US3824325A - Electronic musical instrument capable of transposing - Google Patents

Electronic musical instrument capable of transposing Download PDF

Info

Publication number
US3824325A
US3824325A US00352628A US35262873A US3824325A US 3824325 A US3824325 A US 3824325A US 00352628 A US00352628 A US 00352628A US 35262873 A US35262873 A US 35262873A US 3824325 A US3824325 A US 3824325A
Authority
US
United States
Prior art keywords
frequency divider
octave
frequency
counter circuits
transposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00352628A
Inventor
N Obayashi
T Sakashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawai Musical Instrument Manufacturing Co Ltd
Original Assignee
Kawai Musical Instrument Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawai Musical Instrument Manufacturing Co Ltd filed Critical Kawai Musical Instrument Manufacturing Co Ltd
Application granted granted Critical
Publication of US3824325A publication Critical patent/US3824325A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/18Selecting circuits
    • G10H1/20Selecting circuits for transposition

Definitions

  • ABSTRACT A transposing electronic musical instrument wherein a high frequency oscillator is provided on its output side with an octave frequency divider comprising twelve counter circuits to'generate twelve tone signals based 7 on a twelve tempered scale. These tone signals are respectively frequency-divided by counter circuits to obtain octave tone signals.
  • a frequency divider for transposition comprising counter circuits is interposed between the high frequency oscillator and the octave frequency divider such that the output terminals of these counter circuits can be selectively connected to the octave frequency divider.
  • This invention relates to a transposing type electronic musical instrument.
  • This invention relates to an electronic musical instrument wherein flat families and sharp families can be played with the use of the natural keys only, in almost the same manner as in the case of C major by shifting the tone source frequencies corresponding and relating to respective keys.
  • An object of the invention is to provide an electronic musical instrument such that any desired music can be freely played through selection of a switch by a beginner who can play in C major.
  • a musical instrument of the invention is characterized by being of the type wherein a main high frequency oscillator is provided on its output side with an octave frequency divider comprising twelve counter circuits to generate twelve tone signals based on a twelve tempered scale.
  • tone signals are respec- BRIEF DESCRIPTION OF DRAWING Examples of this invention will next be explained with reference to the, accompanying drawings in which:
  • FIG. 1 is a diagram showing the relationship between keys and tones
  • FIGS. 2 and 3 are respective blocks diagrams showing a frequency dividing system of an octave frequency divider
  • FIGS. 4 and 5 are respective block diagrams showing an example of this invention.
  • FIG. 6 is a block diagram showing another embodiment of this invention.
  • FIG. 2 shows one system with octave frequency divider (as, for example, employed in D. Gossel U.S. Pat. 3,509,454), and the same comprises that twelve counter circuits (20-1) (20-12) are connected in series with one another. The frequency dividing ratio of each is 196/ 185. If it is desired that a frequency of 8372.02 I-Iz be oscillated from the first counter circuit (20-11), the oscillation frequency f, of a high frequency oscillator 10 connected to the input terminal of the octave frequency divider 20 must be 196/185 times said frequency, that is, 8869.84 Hz. Thus, the oscillation frequencies obtained at output terminals (20-1a) (20-12a) of the counter circuits (20-1) (20-12) become those shown in FIG.
  • the musical tone signals thereof are indicated in parentheses. Though not illustrated, these oscillation frequencies are each further frequency-divided by respective pluralities of counter circuits, for example, into seven stages when it is intended, for example, to cover seven octaves of the whole scale of a piano.
  • FIG. 3 shows the other system employing an octave frequency divider 20'.
  • This system comprises twelve counter circuits.(20'-l) (20-12) connected in parallel with one another to a single common high frequency oscillator 10.
  • the frequency dividing ratios thereof are l/239, l/253 l/45l as shown in this figure. Accordingly, if it is desired that 8360.21 l-Iz be generated from the first counter circuit (20'-1), the oscillation frequency f,,,' of the high frequency oscillator 10 is 239 times'said frequency, that is, 2.00024 MHz.
  • the oscillation frequencies obtained at output terminals (20-1a) (20-12a) of the counter circuits (20-l) (20-12) become almost equal to those in the case shown in FIG. 2.
  • This invention is characterized in that a frequency divider for transposition 30 or 30 is provided as shown in FIGS. 4 m5 preceding the octave frequency divider 20 or 20', and output terminals of a plurality of counter circuits constituting the transposition frequency divider 30 or 30' are selectively connected to the octave frequency divider 20 or 20' positioned at the succeeding stage thereof.
  • the transposition frequency divider 30 shown in FIG. 4 has the same frequency dividing ratio as that of the octave frequency divider 20 shown in FIG. 2.
  • Output terminals (30-1a) (30-l2a) of counter circuits (30-1) (30-12) constituting the transposition frequency divider 30 are connected to respective stationary contacts (40-1) (40-12) of a changeover switch 40, and a movable contact 40a thereof is connected to the octave frequency divider 20.
  • the octave frequency divider 20 requires, for example, 8869.84 Hz as shown in FIG.
  • the oscillation frequency of the high frequency oscillator 10 becomes 1 divided by the frequency dividing ratio thereof, that is, 9397.28 I-Iz obtained by multiconstituting the transposition frequency divider 30 become those shown in Tablel below.
  • the musical tone signals of these frequencies are as shown in the right hand column thereof.
  • the octave frequency divider 20 is supplied with 8869.84 Hz and the frequencies as described in column (1) of Table 2 below can be obtained at the output terminals (20-1d) (20-12a). This is the same as the case of the octave frequency divider 20 shown in FIG. 2. Under this condition, C major can be played by using natural keys as in conventional electronic musical instruments.
  • the octave frequency divider 20 is supplied with the frequency of 8372.02, that is, the frequency of a B signal, and the oscillation frequencies transposed by one interval as shown in column (II) of Table 2 can be obtained at the output terminals (20-1a) (20- 12a).
  • the tones generated when natural keys are operated are those of the condition that the same have been transposed by one interval.
  • the movable contact (40a) is connected to the stationary contact (40-3), it is transposed further by one interval as shown in column (III) of same Table. Accordingly, the playing of A major becomes possible only by using natural keys only. Thus, the playing of various tones can be simply effected only with natural keys, without using chromatic keys, by properly selecting the stationary contacts (40-1) (40-12) by a turning of the movable'contact (40a).
  • FIG. 5 shows a case where, between the octave frequency divider 20 and the high frequency oscillator 10' as shown inFIG. 3, a transposing frequency divider 30 of the same frequency dividing system as the octave frequency divider 20 is interposed.
  • the highest frequency which the octave frequency divider 20' requires is 2.00024 MI-Iz, what is required is only that a frequency of 478 MHz, which is obtained by a technique in which the foregoing frequency is multiplied by 1 divided by the frequency dividing ratio of the first stage of thetransposition frequent divider 30 be generated by the high-frequency oscillator 10.
  • FIG. 6 shows a case where an octave change-over device 50 is interposed between the high frequency oscillator l0 and the transposing frequency divider 30, and theoctave change-over device 50 comprises a plurality nected to the transposition frequency divider 30, for example, through a rotary switch 60.
  • the frequency dividing ratio is one-half and if it isassumed that9397.27 Hz is generated from the center of countercircuits. It is so arranged that output terminals (50-1) (50-5) thereof are selectively conplayer and playing is thus facilitated. This is applicable in almost the same manner to the example of FIG. 5.
  • tones corresponding to respective keys can be transposed, so that a playing of any tone can be effected with the use of natural keys only and the playing of any tone can be readily accomplished even by a beginner if he can play in C major.
  • the output signal of each terminal is frequency-divided by 2 or multiples thereof to provide, for example, seven octaves of a note in harmonic relationship.
  • the frequency dividers and 20' are octave frequency dividers, while the frequency dividers and 30 are for transposition.
  • An electronicmusical instrument capable of transposition comprising a high frequency oscillator having 6. an output side, an octave-frequency divider including twelve counter circuits generating twelve tone signals based on a twelve tempered scale, a transposition frequency divider including counter circuits, and means coupling said octave frequency divider to the output I side of said oscillator via said transposition frequency divider such that the latter said counter circuits can be selectively connected to the octave frequency divider.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Electrophonic Musical Instruments (AREA)

Abstract

A transposing electronic musical instrument wherein a high frequency oscillator is provided on its output side with an octave frequency divider comprising twelve counter circuits to generate twelve tone signals based on a twelve tempered scale. These tone signals are respectively frequency-divided by counter circuits to obtain octave tone signals. A frequency divider for transposition comprising counter circuits is interposed between the high frequency oscillator and the octave frequency divider such that the output terminals of these counter circuits can be selectively connected to the octave frequency divider.

Description

United States Patent [191 Obayashi et a1.
[ ELECTRONIC MUSICAL INSTRUMENT CAPABLE OF TRANSPOSING Inventors: Nobuharu Obayashi, Hamana-gun;
' Tetsuzi Sakashita, Hamamatsu, both of Japan Kabushiki Kaisha Kawai Gakki Seisakusho, Shizuoka-ken, Japan Filed: Apt-.19, 1973 Appl. No.: 352,628
Assignee:
[30] Foreign Application Priority Data Apr. 20, 1972 Japan 47-39102 US. Cl. 84/1.01, 84/445 Int. Cl. Gll1 1/02 Field of Search 84/1.0l, 1.17, 445, 446,
[56] References Cited UNITED STATES PATENTS 3,023,659 3/1962 Bode 84/445 51 July 16, 1974 3,030,848 4/1962 Wick ..84/445 3,509,454 4/1970 Gossel... 84/l.0l X 3,610,800 /1971 Deutschm. ..84/l.01 3,674,907 7/1972 Derry 84/1 .01
Primary Examiner-Richard B. Wilkinson Assistant Examiner-Stanley J. Witkowski Attorney, Agent, or FirmEric H. Waters [5 7] ABSTRACT A transposing electronic musical instrument wherein a high frequency oscillator is provided on its output side with an octave frequency divider comprising twelve counter circuits to'generate twelve tone signals based 7 on a twelve tempered scale. These tone signals are respectively frequency-divided by counter circuits to obtain octave tone signals. A frequency divider for transposition comprising counter circuits is interposed between the high frequency oscillator and the octave frequency divider such that the output terminals of these counter circuits can be selectively connected to the octave frequency divider.
3 Claims, 6 Drawing Figures M -1 2040 /Z! l- 2 /20' 2C1 40- 3 ,20-
2Q'll (20'110. 196/185 MJZOJZG ELECTRONIC MUSICAL INSTRUMENT CAPABLE OF TRANSPOSING FIELD OF INVENTION This invention relates to a transposing type electronic musical instrument.
BACKGROUND In an ordinary keyed instrument, natural keys are disposed for natural tones and chromatic keys are disposed for their derivative tones. Accordingly, when flat families or sharp families are played in this kind of instrument, transposed tones require the use of chromatic keys. In the case of C major, for example, C, D, E, F, F, A, B, C, are played by using natural keys. D major however beings with the D tone and natural keys and chromatic keys must be used. Thus, the operation of chromatic keys is required due to the transposition and this requirement applies to the case of an electronic musical instrument. Thus, playing with transposition is very difficult for a beginner.
SUMMARY OF INVENTION This invention relates to an electronic musical instrument wherein flat families and sharp families can be played with the use of the natural keys only, in almost the same manner as in the case of C major by shifting the tone source frequencies corresponding and relating to respective keys.
An object of the invention is to provide an electronic musical instrument such that any desired music can be freely played through selection of a switch by a beginner who can play in C major.
A musical instrument of the invention is characterized by being of the type wherein a main high frequency oscillator is provided on its output side with an octave frequency divider comprising twelve counter circuits to generate twelve tone signals based on a twelve tempered scale. These tone signals are respec- BRIEF DESCRIPTION OF DRAWING Examples of this invention will next be explained with reference to the, accompanying drawings in which:
FIG. 1 is a diagram showing the relationship between keys and tones;
FIGS. 2 and 3 are respective blocks diagrams showing a frequency dividing system of an octave frequency divider;
FIGS. 4 and 5 are respective block diagrams showing an example of this invention; and
FIG. 6 is a block diagram showing another embodiment of this invention.
DETAILED DESCRIPTION As is shown in FIG. 1 in the case of C major, for example, C, D, E, F, G, A, B, C, are played by using natural keys K1, K3, K5, K6, K8, K10 and K12. In the case of D major, however, this begins with the D' tone and accordingly natural keys K3, K5, chromatic key K7, natural keys K8, K10, K12 and K13, chromatic key K14 and natural key K15 must be used. Thus, the operation of chromatic keys are required, due to the transposition and this requirement applies to the case of all electronic musical instruments. Therefore, playing with transposition is very difficult for the beginner.
As for a system involving an octave frequency divider, there are two systems. FIG. 2 shows one system with octave frequency divider (as, for example, employed in D. Gossel U.S. Pat. 3,509,454), and the same comprises that twelve counter circuits (20-1) (20-12) are connected in series with one another. The frequency dividing ratio of each is 196/ 185. If it is desired that a frequency of 8372.02 I-Iz be oscillated from the first counter circuit (20-11), the oscillation frequency f, of a high frequency oscillator 10 connected to the input terminal of the octave frequency divider 20 must be 196/185 times said frequency, that is, 8869.84 Hz. Thus, the oscillation frequencies obtained at output terminals (20-1a) (20-12a) of the counter circuits (20-1) (20-12) become those shown in FIG.
' 2. The musical tone signals thereof are indicated in parentheses. Though not illustrated, these oscillation frequencies are each further frequency-divided by respective pluralities of counter circuits, for example, into seven stages when it is intended, for example, to cover seven octaves of the whole scale of a piano.
FIG. 3 shows the other system employing an octave frequency divider 20'. This system comprises twelve counter circuits.(20'-l) (20-12) connected in parallel with one another to a single common high frequency oscillator 10. The frequency dividing ratios thereof are l/239, l/253 l/45l as shown in this figure. Accordingly, if it is desired that 8360.21 l-Iz be generated from the first counter circuit (20'-1), the oscillation frequency f,,,' of the high frequency oscillator 10 is 239 times'said frequency, that is, 2.00024 MHz. Thus, the oscillation frequencies obtained at output terminals (20-1a) (20-12a) of the counter circuits (20-l) (20-12) become almost equal to those in the case shown in FIG. 2.
This invention is characterized in that a frequency divider for transposition 30 or 30 is provided as shown in FIGS. 4 m5 preceding the octave frequency divider 20 or 20', and output terminals of a plurality of counter circuits constituting the transposition frequency divider 30 or 30' are selectively connected to the octave frequency divider 20 or 20' positioned at the succeeding stage thereof.
The transposition frequency divider 30 shown in FIG. 4 has the same frequency dividing ratio as that of the octave frequency divider 20 shown in FIG. 2. Output terminals (30-1a) (30-l2a) of counter circuits (30-1) (30-12) constituting the transposition frequency divider 30 are connected to respective stationary contacts (40-1) (40-12) of a changeover switch 40, and a movable contact 40a thereof is connected to the octave frequency divider 20. Thus, if the octave frequency divider 20 requires, for example, 8869.84 Hz as shown in FIG. 2 as its highest input frequency, the oscillation frequency of the high frequency oscillator 10 becomes 1 divided by the frequency dividing ratio thereof, that is, 9397.28 I-Iz obtained by multiconstituting the transposition frequency divider 30 become those shown in Tablel below. The musical tone signals of these frequencies are as shown in the right hand column thereof.
If the movable contact 40a of the change-over switch 50 is connected to the stationary contact (40-1) as shown in FIG. 4, the octave frequency divider 20 is supplied with 8869.84 Hz and the frequencies as described in column (1) of Table 2 below can be obtained at the output terminals (20-1d) (20-12a). This is the same as the case of the octave frequency divider 20 shown in FIG. 2. Under this condition, C major can be played by using natural keys as in conventional electronic musical instruments. If, then, the movable contact (40a) is connected to the stationary contact (40-2), the octave frequency divider 20 is supplied with the frequency of 8372.02, that is, the frequency of a B signal, and the oscillation frequencies transposed by one interval as shown in column (II) of Table 2 can be obtained at the output terminals (20-1a) (20- 12a). Namely, the tones generated when natural keys are operated are those of the condition that the same have been transposed by one interval. Thus, the playing of B major becomes possible by playing in almost the same manner as in C major using natural keys only, without using any chromatic keys.
If, then, the movable contact (40a) is connected to the stationary contact (40-3), it is transposed further by one interval as shown in column (III) of same Table. Accordingly, the playing of A major becomes possible only by using natural keys only. Thus, the playing of various tones can be simply effected only with natural keys, without using chromatic keys, by properly selecting the stationary contacts (40-1) (40-12) by a turning of the movable'contact (40a).
TABLE 2 (l) C ma'or (II) B major (III) A major Counter Output one Output Tone Output Tone circui frequency signal frequency signal frequency signal number Hz Hz HZ of octave frequency divider 20-l 8372.02 C 7902.13 3 7458.62 A 20-2 7902.13 3 7458.62 A 7040.00 A 20-3 7458.62 A 7040.00 9 6644.88 G# 20-4 7040.00 1} 6644.88 G 6271.93 (3 20-5 664488 G 6271.93 & I 5919.91 F 20-6 627l.93 g 59l9,9l F 5587.65 F 20-7 5919.9! F 5587.65 F $274.04 & 20-8 5587.65 F 5274.04 I} 4978.03 D 209 E 4978.03 D 4698.64 D
TABLE 2-Continued (I) C major (II) B major (III) A major Counter Output Tone Output Tone Output Tone Circuit frequency signal frequency signal frequency Signal number Hz Hz HZ of octave frequency divider '20-]0 4978.03 D# 4698.64 D 4434.94 Cf 20-l I 4698.64 D 4434.94 C# 4 I 86.04 C 20-12 4434.94 C# 4186.04 C 3951.10 B
Input 8869.84 8372.02 7902.12 v frequency Hz Change- 40-1 40-2 40-3 over switch contact number FIG. 5 shows a case where, between the octave frequency divider 20 and the high frequency oscillator 10' as shown inFIG. 3, a transposing frequency divider 30 of the same frequency dividing system as the octave frequency divider 20 is interposed. If it is assumed that the highest frequency which the octave frequency divider 20' requires is 2.00024 MI-Iz, what is required is only that a frequency of 478 MHz, which is obtained by a technique in which the foregoing frequency is multiplied by 1 divided by the frequency dividing ratio of the first stage of thetransposition frequent divider 30 be generated by the high-frequency oscillator 10. By properly selecting the stationary contact (40-1) (40'-12) by a movable contact (40a) of a change-over switch 40, transposition selection can be made in the same manner as in the case of FIG. 4 and the playing of any desired key can be performed freely with natural keys only.
The above has been explained relative to the case where there is provided at the preceding stage of the octave frequency divider 20,20 a transposing frequency divider 30, 30 having the same frequency dividing ratio, but the same result can be obtained where the frequency divider of the other frequency dividing system is provided. When, in FIG. 4 for example, the transposing frequency divider 30 is replaced by 30 if it is assumed that the highest input frequency required by the octave frequency divider 20 is 8869.84 Hz, what is different is only that the high frequency oscillator of 1 MHz is required. 7
FIG. 6 shows a case where an octave change-over device 50 is interposed between the high frequency oscillator l0 and the transposing frequency divider 30, and theoctave change-over device 50 comprises a plurality nected to the transposition frequency divider 30, for example, through a rotary switch 60.
The frequency dividing ratio is one-half and if it isassumed that9397.27 Hz is generated from the center of countercircuits. It is so arranged that output terminals (50-1) (50-5) thereof are selectively conplayer and playing is thus facilitated. This is applicable in almost the same manner to the example of FIG. 5.
Thus, according to this invention, by properly selecting the connection between the output terminals of the counter circuits constituting the transposing frequency divider and the octave frequency divider, tones corresponding to respective keys can be transposed, so that a playing of any tone can be effected with the use of natural keys only and the playing of any tone can be readily accomplished even by a beginner if he can play in C major.
In the above, for example, in FIG. 2, the output signal of each terminal is frequency-divided by 2 or multiples thereof to provide, for example, seven octaves of a note in harmonic relationship. Thus, the frequency dividers and 20' are octave frequency dividers, while the frequency dividers and 30 are for transposition.
What is claimed is:
1. An electronicmusical instrument capable of transposition comprising a high frequency oscillator having 6. an output side, an octave-frequency divider including twelve counter circuits generating twelve tone signals based on a twelve tempered scale, a transposition frequency divider including counter circuits, and means coupling said octave frequency divider to the output I side of said oscillator via said transposition frequency divider such that the latter said counter circuits can be selectively connected to the octave frequency divider.
frequency divider.

Claims (3)

1. An electronic musical instrument capable of transposition comprising a high frequency oscillator having an output side, an octave frequency divider including twelve counter circuits generating twelve tone signals based on a twelve tempered scale, a transposition frequency divider including counter circuits, and means coupling said octave frequency divider to the output side of said oscillator via said transposition frequency divider such that the latter said counter circuits can be selectively connected to the octave frequency divider.
2. An instrument as claimed in claim 1 wherein said means includes a multiple position selector switch coupling the latter said counter circuits to said octave frequency divider.
3. An instrument as claimed in claim 2 comprising octave change-over means connected between said oscillator and transposition frequency divider and including a plurality of counter circuits and a selector switch connecting said counter circuits to said transposition frequency divider.
US00352628A 1972-04-20 1973-04-19 Electronic musical instrument capable of transposing Expired - Lifetime US3824325A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP47039102A JPS5121564B2 (en) 1972-04-20 1972-04-20

Publications (1)

Publication Number Publication Date
US3824325A true US3824325A (en) 1974-07-16

Family

ID=12543694

Family Applications (1)

Application Number Title Priority Date Filing Date
US00352628A Expired - Lifetime US3824325A (en) 1972-04-20 1973-04-19 Electronic musical instrument capable of transposing

Country Status (2)

Country Link
US (1) US3824325A (en)
JP (1) JPS5121564B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890871A (en) * 1974-02-19 1975-06-24 Oberheim Electronics Inc Apparatus for storing sequences of musical notes
US3910149A (en) * 1972-10-12 1975-10-07 Kawai Musical Instr Mfg Co Electronic musical instrument capable of transposition
US3929052A (en) * 1973-10-06 1975-12-30 Philips Corp Electronic musical instrument with one tone generator controlling a second tone generator
US3933072A (en) * 1973-10-31 1976-01-20 U.S. Philips Corporation Generator for producing tones of a musical scale in an electronic musical instrument
US3943811A (en) * 1974-08-12 1976-03-16 Coles Donald K Keyboard type musical instrument
US3949638A (en) * 1974-10-18 1976-04-13 Coles Donald K Electronic musical instrument
US3971282A (en) * 1972-04-20 1976-07-27 Kabushiki Kaisha Kawai Gakki Seisakusho Electronic musical instrument capable of transposition
US3973460A (en) * 1974-09-18 1976-08-10 Coles Donald K Keyboard type musical instrument
US4009633A (en) * 1975-02-27 1977-03-01 Coles Donald K Electronic musical instrument
US4048893A (en) * 1974-08-12 1977-09-20 Coles Donald K Electronic musical instrument
US4056032A (en) * 1976-04-23 1977-11-01 Coles Donald K Musical apparatus
US4058042A (en) * 1975-06-20 1977-11-15 D. H. Baldwin Company Key transposing electronic organ
US4332182A (en) * 1980-01-10 1982-06-01 Reinhard Franz Apparatus for transposing passages in electronic musical instruments
US4664010A (en) * 1983-11-18 1987-05-12 Casio Computer Co., Ltd. Method and device for transforming musical notes

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5375554A (en) * 1976-12-16 1978-07-05 Meidensha Electric Mfg Co Ltd Cooling system
JPS554030A (en) * 1978-06-22 1980-01-12 Mitsubishi Electric Corp Electronic key music instrument
JPS5636698A (en) * 1979-09-03 1981-04-09 Nippon Musical Instruments Mfg Electronic musical instrument

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3023659A (en) * 1960-07-11 1962-03-06 Wurlitzer Co Transposition apparatus for electrical musical instrument
US3030848A (en) * 1960-05-27 1962-04-24 Martin M Wick Electric organ transposing switch
US3509454A (en) * 1964-10-28 1970-04-28 Philips Corp Apparatus for tuning musical instruments
US3610800A (en) * 1969-10-30 1971-10-05 North American Rockwell Digital electronic keyboard instrument with automatic transposition
US3674907A (en) * 1969-12-31 1972-07-04 Wendell A Derry Keyboard transposition of electrical musical instruments

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3030848A (en) * 1960-05-27 1962-04-24 Martin M Wick Electric organ transposing switch
US3023659A (en) * 1960-07-11 1962-03-06 Wurlitzer Co Transposition apparatus for electrical musical instrument
US3509454A (en) * 1964-10-28 1970-04-28 Philips Corp Apparatus for tuning musical instruments
US3610800A (en) * 1969-10-30 1971-10-05 North American Rockwell Digital electronic keyboard instrument with automatic transposition
US3674907A (en) * 1969-12-31 1972-07-04 Wendell A Derry Keyboard transposition of electrical musical instruments

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971282A (en) * 1972-04-20 1976-07-27 Kabushiki Kaisha Kawai Gakki Seisakusho Electronic musical instrument capable of transposition
US3910149A (en) * 1972-10-12 1975-10-07 Kawai Musical Instr Mfg Co Electronic musical instrument capable of transposition
US3929052A (en) * 1973-10-06 1975-12-30 Philips Corp Electronic musical instrument with one tone generator controlling a second tone generator
US3933072A (en) * 1973-10-31 1976-01-20 U.S. Philips Corporation Generator for producing tones of a musical scale in an electronic musical instrument
US3890871A (en) * 1974-02-19 1975-06-24 Oberheim Electronics Inc Apparatus for storing sequences of musical notes
US3943811A (en) * 1974-08-12 1976-03-16 Coles Donald K Keyboard type musical instrument
US4048893A (en) * 1974-08-12 1977-09-20 Coles Donald K Electronic musical instrument
US3973460A (en) * 1974-09-18 1976-08-10 Coles Donald K Keyboard type musical instrument
US3949638A (en) * 1974-10-18 1976-04-13 Coles Donald K Electronic musical instrument
US4009633A (en) * 1975-02-27 1977-03-01 Coles Donald K Electronic musical instrument
US4058042A (en) * 1975-06-20 1977-11-15 D. H. Baldwin Company Key transposing electronic organ
US4056032A (en) * 1976-04-23 1977-11-01 Coles Donald K Musical apparatus
US4332182A (en) * 1980-01-10 1982-06-01 Reinhard Franz Apparatus for transposing passages in electronic musical instruments
US4664010A (en) * 1983-11-18 1987-05-12 Casio Computer Co., Ltd. Method and device for transforming musical notes

Also Published As

Publication number Publication date
JPS492520A (en) 1974-01-10
JPS5121564B2 (en) 1976-07-03

Similar Documents

Publication Publication Date Title
US3824325A (en) Electronic musical instrument capable of transposing
US3809788A (en) Computor organ using parallel processing
US4295402A (en) Automatic chord accompaniment for a guitar
US3023659A (en) Transposition apparatus for electrical musical instrument
US3866505A (en) Ensemble effect imparting device using a bucket brigade device for an electric musical instrument
US3217079A (en) Electronic guitar
US3877337A (en) Electronic musical instrument capable of transposition
US4048893A (en) Electronic musical instrument
US3821460A (en) Electronic musical instrument
US3986422A (en) Electronic musical instrument
US4178823A (en) Portable electronic musical instrument
US3910149A (en) Electronic musical instrument capable of transposition
US4009633A (en) Electronic musical instrument
US2221814A (en) Musical instrument
US3764721A (en) Electronic musical instrument
US3040612A (en) Electrical musical instrument
GB1120065A (en)
US4140039A (en) Hand held synthesizer
US3922943A (en) Electronic musical instrument provided with a voltage-controlled monophonic playing section operated by a manual or pedal tone-playing section
US2332076A (en) Electrical musical instrument
US3971282A (en) Electronic musical instrument capable of transposition
US3610804A (en) Combination of selector switch and expression control of electronic musical instrument
GB1418737A (en) Electronic musical synthesizer
US3871261A (en) Method of tuning an electronic keyboard instrument in pure scale and apparatus therefor
US4903571A (en) Key signature actuator for a musical keyboard