.
Having described our invention, what is claimed is:
l. A coin wrapper forming apparatus comprising:
drive means for continuously supplying a predetermined width of paper;
cutter means for repetitively cutting predetermined lengths of paper supplied by said drive means;
wrapper forming means comprising:
a forming member having at least one cavity including an end opening and a side opening, the latter opening being adapted to receive the width dimension of a said length of paper,
feed means for receiving a said length of paper and feeding same through said side opening into said cavity, and around the inner periphery of said cavity for forming a paper cylinder, and
crimping and ejection means comprising:
an arm assembly and coupling means coupled to said drive means for moving said arm assembly reciprocally along a line parallel to the axis of a said cavity of a said forming assembly,
a first hook shaped member affixed to said arm assembly and adapted to extend, bluntly, into an end of a said cavity when said arm assembly is positioned in a first, inner, crimping, positron,
a second hook shaped member having a shank portion slidably suppported by said arm assembly for movement parallel to the axis of a said cavity and wherein the hook portions of said first and second hook shaped members are positioned in a spaced complementary relation, and
operating means responsive to the position of said arm assembly and coupled to the said shank portion of said second hook member for positioning the hook portion of said second hook member in close, crimping, position to the hook portion of said first hook shaped member when said arm assembly is in an inward position and spaced from said first hooked member when said arm assembly is in an outward position,
whereby as said arm assembly is moved inward the hook portion of said second hook member initially contacts the edge of a said paper cylinder causing the edge to be rolled, or crimped, between the complementary hooked surfaces and upon completion of crimping, said arm assembly is moved outward causing the now formed coin wrapper to be extracted and finally as said second hook member is withdrawn and moved away from the hook portion of said first hook member said coin wrapper is released and falls away.
2. A coin wrapper forming apparatus as set forth in claim 1 further comprising biasing means for biasing the relative position of said hook members to a minimum selected spacing and enabling the spacing to increase as a crimped edge grows between the complementary surfaces of said hook members.
3. A coin wrapper forming apparatus comprising:
drive means for continuously supplying a predetermined width of paper;
cutter means for repetitively cutting predetermined lengths of paper supplied by said drive means; wrapper forming means generally cylindrical in configuration, and comprising:
a plurality of cylindrical cavities of different diameters about its periphery and each cavity including an end opening and a side opening, the latter opening being adapted to receive the wwidth dimension of a said length of paper;
means for positioning said forming means and a selected one of said cylindrical cavities in an operating relation for receiving said lengths of paper;
feed means for receiving a said length of paper and feeding same through said side opening into said selected cylindrical cavity, and around the inner periphery of said cavity for forming a paper cylinder;
crimping means operating synchronously with the formation of a said paper cylinder for crimping one end of a said paper cylinder; and
ejection means operating synchronously with the completion of the crimping of a said paper cylinder for ejecting a said paper cylinder from said cavity as a completed coin wrapper;
whereby coin wrappers of different diameters may be selectively formed.
4. A coin wrapper forming apparatus as set forth in claim 3 wherein said wrapper forming means includes an idler roller of smaller diameter than the smallest of said cavities positionable within a said cavity and a driven roller positioned external to said cavity and rotatably coupled to said idler roller whereby a said length of paper from said cutting means is fed between said rollers into and around the surface of a said cavity.
ing paper around said drum to said cutting means.

Claims (6)

1. A coin wrapper forming apparatus comprising: drive means for continuously supplying a predetermined width of paper; cutter means for repetitively cutting predetermined lengths of paper supplied by said drive means; wrapper forming means comprising: a forming member having at least one cavity including an end opening and a side opening, the latter opening being adapted to receive the width dimension of a said length of paper, feed means for receiving a said length of paper and feeding same through said side opening into said cavity, and around the inner periphery of said cavity for forming a paper cylinder, and crimping and ejection means comprising: an arm assembly and coupling means coupled to said drive means for moving said arm assembly reciprocally along a line parallel to the axis of a said cavity of a said forming assembly, a first hook shaped member affixed to said arm assembly and adapted to extend, bluntly, into an end of a said cavity when said arm assembly is positioned in a first, inner, crimping, position, a second hook shaped member having a shank portion slidably suppported by said arm assembly for movement parallel to the axis of a said cavity and wherein the hook portions of said first and second hook shaped members are positioned in a spaced complementary relation, and operating means responsive to the position of said arm assembly and coupled to the said shank portion of said second hook member for positioning the hook portion of said second hook member in close, crimping, position to the hook portion of said first hook shaped member when said arm assembly is in an inward position and spaced from said first hooked member when said arm assembly is in an outward position, whereby as said arm assembly is moved inward the hook portion of said second hook member initially contacts the edge of a said paper cylinder causing the edge to be rolled, or crimped, between the complementary hooked surfaces and upon completion of crimping, said arm assembly is moved outward causing the now formed coin wrapper to be extracted and finally as said second hook member is withdrawn and moved away from the hook portion of said first hook member said coin wrapper is released and falls away.
2. A coin wrapper forming apparatus as set forth in claim 1 further comprising biasing means for biasing the relative position of said hook members to a minimum selected spacing and enabling the spacing to increase as a crimped edge grows between the complementary surfaces of said hook members.
3. A coin wrapper forming apparatus comprising: drive means for continuously supplying a predetermined width of paper; cutter means for repetitively cutting predetermined lengths of paper supplied by said drive means; wrapper forming means generally cylindrical in configuration, and comprising: a plurality of cylindrical cavities of different diameters about its peripheRy and each cavity including an end opening and a side opening, the latter opening being adapted to receive the wwidth dimension of a said length of paper; means for positioning said forming means and a selected one of said cylindrical cavities in an operating relation for receiving said lengths of paper; feed means for receiving a said length of paper and feeding same through said side opening into said selected cylindrical cavity, and around the inner periphery of said cavity for forming a paper cylinder; crimping means operating synchronously with the formation of a said paper cylinder for crimping one end of a said paper cylinder; and ejection means operating synchronously with the completion of the crimping of a said paper cylinder for ejecting a said paper cylinder from said cavity as a completed coin wrapper; whereby coin wrappers of different diameters may be selectively formed.
4. A coin wrapper forming apparatus as set forth in claim 3 wherein said wrapper forming means includes an idler roller of smaller diameter than the smallest of said cavities positionable within a said cavity and a driven roller positioned external to said cavity and rotatably coupled to said idler roller whereby a said length of paper from said cutting means is fed between said rollers into and around the surface of a said cavity.
5. A coin wrapper forming apparatus as set forth in claim 3 wherein said drive means includes a drum and said drum further comprises turret means positioned within said drum for selectively providing an inked denomination marker at the periphery of said drum whereby length of paper to be formed into wrappers are printed with a desired coin denomination.
6. A coin wrapper forming apparatus as set forth in claim 3 wherein said drive means includes spindle means for mounting a roll of paper positioned for feeding paper around said drum to said cutting means.
US00227452A 1972-02-18 1972-02-18 Coin wrapper forming apparatus Expired - Lifetime US3830142A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US00227452A US3830142A (en) 1972-02-18 1972-02-18 Coin wrapper forming apparatus
US429952A US3908525A (en) 1972-02-18 1974-01-02 Coin wrapper forming apparatus
CA192,341A CA1007498A (en) 1972-02-18 1974-02-12 Coin wrapper forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00227452A US3830142A (en) 1972-02-18 1972-02-18 Coin wrapper forming apparatus

Publications (1)

Publication Number Publication Date
US3830142A true US3830142A (en) 1974-08-20

Family

ID=22853171

Family Applications (1)

Application Number Title Priority Date Filing Date
US00227452A Expired - Lifetime US3830142A (en) 1972-02-18 1972-02-18 Coin wrapper forming apparatus

Country Status (2)

Country Link
US (1) US3830142A (en)
CA (1) CA1007498A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5992286A (en) * 1997-02-14 1999-11-30 Boole; Leon Apparatus for opening coin wrappers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3105421A (en) * 1963-10-01 Coin wrapper forming apparatus
US3237536A (en) * 1963-06-27 1966-03-01 Brandt Automatic Cashier Co Pre-crimped coin wrapper forming machine
US3489069A (en) * 1968-01-09 1970-01-13 Brandt Automatic Cashier Co Coin wrapper dispensing mechanism
US3518923A (en) * 1967-08-11 1970-07-07 Brandt Automatic Cashier Co Pre-crimped coin wrapper forming apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3105421A (en) * 1963-10-01 Coin wrapper forming apparatus
US3237536A (en) * 1963-06-27 1966-03-01 Brandt Automatic Cashier Co Pre-crimped coin wrapper forming machine
US3518923A (en) * 1967-08-11 1970-07-07 Brandt Automatic Cashier Co Pre-crimped coin wrapper forming apparatus
US3489069A (en) * 1968-01-09 1970-01-13 Brandt Automatic Cashier Co Coin wrapper dispensing mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5992286A (en) * 1997-02-14 1999-11-30 Boole; Leon Apparatus for opening coin wrappers

Also Published As

Publication number Publication date
CA1007498A (en) 1977-03-29

Similar Documents

Publication Publication Date Title
US2333966A (en) Condenser tab attaching apparatus
US4085879A (en) Paper supplying device in coin wrapping apparatus
US1958068A (en) Device for automatically reeling strips of stampings
GB738189A (en) A method for and apparatus for splicing webs, especially for wrapping machines
US3182539A (en) Paper feeding and cutting machine
US2619883A (en) Portable sheet counter and marker
GB1138937A (en) Method and apparatus for winding multi-ply web rolls and product
DE19712863A1 (en) Stapling wire handling method for stapler
US3830142A (en) Coin wrapper forming apparatus
USRE23641E (en) Sheetsxsheet i
US4138834A (en) Paper supplying device in coin wrapping apparatus
US2749981A (en) Machine for automatically cutting off strips of uniformly increasing lengths from strip stock of indefinite length
US3908525A (en) Coin wrapper forming apparatus
US3718523A (en) Tire bead wrapping machine
GB1153633A (en) Improvements in Web Rewinding Machines
US3190516A (en) Multiple office form bursting apparatus
US3518923A (en) Pre-crimped coin wrapper forming apparatus
US1721037A (en) Armature-core-insulating machine
GB1463970A (en) Web cutting machine
DE666519C (en) Electromagnetically controlled device for shutting down an address printing machine
US2688450A (en) Coil winding machine
CN112758767A (en) Winding mechanism of cable conductor
CN112777398A (en) Cable conductor cuts coiling mechanism
JPS58113075A (en) Folding device
US1720923A (en) Armature-core-insulating machine