US3819119A - Sprayer for decorating surfaces - Google Patents

Sprayer for decorating surfaces Download PDF

Info

Publication number
US3819119A
US3819119A US00372033A US37203373A US3819119A US 3819119 A US3819119 A US 3819119A US 00372033 A US00372033 A US 00372033A US 37203373 A US37203373 A US 37203373A US 3819119 A US3819119 A US 3819119A
Authority
US
United States
Prior art keywords
aerosol
glitter
coating composition
sprayhead
flakes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00372033A
Inventor
C Coffey
M Catena
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PAINT CO H
PAINT H CO US
Original Assignee
PAINT CO H
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PAINT CO H filed Critical PAINT CO H
Priority to US00372033A priority Critical patent/US3819119A/en
Application granted granted Critical
Publication of US3819119A publication Critical patent/US3819119A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/75Aerosol containers not provided for in groups B65D83/16 - B65D83/74
    • B65D83/752Aerosol containers not provided for in groups B65D83/16 - B65D83/74 characterised by the use of specific products or propellants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • B05D5/067Metallic effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44FSPECIAL DESIGNS OR PICTURES
    • B44F1/00Designs or pictures characterised by special or unusual light effects
    • B44F1/02Designs or pictures characterised by special or unusual light effects produced by reflected light, e.g. matt surfaces, lustrous surfaces
    • B44F1/04Designs or pictures characterised by special or unusual light effects produced by reflected light, e.g. matt surfaces, lustrous surfaces after passage through surface layers, e.g. pictures with mirrors on the back
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/004Reflecting paints; Signal paints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers
    • B05D2601/02Inorganic fillers used for pigmentation effect, e.g. metallic effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S524/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S524/903Aerosol compositions

Definitions

  • This invention relates to a method for depositing solid, highly reflectant, non-leafing, sparkling, colored, macro, polymer-coated metal flakes on any primed or unprimed substrate, e.g. styrofoam, metal, wood, plastic, paper, which can support a film.
  • any primed or unprimed substrate e.g. styrofoam, metal, wood, plastic, paper, which can support a film.
  • Colored metal flakes in the macro" size range have heretofore been limited to application from conventional, heavy-duty spray equipment, or have had to be roller coated, screen printed, cast, flocked, or extruded.
  • students, artists, home handymen, housewives, auto enthusiasts, and the like can apply dramatic glitter coatings to numerous substrates and can obtain esthetically pleasing effects previously unavailable except by using heavy-duty spray equipment.
  • Stephens et al. (US. Pat. No. 3,234,038) teach the use of 100-200 mesh (00058-00029 inch) nonleafing aluminum flakes in a formulation applied from conventional heavy-duty spray equipment to a primed surface and then baked. A transparent lacquer overcoat is required. The compositions do not adhere satisfactorily to unprimed surfaces and are relatively dull grey in appearance.
  • Coatings made according to the present invention appear sparkling and glittery and feel rough to the touch.
  • Good adhesion to unprimed surfaces e.g. metal, wood, plastic, paper, is obtained by the simple process of spraying the glitter coating composition from a manually-operated aerosol can. No overcoat is required, since the glitter coatings show virtually no tendency to peel, crock, or rub off.
  • the effect produced by the solid, highly reflectant, non-leafing, polymer-coated metal flakes of this invention is thought to reside in propelling the flakes onto a substrate in a random, unoriented fashion. Rapid evaporation of volatile solvent from the vehicle results in the flakes being embedded randomly in the resin from the vehicle system.
  • Each flake is thought to be coated with a thin layer of resin. Part of the brilliance and sparkle of the coatings of this invention is thought to be due to reflectance of light through the coating on each metal flake.
  • the size of the macro metal flakes used in the practice of this invention may be varied according to the effect desired. Use of a larger size flake gives a more dramatic appearance to the substrate sprayed than use of smaller flakes.
  • the size of the metal flake may vary from about 0.004" X 0.002" X 0.00032" to about 0.008" X 0.008" X 0.001". Flakes in the range from 0.004" X 0.002" X 0.00045 to 0.008" X 0.008" X 0.00045" are preferred. Tolerances are within 1 5% in both surface dimensions and thickness.
  • Metal flakes particularly preferred for the purpose of this invention are precision-cut, regular shapes of highly polished aluminum foil coated with a variety of coatings, depending on the type of colored flake desired.
  • the epoxy coated type are aluminum foil flakes coated with a pigmented, or unpigmented, baked epoxy resin.
  • the vinyl coated type are aluminum foil flakes coated with a pigmented, or unpigmented, vinyl resin.
  • the nitrocellulose coated type are aluminum foil flakes coated with a pigmented, or unpigmented, nitrocellulose type lacquer.
  • Colors of the flakes include the following, or mixtures thereof:
  • Vehicle systems which have successfully been used in this method include conventional acrylic resins, e.g. F-10 [a poly(methyl methacrylate) (Rohm and Hass Co. )1; alkyd resins, e.g. vinyltoluene soya alkyd; methyl cellulose; and the like.
  • the polymer used in the vehicle system may be any polymer which is not reactive with the coating on the metal flakes.
  • the vehicle composition is limited only by the strength of the solvents used. Solvents used in the aerosol formulations should be of low solvent strength. However, this does not preclude the use of minor percentages of strong solvents. Very strong solvents are to be avoided, as they could possibly solubilize and extract colorants from the coated aluminum flakes.
  • Propellants used include both halogenated types and hydrocarbon types of conventional aerosol propellants.
  • a base consisting of the metal flakes and vehicle therefor.
  • This base is delivered to an open aerosol can, suitable agitators are added (spherical marbles or rivets are adequate); the spray valve is crimped onto the aerosol can, and the propellant is injected into the can. While low temperature filling is possible, the injection method is more suited to the practice of this invention.
  • the velocity at which the glitter coating composition is exhausted from the spray can is a critical aspect of successful application of compositions containing macro flakes from a spray container.
  • Conventional sprayheads apparently confine the mixing and atomization of spray compositions to a localized region adjacent to the nozzle outlet.
  • An unsatisfactory spray pattern often results, particularly with liquid products containing dispersed solid particles or flakes, e. g. speciality paints containing flakes of metallic, plastic, or glass glitter.
  • the particles in these products apparently serve as nuclei for agglomeration of liquid in relatively large droplets which collect in the area between the sprayhead and the valve mounting cap.
  • a sprayhead suitable for propulsion of macro particles of this invention requires the incorporation of an elongated expansion chamber upstream of the nozzle orifice.
  • the diameter of the expansion chamber should ideally be significantly larger than that of the passageway leading to the valve from a dip tube or other means for conveying glitter coating composition to the passageway of the sprayhead.
  • the length of the expansion chamber should preferably be several times its diameter.
  • a sprayhead incorporating an expansion chamber at least five times as long as its diameter not only gives a spray pattern of greatly improved uniformity, but also gives increased product flow rate for a given nozzle orifice diameter and propellant pressure.
  • the glitter coating composition and propellant mixture undergoes the steps of 1) flow through a passageway of substantially uniform cross-sectional area, (2) expansion within an elongated expansion chamber, and (3) acceleration through a constricted orifice.
  • the glitter coating issues from the orifice in the form of a finelydivided well-mixed spray.
  • the expansion chamber is placed angularly with respect to the passageway of the sprayhead.
  • Glitter coating composition first passes through the passageway of substantially uniform cross-sectional area.
  • the abrupt change of direction which the composition undergoes as it enters the expansion chamber induces a swirling flow which promotes intimate mixing of flakes, vehicle, and vaporizing propellant as the composition passes through the expansion chamber prior to issuing from the constricted orifice as a very fine spray.
  • Valves useful in the practice of this invention include B and R type valves manufactured by Newman-Green, Inc. of Addison, Illinois. Valves denoted Rl0l28 and B-l4-l0-l28 are especially useful, although other valves of these series are operative.
  • a vapor tap valve assembly When larger sized metal flakes are used, the use of a vapor tap valve assembly is preferred, as this assembly substantially eliminates the possibility of the valve dip tube becoming clogged with metal flakes.
  • the vapor tap feature is available on both B and R type valves, supra.
  • the dip tube should terminate slightly above the level normally occupied by a compacted sludge of metal flakes of the coating composition which forms between successive usages of the aerosol spray can. Negligible loss of material results from this arrangement of the dip tube.
  • the coating composition is agitated thoroughly by shaking the aerosol can.
  • the spherical marbles or rivets charged to the can operate as agitating means. Label directions on the can should indicate the need for frequent shaking to assure that equal aliquots of macro flakes and vehicle are discharged throughout the use of a given spray can.
  • aerosol formulations are charged into the aerosol can, the sprayhead is affixed, the aerosol can is shaken to ensure distribution of the contents, the sprayhead is pressed, and the valve assembly is actuated to deliver the product onto the desired substrata.
  • a manually-operated aerosol can of glitter coating composition comprising a fluid-tight can provided with a dispensing means for a glitter coating composition, wherein the glitter coating composition comprises from about 0.5% to about 10% of solid, highly reflectant, non-leafing, polymer-coated metal flakes, from about 40 to about 83% of a vehicle system for the metal flakes, and from about 15 to about 55% of an aerosol propellant, and wherein the dispensing means comprises a sprayhead in which an elongated expansion chamber is incorporated between a constricted orifice and an elongated passage of substantially uniform cross-sectional area through which said glitter coating composition flows into the sprayhead.

Abstract

A glitter coating composition is applied from a manuallyoperated aerosol spray can by spraying a glitter coating composition comprising solid, highly reflectant, non-leafing polymer-coated metal flakes, a vehicle system therefor, and a propellant by the steps of (1) flowing the glitter coating composition through a passageway of substantially uniform crosssectional area, (2) expanding the flowing glitter composition in an elongated expansion chamber, and (3) accelerating the expanded flowing glitter composition through a constricted orifice. The glitter coating issues from the orifice in the form of a finelydivided well-mixed spray.

Description

United States Patent r191 Coffey et a1.
[11] 3,819,119 1 June 25, 1974 SPRAYER FOR DECORATING SURFACES [75] Inventors: Charles A. Coffey; Michael J.
1 Catena, both of Tampa, Fla.
[73] Assignee: Harris Paint Company, Tampa, Fla.
[22] Filed: June 21, 1973 I 21 Appl. No.: 372,033
Related US. Application Data [60] Division of Ser. No. 221,033, Jan. 26, 1972, Pat. No. 3,764,067, which is a continuation-in-part of Ser. No. 44,590, June 8, 1970, abandoned.
[52] US. Cl. 239/337, 106/193 M, 117/27, 117/37 R, 117/105, 117/160 R, 222/394,
[51] Int. Cl B05b 7/32, B44d l/O8, B65d 83/14 {58] Field of Search..... 239/337, 1; 222/394, 402.1; 117/37 R, 93.4, 27, 104 R, 104 A, 105, 160 R, 16, 33; 252/305; 260/37 M; 106/193 M; 424/46 [56] References Cited UNITED STATES PATENTS 2,287,053 6/1942 Murphy 117/160 A 2,731,436 l/l956 Stetz et a1 252/305 2,746,796 5/1956 St. Germain... 239/337 X 2,908,446 10/1959 Strouse 222/402.1 2,934,512 4/1960 GOC1Shalk.... 117/160 X 3,111,497 1l/1963 Haas .[117/160X 3,121,642 2/1964 Biskup.... 117/15 3,148,127 9/1964 Marsh t 167/871 3,234,038 2/1966 Stephens et ll7/71 M 3,402,066 9/1968 Calfras [17/104 A 3,583,642 6/1971 Crowell et all 222/402.1 3,684,185 8/1972 Milcos 239/337 OTHER PUBLICATIONS Herzka, International Encyclopedia of Pressurized Packaging (1966) Pergamon Press, pp. 532, 545 and 546.
Felsher et al., Paint And Varnish Production, May, 1963, pp. 42-45.
Primary Examiner-Robert S. Ward, Jr. Attorney, Agent, or Firm-Edwin E. Greigg 57] ABSTRACT 6 Claims, No Drawings SPRAYER FOR DECORATING SURFACES This is a division of application Ser. No. 221,033, filed Jan. 26, 1972 and now US. Pat. No. 3,764,067 which is a continuation-in-part of application Ser. No. 44,590, filed June 8, 1970 and now abandoned, entitled Method for Decorating Surfaces.
SUMMARY OF THE INVENTION This invention relates to a method for depositing solid, highly reflectant, non-leafing, sparkling, colored, macro, polymer-coated metal flakes on any primed or unprimed substrate, e.g. styrofoam, metal, wood, plastic, paper, which can support a film.
Colored metal flakes in the macro" size range have heretofore been limited to application from conventional, heavy-duty spray equipment, or have had to be roller coated, screen printed, cast, flocked, or extruded.
It is an object of this invention to apply, solid, highly reflectant, non-leafing, colored, macro size metal flakes from a manually-operated aerosol spray can. By the practice of this invention, students, artists, home handymen, housewives, auto enthusiasts, and the like can apply dramatic glitter coatings to numerous substrates and can obtain esthetically pleasing effects previously unavailable except by using heavy-duty spray equipment.
Prior to this invention, it was known in the art to apply micro leafing metal particles from manuallyoperated spray cans. The formulations used by Felsher et al. (Paint and Varnish Products, May, 1963, at p. 45), by Herzka (International Encyclopedia of Pressurized Packaging, Pergamon Press, 1966, at pgs. 545, 546), and by Stetz et al. (US. Pat. No. 2,731,436) create a mirror-like surface by the use of leafing metal flakes, usually in the size range of 200-325 mesh (00029-00017 inch). Coatings made by aerosol application of these formulations feel smooth, show a decided tendency to crock, and become dull after a short time.
Stephens et al. (US. Pat. No. 3,234,038) teach the use of 100-200 mesh (00058-00029 inch) nonleafing aluminum flakes in a formulation applied from conventional heavy-duty spray equipment to a primed surface and then baked. A transparent lacquer overcoat is required. The compositions do not adhere satisfactorily to unprimed surfaces and are relatively dull grey in appearance.
Coatings made according to the present invention appear sparkling and glittery and feel rough to the touch. Good adhesion to unprimed surfaces, e.g. metal, wood, plastic, paper, is obtained by the simple process of spraying the glitter coating composition from a manually-operated aerosol can. No overcoat is required, since the glitter coatings show virtually no tendency to peel, crock, or rub off.
The effect produced by the solid, highly reflectant, non-leafing, polymer-coated metal flakes of this invention is thought to reside in propelling the flakes onto a substrate in a random, unoriented fashion. Rapid evaporation of volatile solvent from the vehicle results in the flakes being embedded randomly in the resin from the vehicle system. Each flake is thought to be coated with a thin layer of resin. Part of the brilliance and sparkle of the coatings of this invention is thought to be due to reflectance of light through the coating on each metal flake.
The size of the macro metal flakes used in the practice of this invention may be varied according to the effect desired. Use of a larger size flake gives a more dramatic appearance to the substrate sprayed than use of smaller flakes. The size of the metal flake may vary from about 0.004" X 0.002" X 0.00032" to about 0.008" X 0.008" X 0.001". Flakes in the range from 0.004" X 0.002" X 0.00045 to 0.008" X 0.008" X 0.00045" are preferred. Tolerances are within 1 5% in both surface dimensions and thickness.
Metal flakes particularly preferred for the purpose of this invention are precision-cut, regular shapes of highly polished aluminum foil coated with a variety of coatings, depending on the type of colored flake desired. The epoxy coated type are aluminum foil flakes coated with a pigmented, or unpigmented, baked epoxy resin. The vinyl coated type are aluminum foil flakes coated with a pigmented, or unpigmented, vinyl resin. The nitrocellulose coated type are aluminum foil flakes coated with a pigmented, or unpigmented, nitrocellulose type lacquer.
Colors of the flakes include the following, or mixtures thereof:
Bright Silver Purple Sand Prussian Blue Pale Gold Royal Blue Dark Gold Medium Blue Golden Fiesta Aqua Chartreuse Emerald Golden Orange Lavender Bright Orange Brilliant Copper Apricot Antique Brown Brilliant Red Black Fuchsia Vehicle systems which have successfully been used in this method include conventional acrylic resins, e.g. F-10 [a poly(methyl methacrylate) (Rohm and Hass Co. )1; alkyd resins, e.g. vinyltoluene soya alkyd; methyl cellulose; and the like. The polymer used in the vehicle system may be any polymer which is not reactive with the coating on the metal flakes. The vehicle composition is limited only by the strength of the solvents used. Solvents used in the aerosol formulations should be of low solvent strength. However, this does not preclude the use of minor percentages of strong solvents. Very strong solvents are to be avoided, as they could possibly solubilize and extract colorants from the coated aluminum flakes.
Propellants used include both halogenated types and hydrocarbon types of conventional aerosol propellants.
In the examples infra there will be shown a base consisting of the metal flakes and vehicle therefor. This base is delivered to an open aerosol can, suitable agitators are added (spherical marbles or rivets are adequate); the spray valve is crimped onto the aerosol can, and the propellant is injected into the can. While low temperature filling is possible, the injection method is more suited to the practice of this invention.
Conventional, cylindrical aerosol cans of any size can be used for the practice of this invention; four ounce to 16 ounce cans are preferred.
The velocity at which the glitter coating composition is exhausted from the spray can is a critical aspect of successful application of compositions containing macro flakes from a spray container. Conventional sprayheads apparently confine the mixing and atomization of spray compositions to a localized region adjacent to the nozzle outlet. An unsatisfactory spray pattern often results, particularly with liquid products containing dispersed solid particles or flakes, e. g. speciality paints containing flakes of metallic, plastic, or glass glitter. The particles in these products apparently serve as nuclei for agglomeration of liquid in relatively large droplets which collect in the area between the sprayhead and the valve mounting cap. As exhaustion of the aerosol from the can is continued, the bulk of collected fluid is carried by entrainment as a blotch, spatter, or unsightly non-uniform area on the substrate being sprayed. These poor results become even more poor as the size of the suspended flakes or particles increases.
A sprayhead suitable for propulsion of macro particles of this invention requires the incorporation of an elongated expansion chamber upstream of the nozzle orifice. The diameter of the expansion chamber should ideally be significantly larger than that of the passageway leading to the valve from a dip tube or other means for conveying glitter coating composition to the passageway of the sprayhead.
The length of the expansion chamber should preferably be several times its diameter. For example, a sprayhead incorporating an expansion chamber at least five times as long as its diameter not only gives a spray pattern of greatly improved uniformity, but also gives increased product flow rate for a given nozzle orifice diameter and propellant pressure.
Thus, in the operation of this invention, the glitter coating composition and propellant mixture undergoes the steps of 1) flow through a passageway of substantially uniform cross-sectional area, (2) expansion within an elongated expansion chamber, and (3) acceleration through a constricted orifice. The glitter coating issues from the orifice in the form of a finelydivided well-mixed spray.
In a particularly useful sprayhead, the expansion chamber is placed angularly with respect to the passageway of the sprayhead. Glitter coating composition first passes through the passageway of substantially uniform cross-sectional area. The abrupt change of direction which the composition undergoes as it enters the expansion chamber induces a swirling flow which promotes intimate mixing of flakes, vehicle, and vaporizing propellant as the composition passes through the expansion chamber prior to issuing from the constricted orifice as a very fine spray.
Dimensions of a typical sprayhead which gives results useful for the purpose of this invention are:
Inlet slot 0.060" X 0125" Chamber 0.112" diameter X 0.625 long Orifice 0.032" diameter While the invention is not limited to specific sprayhead slots and orifices, the following sprayheads, manufactured by Newman-Green, Inc., have been found to be suitable:
Valves useful in the practice of this invention include B and R type valves manufactured by Newman-Green, Inc. of Addison, Illinois. Valves denoted Rl0l28 and B-l4-l0-l28 are especially useful, although other valves of these series are operative.
When larger sized metal flakes are used, the use of a vapor tap valve assembly is preferred, as this assembly substantially eliminates the possibility of the valve dip tube becoming clogged with metal flakes. The vapor tap feature is available on both B and R type valves, supra.
To further ensure elimination of clogging the valve dip tube with macro flakes, the dip tube should terminate slightly above the level normally occupied by a compacted sludge of metal flakes of the coating composition which forms between successive usages of the aerosol spray can. Negligible loss of material results from this arrangement of the dip tube.
Before spraying the product of this invention, the coating composition is agitated thoroughly by shaking the aerosol can. The spherical marbles or rivets charged to the can operate as agitating means. Label directions on the can should indicate the need for frequent shaking to assure that equal aliquots of macro flakes and vehicle are discharged throughout the use of a given spray can.
In the practice of the invention, aerosol formulations are charged into the aerosol can, the sprayhead is affixed, the aerosol can is shaken to ensure distribution of the contents, the sprayhead is pressed, and the valve assembly is actuated to deliver the product onto the desired substrata.
The following are examples of formulations that may be used:
EXAMPLE 1 Base 2.0 g F- l 0 Rohm and Haas Acrylic Solution 4.0 g Pale Gold Epoxy 0.008" X 0.006" X 0.00045" Flake 39.0 g Textile Spirits Amsco Propellent -SS.O g Freon l2/Vinyl Chloride Blend 65%/35% Du Pont EXAMPLE 2 Base 2.5 g F-l0 3.0 g Pale Gold Epoxy 0.008" X 0.006" X 0.00045" 67.5 g Cyclohexane Am. Min. Sp. Propellant 30.0 'g A- Hydrocarbon Propellant Aeropres, Inc.
EXAMPLE 3 Base 20.0 g F-lO 2.0 g Pale Gold Epoxy 0.008" X 0.008" X 50.0 g Process Naphtha Humble Oil 0.1 g DC-200 Silicone Dow Corning 0.9 g Toluol Propellant 30.0 g A-70 Hydrocarbon Propellant EXAMPLE 4 Base-250g F-10 25.0 g Process Naphtha 2.0 g Pale Gold Epoxy 0.008" X 0.004 X Propellant 50.0 g Freon l2/Vinyl Chloride EXAMPLE 5 Base-300g F-lO 20.0 g Process Naphtha 0.1 g DC-200 Silicone 0.9 g Toluol 2.0 g Pale Gold Epoxy 0.008" X 0.008" X Propellant 50.0 g Freon 12/Vinyl Chloride EXAMPLE 6 Base 5.0 g Pale Gold Epoxy 0.008 X 0.008" X 0.00045" 0.5 g Malori Maroon Tint Paste 15.0 g Vinyl Toluene Soya Alkyd Solution 60% N 30.0 g Process Naphtha Propellant 50.0 g Freon l2/Vinyl Chloride 65%/35% EXAMPLE 7 Base 5.0 g Pale Gold Epoxy 0.008" X 0.008" X 0.00045" 0.25 g Phthalo Green Tint Paste 15.0 g Vinyl Toluene Soya Alkyd Solution 60% V 25.0 g Process Naphtha Propellant 55.0 g Freon l2/Vinyl Chloride 65%/ 35% EXAMPLE 8 Base 4.0 g Pale Gold Epoxy 0.008" X 0.008" X 0.00045" 20.0 g Vinyl Toluene Soya Alkyd Solution 60% V N M 36.0 g Process Naphtha 10.0 g lsopropyl Alcohol Propellant 30.0 g A-70 Propellant EXAMPLE 9 EXAMPLE 10 Base 25.0 g F-l 25.0 g Process Naphtha 2.0 g Silver Vinyl Coated Flake 0.008" X 0.004
X0.00l Propellant 50.0 g A- Hydrocarbon Propellant EXAMPLE 1 1 Base 4.0 g Medium Blue Nitrocellulose Coated Aluminum Flakes 41.0 g Water 5.0 g 3% Methocel CPS 4000 in water 30.0 g lsopropyl Alcohol 0.4 g Emcol 14 Propellant 20.0 g A-70 Hydrocarbon Propellant It will be apparent from the foregoing examples that color can be imparted to the vehicle by inclusion therein of a dye or transparent pigment. By the use of transparent colored and colorless vehicles and by the use of metal flakes coated with unpigmented and pigmented resins, a myriad variety of glitter effects can be obtained.
That which is claimed is:
1. A manually-operated aerosol can of glitter coating composition comprising a fluid-tight can provided with a dispensing means for a glitter coating composition, wherein the glitter coating composition comprises from about 0.5% to about 10% of solid, highly reflectant, non-leafing, polymer-coated metal flakes, from about 40 to about 83% of a vehicle system for the metal flakes, and from about 15 to about 55% of an aerosol propellant, and wherein the dispensing means comprises a sprayhead in which an elongated expansion chamber is incorporated between a constricted orifice and an elongated passage of substantially uniform cross-sectional area through which said glitter coating composition flows into the sprayhead.
2. The manually-operated aerosol can of claim 1, wherein said sprayhead is provided with a vapor tap.
3. The manuallyoperated aerosol can of claim 1, wherein said sprayhead is provided with a vapor tap and wherein a means through which said glitter coating composition flows into the elongated passage of substantially uniform cross-sectional area terminates slightly above a level normally occupied by a compacted sludge of said metal flakes between successive usages of said aerosol can.
4. The manually-operated aerosol can of claim 1, wherein the elongated expansion chamber is placed angularly with respect to the elongated passage.
5. The manually-operated aerosol can of claim 1,
wherein the elongated expansion chamber is placed anof said aerosol can.

Claims (5)

  1. 2. The manually-operated aerosol can of claim 1, wherein said sprayhead is provided with a vapor tap.
  2. 3. The manually-operated aerosol can of claim 1, wherein said sprayhead is provided with a vapor tap and wherein a means through which said glitter coating composition flows into the elongated passage of substantially uniform cross-sectional area terminates slightly above a level normally occupied by a compacted sludge of said metal flakes between successive usages of said aerosol can.
  3. 4. The manually-operated aerosol can of claim 1, wherein the elongated expansion chamber is placed angularly with respect to the elongated passage.
  4. 5. The manually-operated aerosol can of claim 1, wherein the elongated expansion chamber is placed angularly with respect to the elongated passage, and wherein said sprayhead is provided with a vapor tap.
  5. 6. The manually-operated aerosol can of claim 1, wherein the elongated expansion chamber is placed angularly with respect to the elongated passage, and wherein said sprayhead is provided with a vapor tap, and wherein a further means through which said glitter coating composition flows into said elongated passage terminates slightly above a level normally occupied by a compacted sludge of said metal flakes between usages of Said aerosol can.
US00372033A 1972-01-26 1973-06-21 Sprayer for decorating surfaces Expired - Lifetime US3819119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00372033A US3819119A (en) 1972-01-26 1973-06-21 Sprayer for decorating surfaces

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US22103372A 1972-01-26 1972-01-26
US00372033A US3819119A (en) 1972-01-26 1973-06-21 Sprayer for decorating surfaces

Publications (1)

Publication Number Publication Date
US3819119A true US3819119A (en) 1974-06-25

Family

ID=26915430

Family Applications (1)

Application Number Title Priority Date Filing Date
US00372033A Expired - Lifetime US3819119A (en) 1972-01-26 1973-06-21 Sprayer for decorating surfaces

Country Status (1)

Country Link
US (1) US3819119A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501825A (en) * 1984-06-28 1985-02-26 Pennzoil Company Tire sealer and inflator
US5188263A (en) * 1991-07-22 1993-02-23 John R. Woods Spray-on wall surface texture dispenser
US5655691A (en) * 1992-02-24 1997-08-12 Homax Products, Inc. Spray texturing device
US5934518A (en) * 1992-02-24 1999-08-10 Homax Products, Inc. Aerosol texture assembly and method
US5957341A (en) * 1996-09-06 1999-09-28 Peter Kwasny Gmbh Spray can
US6048422A (en) * 1998-09-16 2000-04-11 Kim, Ii; John Method of applying glitter and the like to non-planar surfaces and three-dimensional articles
US20040195367A1 (en) * 2003-02-22 2004-10-07 Clark Rikk A. Dry flake sprayer and method
WO2006061635A1 (en) * 2004-12-08 2006-06-15 Aerochrome Limited Flake pigment mixture and multilayer coating method
US8251255B1 (en) 2004-07-02 2012-08-28 Homax Products, Inc. Aerosol spray texture apparatus for a particulate containing material
US8313011B2 (en) 1992-02-24 2012-11-20 Homax Products, Inc. Systems and methods for applying texture material to ceiling surfaces
US8317065B2 (en) 1992-02-24 2012-11-27 Homax Products, Inc. Actuator systems and methods for aerosol wall texturing
US8336742B2 (en) 2004-10-08 2012-12-25 Homax Products, Inc. Aerosol systems and methods for dispensing texture material
US8342421B2 (en) 2004-01-28 2013-01-01 Homax Products Inc Texture material for covering a repaired portion of a textured surface
US8353465B2 (en) 2003-04-10 2013-01-15 Homax Products, Inc Dispensers for aerosol systems
US8551572B1 (en) 2007-04-04 2013-10-08 Homax Products, Inc. Spray texture material compositions, systems, and methods with anti-corrosion characteristics
US8580349B1 (en) 2007-04-05 2013-11-12 Homax Products, Inc. Pigmented spray texture material compositions, systems, and methods
US8701944B2 (en) 1992-02-24 2014-04-22 Homax Products, Inc. Actuator systems and methods for aerosol wall texturing
US8844765B2 (en) 1993-03-12 2014-09-30 Homax Products, Inc. Aerosol spray texture apparatus for a particulate containing material
US8916181B1 (en) * 2010-10-08 2014-12-23 The Sherwin-Williams Company Glitter aerosol coating composition
US9156042B2 (en) 2011-07-29 2015-10-13 Homax Products, Inc. Systems and methods for dispensing texture material using dual flow adjustment
US9156602B1 (en) 2012-05-17 2015-10-13 Homax Products, Inc. Actuators for dispensers for texture material
US9248457B2 (en) 2011-07-29 2016-02-02 Homax Products, Inc. Systems and methods for dispensing texture material using dual flow adjustment
US9382060B1 (en) 2007-04-05 2016-07-05 Homax Products, Inc. Spray texture material compositions, systems, and methods with accelerated dry times
US9435120B2 (en) 2013-03-13 2016-09-06 Homax Products, Inc. Acoustic ceiling popcorn texture materials, systems, and methods
USD787326S1 (en) 2014-12-09 2017-05-23 Ppg Architectural Finishes, Inc. Cap with actuator
US9776785B2 (en) 2013-08-19 2017-10-03 Ppg Architectural Finishes, Inc. Ceiling texture materials, systems, and methods

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2287053A (en) * 1938-10-11 1942-06-23 Chadeloid Chemical Co Aluminum bronze containing compositions
US2731436A (en) * 1950-02-25 1956-01-17 Engine Parts Mfg Company Metallic paint
US2746796A (en) * 1953-08-05 1956-05-22 Pharma Craft Corp Metering valve aerosol bottle
US2908446A (en) * 1956-05-18 1959-10-13 Strouse Inc Spray tube
US2934512A (en) * 1954-09-20 1960-04-26 Du Pont Coating composition of methyl methacrylate polymer, copper bronze pigment, and transparent colored pigment and article coated therewith
US3111497A (en) * 1960-08-12 1963-11-19 Kenner Products Company Aqueous polyvinyl alcohol coating composition containing aluminum glitter pigment
US3121642A (en) * 1961-09-29 1964-02-18 Congoleum Nairn Inc Process for producing decorative surface covering
US3148127A (en) * 1960-05-16 1964-09-08 American Home Prod Aqueous pvp solution in two phase aerosol hair spray
US3234038A (en) * 1962-02-14 1966-02-08 Pittsburgh Plate Glass Co Resinous compositions employing nonleafing aluminum flake
US3402066A (en) * 1965-06-30 1968-09-17 William E. Caffray Methods of making decorative articles
US3583642A (en) * 1969-12-10 1971-06-08 Johnson & Son Inc S C Spray head for an aerosol dispenser
US3684185A (en) * 1970-11-13 1972-08-15 Avon Prod Inc Valve actuator

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2287053A (en) * 1938-10-11 1942-06-23 Chadeloid Chemical Co Aluminum bronze containing compositions
US2731436A (en) * 1950-02-25 1956-01-17 Engine Parts Mfg Company Metallic paint
US2746796A (en) * 1953-08-05 1956-05-22 Pharma Craft Corp Metering valve aerosol bottle
US2934512A (en) * 1954-09-20 1960-04-26 Du Pont Coating composition of methyl methacrylate polymer, copper bronze pigment, and transparent colored pigment and article coated therewith
US2908446A (en) * 1956-05-18 1959-10-13 Strouse Inc Spray tube
US3148127A (en) * 1960-05-16 1964-09-08 American Home Prod Aqueous pvp solution in two phase aerosol hair spray
US3111497A (en) * 1960-08-12 1963-11-19 Kenner Products Company Aqueous polyvinyl alcohol coating composition containing aluminum glitter pigment
US3121642A (en) * 1961-09-29 1964-02-18 Congoleum Nairn Inc Process for producing decorative surface covering
US3234038A (en) * 1962-02-14 1966-02-08 Pittsburgh Plate Glass Co Resinous compositions employing nonleafing aluminum flake
US3402066A (en) * 1965-06-30 1968-09-17 William E. Caffray Methods of making decorative articles
US3583642A (en) * 1969-12-10 1971-06-08 Johnson & Son Inc S C Spray head for an aerosol dispenser
US3684185A (en) * 1970-11-13 1972-08-15 Avon Prod Inc Valve actuator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Felsher et al., Paint And Varnish Production, May, 1963, pp. 42 45. *
Herzka, International Encyclopedia of Pressurized Packaging (1966) Pergamon Press, pp. 532, 545 and 546. *

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501825A (en) * 1984-06-28 1985-02-26 Pennzoil Company Tire sealer and inflator
US5188263A (en) * 1991-07-22 1993-02-23 John R. Woods Spray-on wall surface texture dispenser
US8887953B2 (en) 1992-02-24 2014-11-18 Homax Products, Inc. Systems and methods for applying texture material to ceiling surfaces
US9079703B2 (en) 1992-02-24 2015-07-14 Homax Products, Inc. Actuator systems and methods for aerosol wall texturing
US8584898B2 (en) 1992-02-24 2013-11-19 Homax Products, Inc. Systems and methods for applying texture material to ceiling surfaces
US8505786B2 (en) 1992-02-24 2013-08-13 Homax Products, Inc. Actuator systems and methods for aerosol wall texturing
US8701944B2 (en) 1992-02-24 2014-04-22 Homax Products, Inc. Actuator systems and methods for aerosol wall texturing
US9845185B2 (en) 1992-02-24 2017-12-19 Ppg Architectural Finishes, Inc. Systems and methods for applying texture material
US8573451B2 (en) 1992-02-24 2013-11-05 Homax Products, Inc. Actuator systems and methods for aerosol wall texturing
US9181020B2 (en) 1992-02-24 2015-11-10 Homax Products, Inc. Actuator systems and methods for aerosol wall texturing
US5655691A (en) * 1992-02-24 1997-08-12 Homax Products, Inc. Spray texturing device
US5934518A (en) * 1992-02-24 1999-08-10 Homax Products, Inc. Aerosol texture assembly and method
US8985392B2 (en) 1992-02-24 2015-03-24 Homax Products, Inc. Systems and methods for applying texture material to ceiling surfaces
US8313011B2 (en) 1992-02-24 2012-11-20 Homax Products, Inc. Systems and methods for applying texture material to ceiling surfaces
US8317065B2 (en) 1992-02-24 2012-11-27 Homax Products, Inc. Actuator systems and methods for aerosol wall texturing
US8844765B2 (en) 1993-03-12 2014-09-30 Homax Products, Inc. Aerosol spray texture apparatus for a particulate containing material
US5957341A (en) * 1996-09-06 1999-09-28 Peter Kwasny Gmbh Spray can
US6048422A (en) * 1998-09-16 2000-04-11 Kim, Ii; John Method of applying glitter and the like to non-planar surfaces and three-dimensional articles
US7207497B2 (en) 2003-02-22 2007-04-24 Clark Rikk A Dry flake sprayer and method
US20040195367A1 (en) * 2003-02-22 2004-10-07 Clark Rikk A. Dry flake sprayer and method
US9132953B2 (en) 2003-04-10 2015-09-15 Homax Products, Inc. Dispenser for aerosol systems
US8353465B2 (en) 2003-04-10 2013-01-15 Homax Products, Inc Dispensers for aerosol systems
US8820656B2 (en) 2003-04-10 2014-09-02 Homax Products, Inc. Dispenser for aerosol systems
US9248951B2 (en) 2004-01-28 2016-02-02 Homax Products, Inc. Texture material for covering a repaired portion of a textured surface
US9187236B2 (en) 2004-01-28 2015-11-17 Homax Products, Inc. Aerosol system for repairing a patched portion of a surface
US8342421B2 (en) 2004-01-28 2013-01-01 Homax Products Inc Texture material for covering a repaired portion of a textured surface
US8251255B1 (en) 2004-07-02 2012-08-28 Homax Products, Inc. Aerosol spray texture apparatus for a particulate containing material
US8561840B2 (en) 2004-07-02 2013-10-22 Homax Products, Inc. Aerosol spray texture apparatus for a particulate containing material
US9004316B2 (en) 2004-07-02 2015-04-14 Homax Products, Inc. Aerosol spray texture apparatus for a particulate containing material
US8336742B2 (en) 2004-10-08 2012-12-25 Homax Products, Inc. Aerosol systems and methods for dispensing texture material
US9004323B2 (en) 2004-10-08 2015-04-14 Homax Products, Inc. Aerosol systems and methods for dispensing texture material
US8622255B2 (en) 2004-10-08 2014-01-07 Homax Products, Inc. Aerosol systems and methods for dispensing texture material
US20080075851A1 (en) * 2004-12-08 2008-03-27 Adam Robertson-Young Flake Pigment Mixture And Multilayer Coating Method
US8017187B2 (en) 2004-12-08 2011-09-13 Aerochrome Limited Flake pigment mixture and multilayer coating method
AU2005313105B2 (en) * 2004-12-08 2011-07-14 Aerochrome Limited Flake pigment mixture and multilayer coating method
WO2006061635A1 (en) * 2004-12-08 2006-06-15 Aerochrome Limited Flake pigment mixture and multilayer coating method
US8784942B2 (en) 2007-04-04 2014-07-22 Homax Products, Inc. Spray texture material compositions, systems, and methods with anti-corrosion characteristics
US8551572B1 (en) 2007-04-04 2013-10-08 Homax Products, Inc. Spray texture material compositions, systems, and methods with anti-corrosion characteristics
US8883902B2 (en) 2007-04-04 2014-11-11 Homax Products, Inc. Aerosol dispensing systems and methods and compositions for repairing interior structure surfaces
US9580233B2 (en) 2007-04-04 2017-02-28 Ppg Architectural Finishes, Inc. Spray texture material compositions, systems, and methods with anti-corrosion characteristics
US9415927B2 (en) 2007-04-04 2016-08-16 Homax Products, Inc. Spray texture material compositions, systems, and methods with anti-corrosion characteristics
US8580349B1 (en) 2007-04-05 2013-11-12 Homax Products, Inc. Pigmented spray texture material compositions, systems, and methods
US9382060B1 (en) 2007-04-05 2016-07-05 Homax Products, Inc. Spray texture material compositions, systems, and methods with accelerated dry times
US9592527B2 (en) 2007-04-05 2017-03-14 Ppg Architectural Finishes, Inc. Spray texture material compositions, systems, and methods with accelerated dry times
US8916181B1 (en) * 2010-10-08 2014-12-23 The Sherwin-Williams Company Glitter aerosol coating composition
US9156042B2 (en) 2011-07-29 2015-10-13 Homax Products, Inc. Systems and methods for dispensing texture material using dual flow adjustment
US9248457B2 (en) 2011-07-29 2016-02-02 Homax Products, Inc. Systems and methods for dispensing texture material using dual flow adjustment
US9156602B1 (en) 2012-05-17 2015-10-13 Homax Products, Inc. Actuators for dispensers for texture material
US9435120B2 (en) 2013-03-13 2016-09-06 Homax Products, Inc. Acoustic ceiling popcorn texture materials, systems, and methods
US9776785B2 (en) 2013-08-19 2017-10-03 Ppg Architectural Finishes, Inc. Ceiling texture materials, systems, and methods
USD787326S1 (en) 2014-12-09 2017-05-23 Ppg Architectural Finishes, Inc. Cap with actuator

Similar Documents

Publication Publication Date Title
US3764067A (en) Method for decorating surfaces
US3819119A (en) Sprayer for decorating surfaces
US4547410A (en) Process for applying a multi-layer paint containing mica pigment
US2862834A (en) Method of coating an article with a heat expandable coating composition and coating composition therefor
US2971700A (en) Apparatus for coating articles with chemically reactive liquids
US3764069A (en) Method and apparatus for spraying
US3734406A (en) Method and apparatus for producing a flat fan paint spray pattern
US2511627A (en) Method for producing spatter finish coatings
US4983424A (en) Method for forming a permanent foam coating by atomization onto a substrate
US2326001A (en) Simulated hammered metal finish
US2964417A (en) Multicolor coating compositions
HU216132B (en) Powder-coating process, a device for carrying out the process and a coating powder for use in the process
US3725119A (en) Method for decorating surfaces
US3382089A (en) Method for producing decorative reticulated coatings on impermeable surfaces
JPH0356175A (en) Surface decoration method providing gloss difference
US5723178A (en) Method for making thermochromic writing instruments using topically applied thermochromic pigments
JPH0838993A (en) Surface coating method
US2316041A (en) Process for simulating hammered metal
US3649586A (en) "flemishing" method and articles
JP3547066B2 (en) Method for forming marble-like patterned coating film and article formed with the coating film
JPH10155545A (en) Decorated cosmetic housing container and decoration method
JP3451209B2 (en) Method for forming coating film having three-dimensional pattern
JPH09314042A (en) Multicolor pattern coating method
US578417A (en) Method of ornamenting metal surfaces
JP2004330185A (en) High-speed rotary application method for liquid colored coating agent