US3826427A - 360{20 {11 spray apparatus with means for changing spray pattern - Google Patents

360{20 {11 spray apparatus with means for changing spray pattern Download PDF

Info

Publication number
US3826427A
US3826427A US00244372A US24437272A US3826427A US 3826427 A US3826427 A US 3826427A US 00244372 A US00244372 A US 00244372A US 24437272 A US24437272 A US 24437272A US 3826427 A US3826427 A US 3826427A
Authority
US
United States
Prior art keywords
tank
spray
plug
disk
dish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00244372A
Inventor
H Rutherford
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00244372A priority Critical patent/US3826427A/en
Priority to US484817A priority patent/US3914904A/en
Application granted granted Critical
Publication of US3826427A publication Critical patent/US3826427A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/12Spray pistols; Apparatus for discharge designed to control volume of flow, e.g. with adjustable passages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/26Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets
    • B05B1/262Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets with fixed deflectors
    • B05B1/265Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets with fixed deflectors the liquid or other fluent material being symmetrically deflected about the axis of the nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/06Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00 specially designed for treating the inside of hollow bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/0466Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber with means for deflecting the central liquid flow towards the peripheral gas flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/10Spray pistols; Apparatus for discharge producing a swirling discharge

Definitions

  • a spray apparatus with a 360 spray pattern is disclosed with means to allow one to change the pattern between a plane and a cone.
  • the apparatus has a pair of coaxial tubes and the means includes a cylindrical body and a plug with a disk mounted on the end, and a post which plug is adjacent the end of the body.
  • g body is slidably mounted on the outer tube and the plug is fixedly mounted onto the inner tube so that the axial length of a circumferential spacing between the disk and body is adjustable.
  • a concave half-torus surface is formed internal on the' disk and disposed around the post so that when the axial circumferential spacing is relatively close, a planar 360 spray pattern is formed and when the annular spacing is relatively wide, a conical 360 spray pattern is formed.
  • Water tanks that are used for example, for water softeners have generally a cylindrical shape wherein the top is closed with a convex dome having for example, three pipe fittings, one larger than the other two, and a concave bottom dish with a cylindrical flange inserted into the end of the tank cylinder and welded thereto.
  • the tank is filled with an ionexchange compound that exchanges calcium ions found in hard water with sodium ions to make the water soft. Therefore, with the larger fitting suitably plugged, hard water is made to flow into one smaller fitting through the ion exchange compound so that the water exiting from the other smaller fitting is what is normally classified as soft water.
  • the compound After a quantity of water, depending on its degree of hardness, flows through the ion-exchange compound, the compound must be reactivated to replenish the sodium ions and to remove the calcium which is now a salt compound trapped within the tank. This is done by flushing a brine solution through the tank and then rinsing out the excess brine.
  • active ions such as sodium
  • the tanks being steel will corrode and the maximum corrosion inherently occurs at the bottom of the tank forming holes in the bottom dish and the cylindrical side.
  • the holes in the cylindrical side are usually within one-quarter inch of the region where the end of the cylinder is welded to the bottom dish.
  • the open tank would be sand-blasted internally by conventional means before a new bottom dish is installed.
  • the bottom dish is preferably concave with a cylindrical flange extending therefrom, and the tank, while in service, rests on the flange. Since, as mentioned above, the in and out water fittings or connections are made at the top and since the tanks must be interchangeable, the tanks should all be of the same height.
  • the cylindrical flange on the bottom dish has an outside diameter of such a size that it forms a snug fit within the cylindrical wall of the tank. Up to now, to maintain the standard height, one has to force the dish into the tank and then measure its height.
  • the dish is welded to the cylinder and tested for tightness.
  • the interior of the tank must be coated to prevent corrosion. Since the interior of the tank is now only accessible through the pipe fittings on the top, up to now a uniform protective coating of the inside has been difficult to attain.
  • the liquid to coat the tank was poured through a pipe fitting into the tank and sloshed around to wet the interior thereof, and the excess poured off. Obviously this method is wasteful and does not insure a uniform coating.
  • any equipment employed in removing and replacing the bottom dishes and in the other operations, should preferably be able to handle all tanks.
  • tank heights are required to be uniform because the tanks are interchangeable even between the several diameters.
  • An object of this invention is to provide a method for repairing water tanks more reliably and economically thanprevious methods.
  • Another object is to provide an improved machine that is capable of removing the bottom dish of a tank substantially near the end of the cylindrical sidewall.
  • Another object is to provide an improved machine for rotating the tank on its axis and for feeding a cutting tool so that the cutting tool substantially follows any irregularities in the shape of the tank.
  • Another object is to provide an improved machine that inserts a new bottom dish into the end of a tank which machine indicates when the correct height of the tank is attained.
  • Another object is to provide a spray gun having a spray nozzle mounted on the end of a relatively long pipe so that the spraying operation is continuously per: formed as the nozzle moves axially within a closed tank.
  • Another object is to provide a spray nozzle that produces a radial spray pattern at one setting and a conical spray pattern by simply placing another setting thereon.
  • FIG. 1 is a pictorial view of the top of a typical tank to be repaired.
  • FIG. 2 is a side elevation of a novel machine for removing the bottom dish of a tank.
  • FIG. 3 is the left end view of the machine shown in FIG. 2.
  • FIG. 4 is a side elevation of a novel machine for inserting new bottom dishes to the correct depth in one operation.
  • FIG. 5 is the left end view of the machine shown in FIG. 4.
  • FIG. 6 is a pictorial view of a machine for aiding the welding operation of the bottom dish to the tank.
  • FIG. 7 shows the adjustments to accommodate the various diameter tanks for the machines shown in FIGS. 2 and 6.
  • FIG. 8 is a section view taken on broken line 88 of FIG. 6 particularly showing the upper portion of the tank engaged by the machine.
  • FIG. 9 is a pictorial view of a novel machine for spraying the insides of the tank.
  • FIG. 10 is a cross section of the novel spray nozzle.
  • FIG. 11 is an exploded view of the nozzle of FIG. 10.
  • FIG. 12 is an enlarged view of the trigger portion of the spray gun showing the solenoid operation thereof.
  • the first process at the repair plant is to remove the bottom dish from the tank.
  • FIGS. 2 and 3 there is shown a novel bottom removal apparatus 14.
  • the tank 10 is positioned horizontally showing the fittings 11 and 12 disposed to the right in FIG. 2 with the bottom dish 13 to the left.
  • the tank 10 is shown partially broken away to show that the bottom dish 13 protrudes into the tank body 100.
  • the apparatus 14 is preferably made of structural steel elements. Since the apparatus 14 for removing the bottom dish is substantially the same as apparatus 20 (FIGS. 6, 7, and 8) used as an aid in welding a new bottom dish to the tank, the similar parts of both will be described together.
  • the apparatus includes two long legs 15 and two short legs 16 connected together by two long parallel spreaders 17 and two short parallel spreaders l9 and a cross brace 18.
  • Welded to the short spreader 19 inboard of the short legs 16 are two upright bars 21 to each of which is bolted a roller assembly.
  • the roller assembly consists of a roller 22 mounted on the end of an adjustment bar 23 (more clearly shown in FIG. 7) which has, for example, three holes 24 which are used to adjust for the three different diameter sizes of the tanks, as will become more apparent hereinafter.
  • the adjustment bar 23 is restrained by blocks 25 to cause the bar 23 to be movable along a substantially radial line from the center of the tanks, as shown by the dash lines in FIG. 7 and suitably bolted in place.
  • a plate 26 on which is mounted an electric motor 27, coupled to a reduction gear 28.
  • An output shaft 29 extends through a suitable opening (not shown) in the plate 26 and is disposed substantially coaxial with the tank.
  • a clutch means 31 On the end of the shaft 29 is mounted a clutch means 31 which engages at least two of the fittings in the top of the tank 10.
  • the clutch means 31 is removable so that means 31 of different designs than shown can be installed for different tanks.
  • a horizontal beam 33 is welded to both spreaders 17 near the short legs 16, and extends to the left, as shown in FIG. 3.
  • a strut 34 (FIG. 2) to which is welded a horizontal member 35 that is supported by a vertical support leg 36.
  • a box member 38 is suitably mounted to leg 36 to pivot about an horizontal axis defined by a bolt 39 in FIG. 3.
  • Onto box member 38 is mounted an electric motor 41 to which is mounted a grinding wheel 42 and shield 43.
  • the distance that motor 41 is mounted from the axis defined by bolt 39 is substantially and preferably equal to the distance from bolt 39 to the center of the-tank 10.
  • the weight of the motor and grinding wheel is balanced by a weight 44 suitably suspended from two parallel angle beams 45 (FIG. 2) that are in turn welded to the underside of the box member 38.
  • the weight 44 is chosen such that a fractional portion of the weight of the motor is made to bear on the tanks, which portion is sufficient to cut the metal freely and not stall the motor.
  • a skilled machinist can readily make the proper adjustment by means 46 to achieve this result. Since the motor has a tendency to drop, a lever 47 is employed that pivots about a bolt 48 to engage leg 36 as shown in FIG. 2 to hold the motor 41 up when not in use.
  • the tank 10 is placed on apparatus 10 as shown in FIG. 2, the clutch plate engages the respective fittings ll and 12.
  • a tension spring 49 having a suitable clip 51 at its end is hooked onto a handle 52 (that is part of the tank) to restrain the tank to prevent vibrations.
  • the grinding wheel is positioned so that as the motor 41 is rotated the grinding wheel contacts the weld bead 13a and bearly contacts the cylindrical body 10a of the tank.
  • the tank 10 is rotated on its axis by energizing motor 27.
  • the tank is rotating about 5 R.P.M.
  • the motor 41 rotates the grinding wheel 42 about 1800 R.P.M.
  • the lever 47 is moved to the left, as viewed in FIG. 2.
  • the wheel 42 is preferably guided by the operator into contact with the tank 10. Within one minute, the wheel grinds away the weld and is cutting into the dish 13. The operator observes this and lifts the wheel 42 and locks the motor 40 in its up position by moving the lever 47 to the right.
  • the tank is removed from the apparatus 10 and the dish 13 falls free. If it does not, a slight tap will cause it to fall free. Since the grinding wheel 42 is being urged against the tank by gravity, the possibility of the wheel stalling is removed, especially when the tank is out of round. This is so because the wheel 42 follows the curvature to rise and fall therewith. This apparatus, since it does not need to cut completely through the bottom dish 13, saves further time.
  • a sand blasting unit is readily inserted into the cylindrical body a to clean it, making the unit ready for the installation of a new bottom dish.
  • FIGS. 4 and 5 there is shown a preferred apparatus 60 for quickly installing a new bottom dish 61 into the cylindrical body 10a.
  • the apparatus 60 has two pairs of crossing legs, front legs 62 and back legs 63. Each pair of legs is made of two crossing angleiron members 64 and 65. Both angle'members 65 are braced by a lower horizontal angle brace 66a and an upper horizontal angle brace 66b, while both angle members 64 are also braced by a lower horizontal angle brace 67a and an upper angle brace 67b forming a cradle.
  • At the back of legs 63 are welded two vertical bars 68 and 69, and between the angle members 64 and 65 above the crossing is welded a plate 71, disposed vertically. Bars 68 and 69 aid in supporting the plate 71 in the vertical position.
  • the cylindrical body 10a can be readily placed within the cradle with the new bottom dish 61 disposed against the plate 71, as shown.
  • the next operation is to push the new dish 61 into the body 10a a predetermined amount. This is readily accomplished by attaching a pressing means 72 at the front of the apparatus.
  • FIG. 9 shows a preferred apparatus 90 for coating, by spraying, the interior of the tank 10 with a liquid coating such as an epoxy resin that hardens at room temperature.
  • the apparatus 90 includes four legs 91, 92, 93, and 94, made of angle iron which are welded at their tops to a square frame 90 and to which are welded three brace bars 97, 98, and 99, as shown, at a convenient place between the ends of the legs to form a tall I pedestal. There is no bar similar to bars 97, 98, and 99
  • the means 72 includes an adjustable bar 73 having an elongating slot 74 which bar 73 is hinged by a pin 75 at one end to rotate about a horizontal axis.
  • the pin 75 is suitably fixed to member 64 on the front legs 62.
  • the other end of bar 73 is fixed to a fixed member 76 welded between angle braces 67a and 66b.
  • Member 76 has, for example, three threaded holes 79 into which a bolt 78 may be selectively threaded.
  • Bolt 78 fits freely into a hole in bar 73.
  • Within slot 74 is disposed a slidable nut 80 engaging a threaded crank 81, that engages the large fitting 12 in the tank. Therefore, by turning the crank 81, the dish 61 is pressed into the body 10a.
  • a marker bar 82 which freely pivots about a pin 83 is used to determine when the dish 61 is disposed sufficiently within the body 10a as the bar.
  • the dish 61 comes to rest on at least one of the quick disconnect fittings 11 when the correct tank height is obtained.
  • the three threaded holes 79 and the slidable nut 80 allow the apparatus 60 to accommodate various sizes and designs of tanks.
  • the dish 61 is welded to the body 10a.
  • the dish 61 is preferrably tack welded before removing to the next apparatus.
  • the tank 20 with the new bottom 61 is placed horizontally as shown in FIG. 6.
  • the clutch means 31 is chosen to fit the design of the tank and engages the respective fittings 11 and 12.
  • Motor 27 is energized and the tank 10 rotates, for example, relatively slow about one-half R.P.M. or at a speed to allow a welder to weld the dish 61 to the body 10a. If there are any serious holes in the body 10a, the welder can readily observe them and suitably repair them by stopping the motor by a suitable foot switch (not shown) and then filling the openings with a suitable metal.
  • the tank 10 is tested for leaks and, if free of leaks, is now to be coated internally with a plastic to retard or practically eliminate future corrosion.
  • a tank 10 Coating the Interior of the Tank disposed between legs 92 and 93, thereby providing a convenient opening through which a tank 10 can be placed within and withdrawn from the pedestal.
  • an electric motor 101 Suitably supported at the approximate center of the frame is an electric motor 101 that actuates a sprocket 102 to rotate about a horizontal axis.
  • a chain 103 Over the sprocket is disposed a chain 103.
  • a 'novel spray gun means 104 On one end of the chain 103 is disposed a 'novel spray gun means 104 and the other end of the chain is disposed within a vertical tube 106 suitably welded to bar 97, near the bottom, and to a rod 107, at the top.
  • the end of the chain within the tube is attached to a counter-weight 108 and the tube 106 prevents entanglement of the chain when motor 101 rotates socket 102 to lower and raise the gun means 104.
  • the novel spray gun means 104 has a conventional trigger position 109 as shown in FIG. 12.
  • the trigger position 109 has a pistol grip 111, a plugger actuator 112, a liquid fitting 113 through which liquid is coupled, an air fitting 114, through which compressed air is coupled, and a spray fitting 115, to which a spray head is attached.
  • a trigger 116 thereon has been modified so that, at one end, it pivots about a pin 117 and the other end is connected to an electric solenoid 118 by a tension spring 119.
  • the solenoid 118 is mounted to the griplll by a bracket 121. Therefore, whenever solenoid 118 is energized, an armature 118a moves upward and trigger 116 rotates upward, as viewed in FIG. 12 to start the spraying operation.
  • a novel spray head means to allow for spraying the interior of the tank.
  • a long coaxial tube 122 (FIG. 9) having an inner tube 123 and an outer tube 124 (FIG. 10) with a collar 125 (FIG. 9) for attaching to fitting 115.
  • a spray head 127 on the lower end of the coaxial tube is placed a spray head 127 more clearly shown in FIGS. 10 and 11.
  • a fitting 131 having a central base that communicates with, for example, three ports 132 that extend from the central bore 132a outwardly and downwardly as viewed in FIGS. 10 and 11. Liquid is fed through ports 132.
  • fitting 131 is disposed a helical fitting 133 having a helical groove formed on its outside surface, and fitting 133 is suitably threaded tightly to fitting 131.
  • fitting 133 is disposed a sleeve 134 that is threaded onto the outer tube 124.
  • the sleeve 134 and fitting 133 form a helical passageway through which the compressed air passes.
  • the lower end of sleeve 134 has a fustro-conical portion 135 that terminates at an annular surface 136 that is normal to the axis. Closing the end of the sleeve 134 is a plug 137 that is threaded tightly onto fitting 131.
  • the plug 137 has an annular surface 138 shaped into a concave half torus.
  • the plug 137 is spaced from sleeve 134 to form an annular opening between surfaces 136 and 138.
  • the outside diameters of sleeve 134 at surface 136 and plug 137 where they are adjacent to each other are substantially the same.
  • the inside diameter of surface 136 is appreciably smaller than the diameter of the half torus surface 138, as shown.
  • the width of surface 136 is about .06 inches, while the width of surface 139 (FIG. 11) is about .005 inches.
  • the tank is placed within the pedestal, as shown in FIG. 9.
  • the annular spray opening is made small by twisting to the right sleeve 134.
  • the motor 101 is started and the spray head 127 enters the opening 12.
  • solenoid 188 is energized and a radial spray pattern is formed.
  • the spray is maintained as the head 127 moves downward.
  • the motor 101 is reversed and the spray head 127 is lifted as the spray continues.
  • the spray is stopped.
  • the spray opening is opened by twisting, to the left, sleeve 134.
  • the motor 101 is again started to lower the spray head 127 into opening 12.
  • the spray is started. Now the spray is directed upward and the inside of the top portion of tank 10 is covered with liquid. The head 127 is lowered until it is about one-third of the distance into the tank 10 and the head 127 is lifted by reversing the motor 101. The spray is again stopped before the head 127 exits from the opening.
  • the inside of the tank is now coated with liquid plastic.
  • the bottom dish 61 is coated by surplus plastic flowing to the bottom and by manually using a suitable dabber (not shown) on the end of stick. The dabber is inserted within opening 12 and the liquid plastic is spread over the interior of the dish 61 with the dabber. The plastic is allowed to harden and the tank is ready to be reused.
  • An apparatus for coating the interior of a long cylindrical body comprising:
  • a trigger handle having an air and a liquid inlet
  • a pair of relatively long coaxial tubes mounted on said handle so that one tube communicates with the air inlet and the other tube with the liquid inlet;
  • a plug having a disk portion and a post portion which plug is fixed to the inner coaxial tubewith the disk portion adjacent the end of said body;
  • said first means includes threads between said body and said outer member so that the size of the slit is changed by rotating said body with respect to said outer member.
  • annular planer surface is provided exterior of said half-torus surface on said disk.
  • a solenoid mounted on said hangle to start and stop the spray.

Landscapes

  • Nozzles (AREA)

Abstract

A spray apparatus with a 360* spray pattern is disclosed with means to allow one to change the pattern between a plane and a cone. The apparatus has a pair of coaxial tubes and the means includes a cylindrical body and a plug with a disk mounted on the end, and a post which plug is adjacent the end of the body. The body is slidably mounted on the outer tube and the plug is fixedly mounted onto the inner tube so that the axial length of a circumferential spacing between the disk and body is adjustable. A concave half-torus surface is formed internal on the disk and disposed around the post so that when the axial circumferential spacing is relatively close, a planar 360* spray pattern is formed and when the annular spacing is relatively wide, a conical 360* spray pattern is formed.

Description

United States Patent 1191 Rutherford [11] 3,826,427 1451 July 30, 1974 360 SPRAY APPARATUS WITH MEANS FOR CHANGING SPRAY PATTERN [76] Inventor: Harry Wayne Rutherford, 1661 Molina Ln., Gardena, Calif. 90248 [22] Filed: Apr. 17,1972 [21] Appl. No.: 244,372
[52] US. Cl 239/186, 239/405, 239/430, 239/457, 239/524, 118/317 [51] Int. Cl 1305b 7/04 [58] Field of Search 239/D1G. 13, 539, 532, 239/526, 524, 514, 456, 280, 457, 405, 186,
407, 430; 118/306, 317, DIG. 10
[56] References Cited UNITED STATES PATENTS 1,002,743 9/1911 Pauling 239/514 1,416,401 5/1922 Dudley 239/514 X 2,520,397 8/1950 Green 239/D1G. 13
Yates Hobdy Blakeslec et a1 118/317 Primary Examiner-M. Henson Wood, .lr. Assistant Examiner-.lohn .1. Love Attorney, Agent, or Firm-Dominick Nardelli [57] ABSTRACT A spray apparatus with a 360 spray pattern is disclosed with means to allow one to change the pattern between a plane and a cone. The apparatus has a pair of coaxial tubes and the means includes a cylindrical body and a plug with a disk mounted on the end, and a post which plug is adjacent the end of the body. The
g body is slidably mounted on the outer tube and the plug is fixedly mounted onto the inner tube so that the axial length of a circumferential spacing between the disk and body is adjustable. A concave half-torus surface is formed internal on the' disk and disposed around the post so that when the axial circumferential spacing is relatively close, a planar 360 spray pattern is formed and when the annular spacing is relatively wide, a conical 360 spray pattern is formed.
4 Claims, 12 Drawing Figures PAIENIEnJumwu saw 50$ 5 360 SPRAY APPARATUS WITH MEANS FOR CHANGING SPRAY PATTERN FIELD OF THE INVENTION This invention relates to water tanks and more particularly to the art of reparing water tanks that have corroded and leak.
BACKGROUND OF THE INVENTION Water tanks that are used for example, for water softeners have generally a cylindrical shape wherein the top is closed with a convex dome having for example, three pipe fittings, one larger than the other two, and a concave bottom dish with a cylindrical flange inserted into the end of the tank cylinder and welded thereto. Through the larger fitting, the tank is filled with an ionexchange compound that exchanges calcium ions found in hard water with sodium ions to make the water soft. Therefore, with the larger fitting suitably plugged, hard water is made to flow into one smaller fitting through the ion exchange compound so that the water exiting from the other smaller fitting is what is normally classified as soft water. After a quantity of water, depending on its degree of hardness, flows through the ion-exchange compound, the compound must be reactivated to replenish the sodium ions and to remove the calcium which is now a salt compound trapped within the tank. This is done by flushing a brine solution through the tank and then rinsing out the excess brine. Naturally, with the presence of active ions such as sodium, the tanks being steel will corrode and the maximum corrosion inherently occurs at the bottom of the tank forming holes in the bottom dish and the cylindrical side. The holes in the cylindrical side are usually within one-quarter inch of the region where the end of the cylinder is welded to the bottom dish. Up to now, one would attempt to repair the tank by welding or brazing these holes, hoping to extend the life of the tank since the rest of the tank was relatively free of corrosion. However, the advanced stage of corrosion at the bottom soon formed other leaks. One could see that if the bottom dish was replaced, the tank life expectancy could be the same as a new one. However, the bottom dish being concave extends an appreciable distance into the tank, if one attempts to saw off the bottom with a saw, it has to be placed above the region of the bottom dish since the curvature of the dish would prevent the saw from cutting through it, causing the saw to bind. This would greatly reduce the volume of the repaired tank and therefore it would have to be replaced more frequently than the nonrepaired ones. Machining off the bottom dish at the weldbead is also not practical because the tanks are relatively out of round. Chipping off the weld to remove the bottom dish would be costly. However these last two operations would preserve substantially the original tank volume.
Assuming a person employing the prior art removes the bottom dish by chipping the weld, the open tank would be sand-blasted internally by conventional means before a new bottom dish is installed. The bottom dish is preferably concave with a cylindrical flange extending therefrom, and the tank, while in service, rests on the flange. Since, as mentioned above, the in and out water fittings or connections are made at the top and since the tanks must be interchangeable, the tanks should all be of the same height. The cylindrical flange on the bottom dish has an outside diameter of such a size that it forms a snug fit within the cylindrical wall of the tank. Up to now, to maintain the standard height, one has to force the dish into the tank and then measure its height. If the height is too great, he would push the dish further in and if too small, he would have to pull the dish out, consuming time in the operation and increasing costs. When the correct height is attained, the dish is welded to the cylinder and tested for tightness. The interior of the tank must be coated to prevent corrosion. Since the interior of the tank is now only accessible through the pipe fittings on the top, up to now a uniform protective coating of the inside has been difficult to attain. Before my invention, the liquid to coat the tank was poured through a pipe fitting into the tank and sloshed around to wet the interior thereof, and the excess poured off. Obviously this method is wasteful and does not insure a uniform coating.
Since soft water tanks come in several diameters, for example, 6 /2. inches, 8 inches and 10 inches, and some tanks have less than three fittings on the top, any equipment, employed in removing and replacing the bottom dishes and in the other operations, should preferably be able to handle all tanks. As mentioned above the tank heights are required to be uniform because the tanks are interchangeable even between the several diameters.
OBJECTS OF THE INVENTION An object of this invention is to provide a method for repairing water tanks more reliably and economically thanprevious methods.
Another object is to provide an improved machine that is capable of removing the bottom dish of a tank substantially near the end of the cylindrical sidewall.
Another object is to provide an improved machine for rotating the tank on its axis and for feeding a cutting tool so that the cutting tool substantially follows any irregularities in the shape of the tank.
Another object is to provide an improved machine that inserts a new bottom dish into the end of a tank which machine indicates when the correct height of the tank is attained.
Another object is to provide a spray gun having a spray nozzle mounted on the end of a relatively long pipe so that the spraying operation is continuously per: formed as the nozzle moves axially within a closed tank.
Another object is to provide a spray nozzle that produces a radial spray pattern at one setting and a conical spray pattern by simply placing another setting thereon.
These and other objects and features of advantages will become more apparent, after studying the following description of the preferred embodiment of my invention together with the appended drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a pictorial view of the top of a typical tank to be repaired.
FIG. 2 is a side elevation of a novel machine for removing the bottom dish of a tank.
FIG. 3 is the left end view of the machine shown in FIG. 2.
FIG. 4 is a side elevation of a novel machine for inserting new bottom dishes to the correct depth in one operation.
FIG. 5 is the left end view of the machine shown in FIG. 4.
FIG. 6 is a pictorial view of a machine for aiding the welding operation of the bottom dish to the tank.
FIG. 7 shows the adjustments to accommodate the various diameter tanks for the machines shown in FIGS. 2 and 6.
FIG. 8 is a section view taken on broken line 88 of FIG. 6 particularly showing the upper portion of the tank engaged by the machine.
FIG. 9 is a pictorial view of a novel machine for spraying the insides of the tank.
FIG. 10 is a cross section of the novel spray nozzle.
FIG. 11 is an exploded view of the nozzle of FIG. 10.
FIG. 12 is an enlarged view of the trigger portion of the spray gun showing the solenoid operation thereof.
DETAILED DESCRIPTIONOF THE DRAWINGS Old Bottom Dish Removed Normally soft water tanks are shipped by the soft water supplier to the repair plant with the ion-exchange compound removed and also with any internal piping removed so that the inside of the tank is clear of obstruction. However, the standard quick disconnect fittings as indicated by item 11 in FIG. 1 are left on the tank 10. The pipe plug is not in place in the larger hole or pipe fitting 12 which is used to fill the tank with the ion-exchange compound. As mentioned above, the distance between the fittings l1 and the bottom of the tank should be maintained to within, for example, onequarter of an inch since the mating fittings on the various homes are fixed.
The first process at the repair plant is to remove the bottom dish from the tank. Referring to FIGS. 2 and 3, there is shown a novel bottom removal apparatus 14. The tank 10 is positioned horizontally showing the fittings 11 and 12 disposed to the right in FIG. 2 with the bottom dish 13 to the left. The tank 10 is shown partially broken away to show that the bottom dish 13 protrudes into the tank body 100. The apparatus 14 is preferably made of structural steel elements. Since the apparatus 14 for removing the bottom dish is substantially the same as apparatus 20 (FIGS. 6, 7, and 8) used as an aid in welding a new bottom dish to the tank, the similar parts of both will be described together. The apparatus includes two long legs 15 and two short legs 16 connected together by two long parallel spreaders 17 and two short parallel spreaders l9 and a cross brace 18. Welded to the short spreader 19 inboard of the short legs 16 are two upright bars 21 to each of which is bolted a roller assembly. The roller assembly consists of a roller 22 mounted on the end of an adjustment bar 23 (more clearly shown in FIG. 7) which has, for example, three holes 24 which are used to adjust for the three different diameter sizes of the tanks, as will become more apparent hereinafter. For better control of the different size tanks, the adjustment bar 23 is restrained by blocks 25 to cause the bar 23 to be movable along a substantially radial line from the center of the tanks, as shown by the dash lines in FIG. 7 and suitably bolted in place.
At the upper ends of the long legs 15 is welded a plate 26 on which is mounted an electric motor 27, coupled to a reduction gear 28. An output shaft 29 extends through a suitable opening (not shown) in the plate 26 and is disposed substantially coaxial with the tank. On the end of the shaft 29 is mounted a clutch means 31 which engages at least two of the fittings in the top of the tank 10. The clutch means 31 is removable so that means 31 of different designs than shown can be installed for different tanks.
Referring now only to FIGS. 2 and 3, the portion of apparatus 14 that is not common to apparatus 20 will be described. A horizontal beam 33 is welded to both spreaders 17 near the short legs 16, and extends to the left, as shown in FIG. 3. Extending upward from the end of the beam 33 is a strut 34 (FIG. 2) to which is welded a horizontal member 35 that is supported by a vertical support leg 36. A box member 38 is suitably mounted to leg 36 to pivot about an horizontal axis defined by a bolt 39 in FIG. 3. Onto box member 38 is mounted an electric motor 41 to which is mounted a grinding wheel 42 and shield 43. The distance that motor 41 is mounted from the axis defined by bolt 39 is substantially and preferably equal to the distance from bolt 39 to the center of the-tank 10. This ensures that the grinding wheel 42 is substantially tangent to the cylindrical surface of the tank, thereby producing a cleaner and quicker cut. The weight of the motor and grinding wheel is balanced by a weight 44 suitably suspended from two parallel angle beams 45 (FIG. 2) that are in turn welded to the underside of the box member 38. The weight 44 is chosen such that a fractional portion of the weight of the motor is made to bear on the tanks, which portion is sufficient to cut the metal freely and not stall the motor. A skilled machinist can readily make the proper adjustment by means 46 to achieve this result. Since the motor has a tendency to drop, a lever 47 is employed that pivots about a bolt 48 to engage leg 36 as shown in FIG. 2 to hold the motor 41 up when not in use.
To remove the bottom dish 13, the tank 10 is placed on apparatus 10 as shown in FIG. 2, the clutch plate engages the respective fittings ll and 12. A tension spring 49, having a suitable clip 51 at its end is hooked onto a handle 52 (that is part of the tank) to restrain the tank to prevent vibrations. Since the tanks are of equal height, the grinding wheel is positioned so that as the motor 41 is rotated the grinding wheel contacts the weld bead 13a and bearly contacts the cylindrical body 10a of the tank. The tank 10 is rotated on its axis by energizing motor 27. Preferably, the tank is rotating about 5 R.P.M. The motor 41 rotates the grinding wheel 42 about 1800 R.P.M. To lower the wheel 42, the lever 47 is moved to the left, as viewed in FIG. 2. The wheel 42 is preferably guided by the operator into contact with the tank 10. Within one minute, the wheel grinds away the weld and is cutting into the dish 13. The operator observes this and lifts the wheel 42 and locks the motor 40 in its up position by moving the lever 47 to the right. The tank is removed from the apparatus 10 and the dish 13 falls free. If it does not, a slight tap will cause it to fall free. Since the grinding wheel 42 is being urged against the tank by gravity, the possibility of the wheel stalling is removed, especially when the tank is out of round. This is so because the wheel 42 follows the curvature to rise and fall therewith. This apparatus, since it does not need to cut completely through the bottom dish 13, saves further time.
With the bottom dish removed, a sand blasting unit is readily inserted into the cylindrical body a to clean it, making the unit ready for the installation of a new bottom dish.
New Bottom Dish Installed Referring to FIGS. 4 and 5, there is shown a preferred apparatus 60 for quickly installing a new bottom dish 61 into the cylindrical body 10a. The apparatus 60 has two pairs of crossing legs, front legs 62 and back legs 63. Each pair of legs is made of two crossing angleiron members 64 and 65. Both angle'members 65 are braced by a lower horizontal angle brace 66a and an upper horizontal angle brace 66b, while both angle members 64 are also braced by a lower horizontal angle brace 67a and an upper angle brace 67b forming a cradle. At the back of legs 63 are welded two vertical bars 68 and 69, and between the angle members 64 and 65 above the crossing is welded a plate 71, disposed vertically. Bars 68 and 69 aid in supporting the plate 71 in the vertical position.
The cylindrical body 10a can be readily placed within the cradle with the new bottom dish 61 disposed against the plate 71, as shown. The next operation is to push the new dish 61 into the body 10a a predetermined amount. This is readily accomplished by attaching a pressing means 72 at the front of the apparatus.
FIG. 9 shows a preferred apparatus 90 for coating, by spraying, the interior of the tank 10 with a liquid coating such as an epoxy resin that hardens at room temperature. The apparatus 90 includes four legs 91, 92, 93, and 94, made of angle iron which are welded at their tops to a square frame 90 and to which are welded three brace bars 97, 98, and 99, as shown, at a convenient place between the ends of the legs to form a tall I pedestal. There is no bar similar to bars 97, 98, and 99 The means 72 includes an adjustable bar 73 having an elongating slot 74 which bar 73 is hinged by a pin 75 at one end to rotate about a horizontal axis. The pin 75 is suitably fixed to member 64 on the front legs 62. The other end of bar 73 is fixed to a fixed member 76 welded between angle braces 67a and 66b. Member 76 has, for example, three threaded holes 79 into which a bolt 78 may be selectively threaded. Bolt 78 fits freely into a hole in bar 73. Within slot 74 is disposed a slidable nut 80 engaging a threaded crank 81, that engages the large fitting 12 in the tank. Therefore, by turning the crank 81, the dish 61 is pressed into the body 10a. A marker bar 82 which freely pivots about a pin 83 is used to determine when the dish 61 is disposed sufficiently within the body 10a as the bar. 92 comes to rest on at least one of the quick disconnect fittings 11 when the correct tank height is obtained. The three threaded holes 79 and the slidable nut 80 allow the apparatus 60 to accommodate various sizes and designs of tanks. Now the dish 61 is welded to the body 10a. The dish 61 is preferrably tack welded before removing to the next apparatus.
New Bottom Dish Welded Referring to FIG. 6 and as mentioned above, the apparatus 20 that is used as an aid in the welding operation is shown. The tank 20 with the new bottom 61 is placed horizontally as shown in FIG. 6. The clutch means 31 is chosen to fit the design of the tank and engages the respective fittings 11 and 12. Motor 27 is energized and the tank 10 rotates, for example, relatively slow about one-half R.P.M. or at a speed to allow a welder to weld the dish 61 to the body 10a. If there are any serious holes in the body 10a, the welder can readily observe them and suitably repair them by stopping the motor by a suitable foot switch (not shown) and then filling the openings with a suitable metal. The tank 10 is tested for leaks and, if free of leaks, is now to be coated internally with a plastic to retard or practically eliminate future corrosion.
Coating the Interior of the Tank disposed between legs 92 and 93, thereby providing a convenient opening through which a tank 10 can be placed within and withdrawn from the pedestal. Suitably supported at the approximate center of the frame is an electric motor 101 that actuates a sprocket 102 to rotate about a horizontal axis. Over the sprocket is disposed a chain 103. On one end of the chain 103 is disposed a 'novel spray gun means 104 and the other end of the chain is disposed within a vertical tube 106 suitably welded to bar 97, near the bottom, and to a rod 107, at the top. The end of the chain within the tube is attached to a counter-weight 108 and the tube 106 prevents entanglement of the chain when motor 101 rotates socket 102 to lower and raise the gun means 104.
The novel spray gun means 104 has a conventional trigger position 109 as shown in FIG. 12. The trigger position 109 has a pistol grip 111, a plugger actuator 112, a liquid fitting 113 through which liquid is coupled, an air fitting 114, through which compressed air is coupled, and a spray fitting 115, to which a spray head is attached. However, a trigger 116 thereon has been modified so that, at one end, it pivots about a pin 117 and the other end is connected to an electric solenoid 118 by a tension spring 119. The solenoid 118 is mounted to the griplll by a bracket 121. Therefore, whenever solenoid 118 is energized, an armature 118a moves upward and trigger 116 rotates upward, as viewed in FIG. 12 to start the spraying operation.
To the spray fitting is attached a novel spray head means to allow for spraying the interior of the tank. To fitting 115 is attached a long coaxial tube 122 (FIG. 9) having an inner tube 123 and an outer tube 124 (FIG. 10) with a collar 125 (FIG. 9) for attaching to fitting 115. on the lower end of the coaxial tube is placed a spray head 127 more clearly shown in FIGS. 10 and 11. To the end of the inner tube 123 is threaded a fitting 131 having a central base that communicates with, for example, three ports 132 that extend from the central bore 132a outwardly and downwardly as viewed in FIGS. 10 and 11. Liquid is fed through ports 132. Around fitting 131 is disposed a helical fitting 133 having a helical groove formed on its outside surface, and fitting 133 is suitably threaded tightly to fitting 131. Around fitting 133 is disposed a sleeve 134 that is threaded onto the outer tube 124. The sleeve 134 and fitting 133 form a helical passageway through which the compressed air passes. The lower end of sleeve 134 has a fustro-conical portion 135 that terminates at an annular surface 136 that is normal to the axis. Closing the end of the sleeve 134 is a plug 137 that is threaded tightly onto fitting 131. The plug 137 has an annular surface 138 shaped into a concave half torus. The plug 137 is spaced from sleeve 134 to form an annular opening between surfaces 136 and 138. The outside diameters of sleeve 134 at surface 136 and plug 137 where they are adjacent to each other are substantially the same. However, the inside diameter of surface 136 is appreciably smaller than the diameter of the half torus surface 138, as shown. For example, the width of surface 136 is about .06 inches, while the width of surface 139 (FIG. 11) is about .005 inches. As sleeve 134 is threaded further onto outer tube 124, the annular opening increases, and, when threaded in the reverse direction, the annular opening decreases. When the annular opening is relatively small, the geometry of the spray is radial. When the annular opening is larger, the spray pattern is conical and directed upwardly. The reason for this feature is believed to be as follows: Since the compressed air and liquid is directed by the half torus surface 138, they tend to follow that form. Therefore, when the opening is relatively large, the air and liquid miss interacting with surface 136 and continue on their travel upwardly and outwardly. When the opening is made smaller, the air and liquid interact with surface 136 and are directed radially. This feature is utilized in the following manner:
The tank is placed within the pedestal, as shown in FIG. 9. The annular spray opening is made small by twisting to the right sleeve 134. The motor 101 is started and the spray head 127 enters the opening 12. As soon as it enters, solenoid 188 is energized and a radial spray pattern is formed. The spray is maintained as the head 127 moves downward. When the head touches the bottom of the tank, the motor 101 is reversed and the spray head 127 is lifted as the spray continues. Before the head 127 exits from opening 12, the spray is stopped. When the head 127 is free of the tank 10, the spray opening is opened by twisting, to the left, sleeve 134. The motor 101 is again started to lower the spray head 127 into opening 12. As soon as the head 127 enters opening 12, the spray is started. Now the spray is directed upward and the inside of the top portion of tank 10 is covered with liquid. The head 127 is lowered until it is about one-third of the distance into the tank 10 and the head 127 is lifted by reversing the motor 101. The spray is again stopped before the head 127 exits from the opening. The inside of the tank is now coated with liquid plastic. The bottom dish 61 is coated by surplus plastic flowing to the bottom and by manually using a suitable dabber (not shown) on the end of stick. The dabber is inserted within opening 12 and the liquid plastic is spread over the interior of the dish 61 with the dabber. The plastic is allowed to harden and the tank is ready to be reused.
Although only the preferred embodiment of my invention has been described, the invention is not limited to the described embodiment but includes all embodiments coming within the scope of the claims.
I claim:
1. An apparatus for coating the interior of a long cylindrical body, said apparatus comprising:
a trigger handle having an air and a liquid inlet;
a pair of relatively long coaxial tubes mounted on said handle so that one tube communicates with the air inlet and the other tube with the liquid inlet;
a cylindrical body;
a plug having a disk portion and a post portion which plug is fixed to the inner coaxial tubewith the disk portion adjacent the end of said body;
first means for slidably mounting said body to the outer member of said tubes;
an annular plane surface formed on the end of said body and normal to the axis thereof;
an annular concave half-torus surface on the inside of the disk of said plug so that when the size of the slit is relatively small, the spray pattern is radial and flat and when the size of the slit is larger, the spray pattern is conical.
2. The apparatus of claim 1 wherein said first means includes threads between said body and said outer member so that the size of the slit is changed by rotating said body with respect to said outer member.
3. The apparatus of claim 2 wherein:
an annular planer surface is provided exterior of said half-torus surface on said disk.
4. The apparatus of claim 3 further comprising:
a frame for supporting said spray gun with the coaxial tube vertically and the spray head down,
means for moving the spray gun up and down, and
a solenoid mounted on said hangle to start and stop the spray.

Claims (4)

1. An apparatus for coating the interior of a long cylindrical body, said apparatus comprising: a trigger handle having an air and a liquid inlet; a pair of relatively long coaxial tubes mounted on said handle so that one tube communicates with the air inlet and the other tube with the liquid inlet; a cylindrical body; a plug having a disk portion and a post portion which plug is fixed to the inner coaxial tube with the disk portion adjacent the end of said body; first means for slidably mounting said body to the outer member of said tubes; an annular plane surface formed on the end of said body and normal to the axis thereof; an annular concave half-torus surface on the inside of the disk of said plug so that when the size of the slit is relatively small, the spray pattern is radial and flat and when the size of the slit is larger, the spray pattern is conical.
2. The apparatus of claim 1 wherein said first means includes threads between said body and said outer member so that the size of the slit is changed by rotating said body with respect to said outer member.
3. The apparatus of claim 2 wherein: an annular planer surface is provided exterior of said half-torus surface on said disk.
4. The apparatus of claim 3 further comprising: a frame for supporting said spray gun with the coaxial tube vertically and the spray head down, means for moving the spray gun up and down, and a solenoid mounted on said hangle to start and stop the spray.
US00244372A 1972-04-17 1972-04-17 360{20 {11 spray apparatus with means for changing spray pattern Expired - Lifetime US3826427A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00244372A US3826427A (en) 1972-04-17 1972-04-17 360{20 {11 spray apparatus with means for changing spray pattern
US484817A US3914904A (en) 1972-04-17 1974-07-01 Grinding cut-off apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00244372A US3826427A (en) 1972-04-17 1972-04-17 360{20 {11 spray apparatus with means for changing spray pattern

Publications (1)

Publication Number Publication Date
US3826427A true US3826427A (en) 1974-07-30

Family

ID=22922455

Family Applications (1)

Application Number Title Priority Date Filing Date
US00244372A Expired - Lifetime US3826427A (en) 1972-04-17 1972-04-17 360{20 {11 spray apparatus with means for changing spray pattern

Country Status (1)

Country Link
US (1) US3826427A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4568022A (en) * 1980-04-04 1986-02-04 Baltimore Aircoil Company, Inc. Spray nozzle
US4773597A (en) * 1985-08-29 1988-09-27 Veb Institut Fuer Getreideverarbeitung Wtoez Des Veb Kombinat Nahrungsmittel Und Kaffee Und Der Backwarenindustire Nozzle for spraying liquids
US5685489A (en) * 1993-09-16 1997-11-11 Norwec A/S Shower head
CN115213801A (en) * 2021-04-16 2022-10-21 徐州新大隆化工泵业制造有限公司 Polishing equipment for inner wall of pipe fitting

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1002748A (en) * 1910-09-27 1911-09-05 Harry Pauling Liquid-distributing sprinkler.
US1416401A (en) * 1920-05-14 1922-05-16 Western Blower Company Air-washing device
US2520397A (en) * 1946-12-05 1950-08-29 Marion C Green Spraying apparatus for internally coating pipes
US2715385A (en) * 1951-09-25 1955-08-16 Int Smelting & Refining Co Apparatus for applying mold wash to molds
US2859728A (en) * 1956-08-29 1958-11-11 James D Hobdy Spray nozzle
US3044441A (en) * 1960-05-06 1962-07-17 American Can Co Spray coating apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1002748A (en) * 1910-09-27 1911-09-05 Harry Pauling Liquid-distributing sprinkler.
US1416401A (en) * 1920-05-14 1922-05-16 Western Blower Company Air-washing device
US2520397A (en) * 1946-12-05 1950-08-29 Marion C Green Spraying apparatus for internally coating pipes
US2715385A (en) * 1951-09-25 1955-08-16 Int Smelting & Refining Co Apparatus for applying mold wash to molds
US2859728A (en) * 1956-08-29 1958-11-11 James D Hobdy Spray nozzle
US3044441A (en) * 1960-05-06 1962-07-17 American Can Co Spray coating apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4568022A (en) * 1980-04-04 1986-02-04 Baltimore Aircoil Company, Inc. Spray nozzle
US4773597A (en) * 1985-08-29 1988-09-27 Veb Institut Fuer Getreideverarbeitung Wtoez Des Veb Kombinat Nahrungsmittel Und Kaffee Und Der Backwarenindustire Nozzle for spraying liquids
US5685489A (en) * 1993-09-16 1997-11-11 Norwec A/S Shower head
CN115213801A (en) * 2021-04-16 2022-10-21 徐州新大隆化工泵业制造有限公司 Polishing equipment for inner wall of pipe fitting

Similar Documents

Publication Publication Date Title
US4091518A (en) Method of repairing water tanks
US3826427A (en) 360{20 {11 spray apparatus with means for changing spray pattern
CN112958881A (en) Manual welding device and welding process for cracking of suspension type gear reducer box body
US4027374A (en) Tank bottom assembly apparatus
US3914904A (en) Grinding cut-off apparatus
US5213157A (en) Clamping device for capping oil wells and the like, and apparatus for mounting same
RUTHERFORD et al. 360 SPRAY APPARATUS WITH MEANS FOR CHANGING SPRAY PATTERN
CN113369779A (en) Welding tool for assembling electric tricycle
CN117531636A (en) Quick spraying device and method for processing steel structure column
EP0300248B1 (en) Spray washer
KR101687966B1 (en) Wet blast
CN209715940U (en) A kind of cleaning device of ratio-frequency welded tube
CN211678459U (en) Workpiece spraying and processing device
CN109109145B (en) High-pressure water gun chiseling construction equipment and method
CN110281678A (en) A kind of full-automatic engraving system of work of fine arts and its method
US6469271B1 (en) Method and apparatus for refurbishing valves
US3563464A (en) Spray means for bulk tank washers
CN208700545U (en) The filling structure of fireproof coating
CN106563850A (en) Waterjet cutting machine tool with filtering portion capable of being replaced on line and drained water filtering method
CN218452897U (en) Sand blasting machine for machining tire mold
CN217249920U (en) Surface paint spraying device for steel structure production and processing
CN210046100U (en) Cutting machine tool with shock-absorbing function
KR101874252B1 (en) Airless painting machine
CN110802500A (en) Metal casing washing polishing production line
CN117415422B (en) Automatic cleaning device integrated machine for arc welding gun