US3808997A - Method of clearing a path through ice - Google Patents

Method of clearing a path through ice Download PDF

Info

Publication number
US3808997A
US3808997A US00295804A US29580472A US3808997A US 3808997 A US3808997 A US 3808997A US 00295804 A US00295804 A US 00295804A US 29580472 A US29580472 A US 29580472A US 3808997 A US3808997 A US 3808997A
Authority
US
United States
Prior art keywords
ice
water
interface
air
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00295804A
Inventor
C Bastian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Global Marine Inc
Original Assignee
Global Marine Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global Marine Inc filed Critical Global Marine Inc
Priority to US00295804A priority Critical patent/US3808997A/en
Application granted granted Critical
Publication of US3808997A publication Critical patent/US3808997A/en
Assigned to CHEMICAL BANK, A NY CORP. reassignment CHEMICAL BANK, A NY CORP. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GLOBAL MARINE INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/08Ice-breakers or other vessels or floating structures for operation in ice-infested waters; Ice-breakers, or other vessels or floating structures having equipment specially adapted therefor

Definitions

  • ABSTRACT An icebreaking arrangement in which air is applied under sufficient pressure to lower the surface of the water at an ice-water interface to a level below the bottom of the ice over an area which extends on either side of the interface.
  • the unsupported weight of the ice in the region in which the water level is depressed produces failure and breaking off of pieces of ice at the interface.
  • the increased pressure is produced by an air-tight platform having a downwardly extending skirt around the periphery, air under pressure being admitted to the region below the platform.
  • the platform may be mounted on the bow of a ship or moved ahead of a ship to clear a channel through the ice.
  • This invention relates to clearing a channel for ships through ice, and more particularly is concerned with a method utilizing air pressure for breaking a path through ice for a ship to pass.
  • the method of the present invention tends to force the broken pieces of ice outwardly underneath the unbroken ice, thus providing a clearer channel of water for the ship to pass through.
  • drag forces due to friction and the wedg-' ing of ice pieces is greatly reduced.
  • an icebreaking vessel in which pitching motion of the vessel is induced in such a manner that the bow of the icebreaker applies vertical forces to the edge of the ice so as to continuously break away pieces of the ice to open a channel.
  • mechanical icebreaking in which the mass of the ship is utilized to apply force to the ice can result in the expenditure of large amounts of energy in continuously accelerating and decelerating the mass of the vessel.
  • icebreaking techniques have been developed which apply vertical forces to the ice at the ice/water interface.
  • One such arrangement for example, releases high-pressure gases at controlled time intervals at a point beneath the ice slightly ahead of the ice/water interface. This is accomplished, for example, by burning a pressurized air/fuel mixture in a combustion chamber to produce high pressures and then releasing the exhaust gases at a point beneath the surface of the ice. The release of gases acts as an explosion, cracking and lifting the pieces of ice.
  • the overall efficiency of such a system is reduced due to the fact that the ice is being lifted against the force of gravity.
  • the present invention is directed to an improved method for breaking a channel through ice which is highly efficient'in breaking ice of substantial thickness.
  • the air pressure is built upto a level which is sufficient to force the surface of the water downwardly over the area of increased pressure vto a level below the bottom surface of the ice, whereby the ice forms a ledge adjacent the interface that is unsupported by any buoyancy effect of the water.
  • Pressure is applied by apparatus including a platform around the perimeter of which is provided a flexible'skirt.
  • the platform is mounted on the bow of a vessel, extending in cantilever fashion in front of the vessel. Air under pressure is pumped into the space formed by the platform and downwardly projecting skirt to build up the pressure on the underlying ice and water surfaces.
  • FIG. 1 is a side elevational view of one embodiment
  • FIG. 5 is an elevational view of a further modification in which the icebreaking apparatus is pushed ahead of the bow of a ship;
  • FIG. 6 is a plan view of the modification of FIG. 5; 7
  • FIG. 7 is a plan view of a further modification of an icebreaker incorporating a twin-hulled or catamaran structure
  • FIG. 8 is an elevational view of the modification of FIG. 7.
  • FIG. 9 is a sectional view taken on the line 9-9 of FIG. 8.
  • the numeral indicates generally an icebreaking vehicle which structurally is similar in design to the air cushion vehicle described in detail in copending application Ser. No. l30,462 filed April 1, 1971, and assigned to the same assignee as the present invention.
  • the vehicle 10 may be pulled along by a cable 12 using a conventional tractor.
  • the air cushion vehicle 10 comprises a barge-type hull 14 with a flexible air containment skirt 16 around the perimeter.
  • the skirt is preferably constructed of a rubbercoated nylon and is segmented in its construction, in a manner described in more detail in the above-identified application.
  • the segmented construction provides a skirt which is strong enough to contain the air pressure which is built up under the hull, as hereinafter described, and at the same time is flexible enough to yield to obstructions and irregular conditions which are encountered during movement of the vehicle.
  • Air is forced under the hull, inflating the skirt and lifting the unit, by means of two large fans 18 and 20.
  • the fans build up sufficient pressure within the spaced formed by the hull 14, the skirt 16, and the surface above which the vehicle is positioned to support and float the unit of the vehicle on a cushion of air.
  • the vehicle 10 In operating as an icebreaker, the vehicle 10 after being pressurized is moved on to the ice-covered body of water.
  • the weight of the vehicle which is transferred to the'surface of the ice by the air, is normally sufficient to crack the ice and depress the pieces of fractured ice and the surface of the water in which the ice is floating downwardlyimmediately beneath the vehicle. This initially forms an exposed edge between the unbroken ice and the broken ice and water. If the weight is insufficient to break and form an exposed ice/water interface, this may be done by some conventional mechanical means.
  • the portion of the ice sheet 21 extending under the ve+ hicle therefore is no longer buoyantly supported on the surface of the water. Since the air pressure beneath and above the ice is the same, the full weight of that portion of the ice which is beneath the vehicle is supported entirely by the internal strength of the ice itself.
  • the edge of the ice sheet, from which chunks of ice continuously break off beneath the vehicle, is curved, since at the center part of the vehicle the ice is less able to support its own weight than at the outer edges of the vehicle where the surrounding ice gives added support.
  • the I pressure surges can be enhanced by controlling the fans and also by controlling the ballast weight in the vehicle. It should be noted that the greater the ice thickness the widerthe beam of the air cushion vehiclemust be to produce ice failure due to the unsupported weight of the expanse of ice at the interface, since failure occurs when the span of ice beneath the vehicle is unable to support its own weight in the absence of an upward buoyant force of the water.
  • FIGS. 3 and 4 One such arrangement is shown in FIGS. 3 and 4 in which the pressurizing structure 22 is integrated with an ic ebreaking ship indicated generally at 24.
  • the ship 24 is preferably of a type described in detail in copending application Ser. No. 183,466, filed Sept. 24, 1971,
  • the ship 24 includes a hull 26 of generally conventional configuration, but with the bow portion being designed with a portion 30 of high positive rake and which is reversely curved to merge into a portion 32 of high negative rake at the water line.
  • the ship 24 is provided with apparatus for inducing a pitching motion of the ship by shifting the center of buoyancy in a fore and aft direction at a controllable frequency. This is accomplished pneumatically by providing a forward pitching chamber 34 and an aft pitching chamber 36 that are rapidly and alternately filled with water and air. This air is forced into the chamber 34 bya pump 38 through an inlet duct 40,
  • Air in the rear chamber 36 is similarly controlled, all in the manner described in detail in the above-identified copending application.
  • the structure 22 includes an air-tight horizontal frame 46 which is wider than the ships beam and which is mounted adjacent the bow of the ship so as to project outwardly on either side and in front of the bow structure.
  • the frame 46 is preferably hinged to the deckof the ship 24 alongthe back edge, as indicated at 48.
  • the frame supports a flexible skirt 50 which extends around the perimeter of the frame 46 and terminates against the sides of the ships hull.
  • the skirt 50 which is constructed in the same manner as the skirt 16 described above in connection with FIGS. 1 and 2, provides a confined space surrounding the bow of the ship which can be maintained at substantially increased pressure.
  • a fan 52 mounted in the hull of the ship 24 is connected by suitable ducts extending outside the hull into the space beneath the frame 46.
  • the frame 46 can be tipped upwardly, as by means of a cable 56 extending through a pulley on a mast 58 to a deck winch 59.
  • Frame 46 is weighted by ballast water or other means, or may be mechanically locked into position to the ship to provide sufficient resistance to the upward force produced by the pressurized air reacting against the frame 46 within the skirt 50.
  • the flexibility and vertical extent of the skirt 50 is such that it does not interfere with the induced pitching motion of the ship.
  • the increased air pressureapplied to the surface of the water surrounding the bow of the ship depresses the water level below the bottom of the ice reducing the buoyancy support of the ice in the same manner as described above in connection with FIGS. 1 and 2.
  • the unsupported weight of the ice makes a significant contribution to the forces applied to the ice causing failure and breaking up of the ice in front of the ship.
  • the air under pressure extends outwardly underneath the ice causing lifting and buckling of the ice a substantial distance in front of the ship, further weakening the ice, in the manner described above.
  • the air also produces the effect of pushing the broken sections of ice outwardly away from the hull, thus reducing the drag forces encountered in pushing the ship through the channel of broken ice and water.
  • FIG. 3A A further modification is shown in FIG. 3A in which the outlet duct from the fan 52 is provided with a butterfly or similar type of valve 54 by which the flow of air from the fan into the space in front of the bow may be modulated at a controlled frequency, as by a valve control mechanism 57.
  • a valve control mechanism 57 By modulating the pressure, it is possible to set up vibrations within the unsupported ledge of ice extending into the pressurized space below the frame 46. Since the ice is not floating on the surface of the water in this region, the damping of such vibrations is greatly reduced and it is therefore easier to induce resonant effects at the natural frequency of the ice structure, which can produce extremely high stress and failure of ice.
  • FIGS. 5 and 6 A further modification of the present invention is shown in the arrangement of FIGS. 5 and 6 in which the icebreaker unit, instead of being pulled across the surface of the ice, as described above in connection with FIGS. 1 and 2, can be pushed ahead of a conventional ship for opening a channel in front of the ship through the ice.
  • the ice-breaking unit consists of a hull 60 having a segmented skirt 62 extending downwardlyaround the periphery. The space enclosed by the skirt 62 is pressurized by a pair of fans 64 and 66 mounted on the deck of the hull 60.
  • the icebreaking unit supports itself on a cushion of air.
  • a pair of retractable frames 70 and 72 which extend out from the rear of the icebreaking unit and are hingedly attached to the hull 60 by a suitable'hinge structure, as indicated at 74 and 76, respectively.
  • the frames 70 and 72 rotatably support a pair of rollers 78 and 8.0 which are positioned to engage the sides of the ship on either side of the bow.
  • a pair of lines 82 and 84 are secured around cleats 86 on the deck of the hull 60 and are held under tension by winches (not shown) on the deck of the ship 68.
  • the hull 60 is provided with'a plurality of ballast tanks, indicated at 88, by which the weight of the icebreaking unit can be varied depending upon the required air-pressure to depress the water surface below the hull 60 to a depth below the bottom of the ice.
  • the thicker the ice the greater the pressure required to depressthe waterlevel and accordingly the greater the counteracting weight of the icebreaking unit must be.
  • the icebreaking unit may also be provided with deflector plates 90 suitably mounted below the hull 60 and positioned to deflect the particles of broken ice later. ally outwardly beneath the unbroken ice sheet.
  • the icebreaking unit By making the icebreaking unit self-contained with its own source of power, it can be'operated independently of the ship 68 if required. To this end, the icebreaking unit is provided with its own retractable propeller drive system. Two such propeller drives are indicated at 91 and 92, the propeller drives being hingedly supported at the rear of the hull 60.
  • FIGS. 7, 8 and 9 An arrangement adapted to a catamaran design is shown in FIGS. 7, 8 and 9.
  • the vessel includes two deep-- tional skirt 108 extends downwardly from the deck 104 in the space between the two hulls at a point near the stern of the vessel.
  • the space between the two hulls combines with the space defined by the front skirt and the rear skirt 108 to form an enclosed region into which air is forced under pressure by a suitable fan (not shown).
  • a suitable fan not shown
  • the level of the water in front and between the two hulls can be depressed below the bottom of the surrounding ice sheet.
  • hinging the platform 106 the air-cushion system can be retracted out of the way so that any ridges can be rammed by the vessel without damage tothe aircushion system.
  • a portion of the air directed into the space between the two hulls may be released along the outer sides-of the two hulls. As shown in FIG. 9, this may be done by providing ducts 112 which extend through the two hulls, bubbling air below the water line on the outer sides of the two hulls. The air is releasedalong the length of the two hulls on the outboard sides of the vessel. The air may also be released along the keel, but a separate source of air at higher pressure than the air in the plenum formed by the skirts is then required.
  • the method of breaking surface ice on a body of water to clear a ship lane comprising the steps of: creating an ice/water interface between the surface ice and an area of open water, applying air under pressure to an area above the surface of the open water and the adjacent ice on either side of the interface with sufficient force to lower the surface of the water below the bottom of the ice adjacent the interface whereby the ice away from the water to continuously break off the ice at the interface.
  • the method of breaking ice to clear a path through the ice comprising the steps: forming an ice/water interface between surface ice and open water that is long relative to the thickness of the ice, and applying increased air pressure to the surface of the open water along said interface to depress the level of the water and reduce the upward buoyancy force of the water on the ice along the interface, the water being depressed over sufficient area that the unsupported weight of the ice causes the pieces of ice to break off along the interface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

An icebreaking arrangement in which air is applied under sufficient pressure to lower the surface of the water at an icewater interface to a level below the bottom of the ice over an area which extends on either side of the interface. The unsupported weight of the ice in the region in which the water level is depressed produces failure and breaking off of pieces of ice at the interface. The increased pressure is produced by an air-tight platform having a downwardly extending skirt around the periphery, air under pressure being admitted to the region below the platform. The platform may be mounted on the bow of a ship or moved ahead of a ship to clear a channel through the ice.

Description

United States Patent [191 Bastian, Jr.
[ METHOD OF CLEARING A PATH THROUGH ICE [75] Inventor: Clyde E. Bastian, Jr., Millington,
[73] Assignee: Global Marine Inc., Los Angeles,
Calif.
[22] Filed: Oct. 10, 1972 [21] Appl. No.: 295,804
52 US. Cl. 114/40 [51] Int. Cl B63b 35/08 [58] Field of Search 114/40-42 [56] References Cited UNITED STATES PATENTS 3,295,326 1/1967 White 61/1 R 3,632,172 l/l972 Robinson 114/42 3,192,898 7/1965 Oster 6'1/1 R 3,572,273 3/1971 Wood 114/40 [451 May 7, 1974 3,693,360 9/1972 Holder 114/42 Primary ExaminerMilton Buchler Assistant Examiner-Sherman D. Basinger Attorney, Agent, or FirmChristie, Parker & Hale [57] ABSTRACT An icebreaking arrangement in which air is applied under sufficient pressure to lower the surface of the water at an ice-water interface to a level below the bottom of the ice over an area which extends on either side of the interface. The unsupported weight of the ice in the region in which the water level is depressed produces failure and breaking off of pieces of ice at the interface. The increased pressure is produced by an air-tight platform having a downwardly extending skirt around the periphery, air under pressure being admitted to the region below the platform. The platform may be mounted on the bow of a ship or moved ahead of a ship to clear a channel through the ice.
5 Claims, 9 Drawing Figures RATENTEBMAY 7 1914 1808.997
} sum or 3 F/Ej /Z N A 1 METHOD OF CLEARING A PATH THROUGH ICE RELATED CASES FIELD OF THE INVENTION This invention relates to clearing a channel for ships through ice, and more particularly is concerned with a method utilizing air pressure for breaking a path through ice for a ship to pass.
BACKGROUND OF THE INVENTION .it applies sufficient weight to the top of the ice to break off the ice. In copending application Sen-No. 183,466,
filed Sept. 24, 1971, and assigned to the same assignee as the present invention, there is described, for exam- This efficiency is obtained by utilizing the weight of the ice itself in large measure to produce failure of the ice,
causing it to break up. In addition, the method of the present invention tends to force the broken pieces of ice outwardly underneath the unbroken ice, thus providing a clearer channel of water for the ship to pass through. Thus drag forces due to friction and the wedg-' ing of ice pieces is greatly reduced. In addition, the
ple, an icebreaking vessel in which pitching motion of the vessel is induced in such a manner that the bow of the icebreaker applies vertical forces to the edge of the ice so as to continuously break away pieces of the ice to open a channel. However, mechanical icebreaking in which the mass of the ship is utilized to apply force to the ice can result in the expenditure of large amounts of energy in continuously accelerating and decelerating the mass of the vessel.
Other icebreaking techniques have been developed which apply vertical forces to the ice at the ice/water interface. One such arrangement, for example, releases high-pressure gases at controlled time intervals at a point beneath the ice slightly ahead of the ice/water interface. This is accomplished, for example, by burning a pressurized air/fuel mixture in a combustion chamber to produce high pressures and then releasing the exhaust gases at a point beneath the surface of the ice. The release of gases acts as an explosion, cracking and lifting the pieces of ice. However, the overall efficiency of such a system is reduced due to the fact that the ice is being lifted against the force of gravity.
Furthermore, ithas been established that a substantial portion of the energy expended in breaking a channel through ice is the result of the frictional forces produced betweenfthepieces of ice and the sides of the ship as the ship attempts to move through the broken ice. While some improvement has been provided by bubbling air up along the sides of the ship as it passes through the ice, there still remains a detrimental wedging action between the sides of the ship and the solid ice on either side of the ship as a result of displacing the broken ice outwardly as the ship moves along the channel.
SUMMARY OF THE INVENTION The present invention is directed to an improved method for breaking a channel through ice which is highly efficient'in breaking ice of substantial thickness.
method of the present invention may be utilized in combination with not only conventional icebreakers, thus being combined with the normal mechanically applied techniques of breaking ice, but may be used in combination with conventional ships, tugs, and particularly catamaran or double-hulled ships which hereto- BRIEF. DESCRIPTION OF. THE INVENTION These and other advantages of thepresent invention are achieved by providing an arrangement in which air under pressure is applied over an area having a width approximately the same as the width of the open channel to be formed. The pressure is applied at the interface with the ice. The air pressure is built upto a level which is sufficient to force the surface of the water downwardly over the area of increased pressure vto a level below the bottom surface of the ice, whereby the ice forms a ledge adjacent the interface that is unsupported by any buoyancy effect of the water. Pressure is applied by apparatus including a platform around the perimeter of which is provided a flexible'skirt. In one arrangement, the platform is mounted on the bow of a vessel, extending in cantilever fashion in front of the vessel. Air under pressure is pumped into the space formed by the platform and downwardly projecting skirt to build up the pressure on the underlying ice and water surfaces.
BRIEF DESCRIPTION OF THE DRAWINGS Fora more complete understanding of the invention reference shouldbe made to the accompanying drawings wherein: 1
FIG. 1 is a side elevational view of one embodiment FIG. 5 is an elevational view of a further modification in which the icebreaking apparatus is pushed ahead of the bow of a ship;
FIG. 6 is a plan view of the modification of FIG. 5; 7
FIG. 7 is a plan view of a further modification of an icebreaker incorporating a twin-hulled or catamaran structure; 3
FIG. 8 is an elevational view of the modification of FIG. 7; and
' FIG. 9 is a sectional view taken on the line 9-9 of FIG. 8.
DETAILED DESCRIPTION Referring to the arrangement shown in FIGS. 1 and 2, the numeral indicates generally an icebreaking vehicle which structurally is similar in design to the air cushion vehicle described in detail in copending application Ser. No. l30,462 filed April 1, 1971, and assigned to the same assignee as the present invention. By way of example only, the vehicle 10 may be pulled along by a cable 12 using a conventional tractor. The air cushion vehicle 10 comprises a barge-type hull 14 with a flexible air containment skirt 16 around the perimeter. The skirt is preferably constructed of a rubbercoated nylon and is segmented in its construction, in a manner described in more detail in the above-identified application. The segmented construction provides a skirt which is strong enough to contain the air pressure which is built up under the hull, as hereinafter described, and at the same time is flexible enough to yield to obstructions and irregular conditions which are encountered during movement of the vehicle.
Air is forced under the hull, inflating the skirt and lifting the unit, by means of two large fans 18 and 20.
The fans build up sufficient pressure within the spaced formed by the hull 14, the skirt 16, and the surface above which the vehicle is positioned to support and float the unit of the vehicle on a cushion of air.
In operating as an icebreaker, the vehicle 10 after being pressurized is moved on to the ice-covered body of water. The weight of the vehicle, which is transferred to the'surface of the ice by the air, is normally sufficient to crack the ice and depress the pieces of fractured ice and the surface of the water in which the ice is floating downwardlyimmediately beneath the vehicle. This initially forms an exposed edge between the unbroken ice and the broken ice and water. If the weight is insufficient to break and form an exposed ice/water interface, this may be done by some conventional mechanical means. I
As shown in FIG. 1, as the-vehicle is pulled along, the front of the vehicle tends to ride up on the ice sheet, indicated at 21. Behind the edge of the icesheet, the water and broken ice pieces are depressed downwardly under the force of theair compressedbeneath the hull of the vehicle 10. The weight of the vehicle, and the resulting air pressure required to support this weight, is made sufficiently large to depress the surface of the water to a point at or below the bottom of the ice sheet.
The portion of the ice sheet 21 extending under the ve+ hicle therefore is no longer buoyantly supported on the surface of the water. Since the air pressure beneath and above the ice is the same, the full weight of that portion of the ice which is beneath the vehicle is supported entirely by the internal strength of the ice itself.
As the vehicle moves forward, the increasing weight of the unsupported portion of the ice sheet causes it to sag and bend and finally to fail and break off. In addition, the high-pressure air escapes beneath the ice and because the air pressure beneath the ice is greater than the atmospheric pressure, there is net force tending to lift the ice sheet in the region outside of the skirt 16. Escape of air beneath the surface of the ice has been observed to cause a cracking and weakening of the ice in weight at the exposed edge of the ice sheet underneath the vehicle. 1 1
As best seen in FIG. 2, the edge of the ice sheet, from which chunks of ice continuously break off beneath the vehicle, is curved, since at the center part of the vehicle the ice is less able to support its own weight than at the outer edges of the vehicle where the surrounding ice gives added support.
As the vehicle is pulled forward, the chunks of ice break off at the exposed interface between the ice sheet and the water beneath the vehicle. The effect of the air pressing downwardly tends to move these chunks of ice laterally to the point where many of them are forced beneath the surface of the adjacent ice on either side of the vehicle. The effect is to at least partially clear the channel formed by the icebreaker of broken ice, thereby greatly reducing the resistance to passage of a ship through the channel. As the air cushion vehicle is pulled along, it tends to ride up on the ice until the ice fails and pieces break off. The front of the vehicle then drops. As the pressure builds up and the. vehicle is away at the interface between the ice and water. The I pressure surges can be enhanced by controlling the fans and also by controlling the ballast weight in the vehicle. It should be noted that the greater the ice thickness the widerthe beam of the air cushion vehiclemust be to produce ice failure due to the unsupported weight of the expanse of ice at the interface, since failure occurs when the span of ice beneath the vehicle is unable to support its own weight in the absence of an upward buoyant force of the water.
While the above arrangement has proved very effective in breaking ice several feet in thickness, it is not unusual to encounter ridges in the ice where the ice may suddenly extend to 20 or 30 feet below the water level- When such ridges are encountered, a barrier-to.
air flow is encountered and the loss of buoyancy requiredto break the ice is insufficient to obtain the desired results. It is therefore desirable to combine the arrangement of'FlGS. 1 and 2 with some means for augmenting the ice-breaking with a mechanical capability when ridges of extra thick ice are encountered.
One such arrangement is shown in FIGS. 3 and 4 in which the pressurizing structure 22 is integrated with an ic ebreaking ship indicated generally at 24. The ship 24 is preferably of a type described in detail in copending application Ser. No. 183,466, filed Sept. 24, 1971,
and assigned to the same assignee as the present invention. The ship 24 includes a hull 26 of generally conventional configuration, but with the bow portion being designed with a portion 30 of high positive rake and which is reversely curved to merge into a portion 32 of high negative rake at the water line. As described in detail in, the above-identified application Ser. No. 183,466, the ship 24 is provided with apparatus for inducing a pitching motion of the ship by shifting the center of buoyancy in a fore and aft direction at a controllable frequency. This is accomplished pneumatically by providing a forward pitching chamber 34 and an aft pitching chamber 36 that are rapidly and alternately filled with water and air. This air is forced into the chamber 34 bya pump 38 through an inlet duct 40,
while air is ducted out of the chamber 34 through an exhaust duct 42 through a valve 44. Air in the rear chamber 36 is similarly controlled, all in the manner described in detail in the above-identified copending application.
The structure 22 includes an air-tight horizontal frame 46 which is wider than the ships beam and which is mounted adjacent the bow of the ship so as to project outwardly on either side and in front of the bow structure. The frame 46 is preferably hinged to the deckof the ship 24 alongthe back edge, as indicated at 48. The frame supports a flexible skirt 50 which extends around the perimeter of the frame 46 and terminates against the sides of the ships hull.
The skirt 50, which is constructed in the same manner as the skirt 16 described above in connection with FIGS. 1 and 2, provides a confined space surrounding the bow of the ship which can be maintained at substantially increased pressure. To this end, a fan 52 mounted in the hull of the ship 24 is connected by suitable ducts extending outside the hull into the space beneath the frame 46. By hinging the frame 46 to the deck of the ship 24, when extra high ridges of ice are encountered or when not in use, the frame 46 can be tipped upwardly, as by means of a cable 56 extending through a pulley on a mast 58 to a deck winch 59. Frame 46 is weighted by ballast water or other means, or may be mechanically locked into position to the ship to provide sufficient resistance to the upward force produced by the pressurized air reacting against the frame 46 within the skirt 50.
In the arrangement shown in FIGS. 3 and 4, the flexibility and vertical extent of the skirt 50 is such that it does not interfere with the induced pitching motion of the ship. The increased air pressureapplied to the surface of the water surrounding the bow of the ship depresses the water level below the bottom of the ice reducing the buoyancy support of the ice in the same manner as described above in connection with FIGS. 1 and 2. Thus the unsupported weight of the ice makes a significant contribution to the forces applied to the ice causing failure and breaking up of the ice in front of the ship. At the same time,,the air under pressure extends outwardly underneath the ice causing lifting and buckling of the ice a substantial distance in front of the ship, further weakening the ice, in the manner described above. The air also produces the effect of pushing the broken sections of ice outwardly away from the hull, thus reducing the drag forces encountered in pushing the ship through the channel of broken ice and water.
A further modification is shown in FIG. 3A in which the outlet duct from the fan 52 is provided with a butterfly or similar type of valve 54 by which the flow of air from the fan into the space in front of the bow may be modulated at a controlled frequency, as by a valve control mechanism 57. By modulating the pressure, it is possible to set up vibrations within the unsupported ledge of ice extending into the pressurized space below the frame 46. Since the ice is not floating on the surface of the water in this region, the damping of such vibrations is greatly reduced and it is therefore easier to induce resonant effects at the natural frequency of the ice structure, which can produce extremely high stress and failure of ice.
A further modification of the present invention is shown in the arrangement of FIGS. 5 and 6 in which the icebreaker unit, instead of being pulled across the surface of the ice, as described above in connection with FIGS. 1 and 2, can be pushed ahead of a conventional ship for opening a channel in front of the ship through the ice. Such an arrangement is useful, for example, in combination with ore boats or other types of vessels operating on the Great Lakes during the winter months. The ice-breaking unit consists of a hull 60 having a segmented skirt 62 extending downwardlyaround the periphery. The space enclosed by the skirt 62 is pressurized by a pair of fans 64 and 66 mounted on the deck of the hull 60. The icebreaking unit supports itself on a cushion of air. It is moved along in front of the bow of the ship, indicated generally at 68, by a pair of retractable frames 70 and 72 which extend out from the rear of the icebreaking unit and are hingedly attached to the hull 60 by a suitable'hinge structure, as indicated at 74 and 76, respectively. The frames 70 and 72 rotatably support a pair of rollers 78 and 8.0 which are positioned to engage the sides of the ship on either side of the bow. A pair of lines 82 and 84 are secured around cleats 86 on the deck of the hull 60 and are held under tension by winches (not shown) on the deck of the ship 68.
The hull 60 is provided with'a plurality of ballast tanks, indicated at 88, by which the weight of the icebreaking unit can be varied depending upon the required air-pressure to depress the water surface below the hull 60 to a depth below the bottom of the ice. The thicker the ice, the greater the pressure required to depressthe waterlevel and accordingly the greater the counteracting weight of the icebreaking unit must be. The icebreaking unit may also be provided with deflector plates 90 suitably mounted below the hull 60 and positioned to deflect the particles of broken ice later. ally outwardly beneath the unbroken ice sheet.
By making the icebreaking unit self-contained with its own source of power, it can be'operated independently of the ship 68 if required. To this end, the icebreaking unit is provided with its own retractable propeller drive system. Two such propeller drives are indicated at 91 and 92, the propeller drives being hingedly supported at the rear of the hull 60.
Because of its greater stability, the twin-hulledv or catamaran-type of craft has developed increasing interest in the oil-drilling field, for example. However, such type of craft has not been practical for use in areas where ice is encountered. An arrangement adapted to a catamaran design is shown in FIGS. 7, 8 and 9. As
shown in these figures, the vessel includes two deep-- tional skirt 108 extends downwardly from the deck 104 in the space between the two hulls at a point near the stern of the vessel. Thus the space between the two hulls combines with the space defined by the front skirt and the rear skirt 108 to form an enclosed region into which air is forced under pressure by a suitable fan (not shown). By this arrangement, the level of the water in front and between the two hulls can be depressed below the bottom of the surrounding ice sheet. By hinging the platform 106, the air-cushion system can be retracted out of the way so that any ridges can be rammed by the vessel without damage tothe aircushion system.
in order to reduce the drag of the broken pieces of ice to the movement of theship, a portion of the air directed into the space between the two hulls may be released along the outer sides-of the two hulls. As shown in FIG. 9, this may be done by providing ducts 112 which extend through the two hulls, bubbling air below the water line on the outer sides of the two hulls. The air is releasedalong the length of the two hulls on the outboard sides of the vessel. The air may also be released along the keel, but a separate source of air at higher pressure than the air in the plenum formed by the skirts is then required.
What is claimed is:
l. The method of breaking surface ice on a body of water to clear a ship lane comprising the steps of: creating an ice/water interface between the surface ice and an area of open water, applying air under pressure to an area above the surface of the open water and the adjacent ice on either side of the interface with sufficient force to lower the surface of the water below the bottom of the ice adjacent the interface whereby the ice away from the water to continuously break off the ice at the interface.
2. The method of claim 1 in which the air pressure applied over said area is sufficient to force air between the lower surface of the ice and the water over an area extending beyond the limits of said applied pressure to the top surface of the ice whereby a net upward force is applied to the ice away from the interface.
3. The method of claim 1 further comprising: raising and lowering the pressure at the interface to form surges of air to move in large bubbles under the surface of the ice. V
4. The method of breaking ice to clear a path through the ice comprising the steps: forming an ice/water interface between surface ice and open water that is long relative to the thickness of the ice, and applying increased air pressure to the surface of the open water along said interface to depress the level of the water and reduce the upward buoyancy force of the water on the ice along the interface, the water being depressed over sufficient area that the unsupported weight of the ice causes the pieces of ice to break off along the interface. I g
5. The method of claim 4 in which the area of increased air pressure is moved forward as the pieces of ice break off to advance the ice/water interface in the direction of said path.

Claims (5)

1. The method of breaking surface ice on a body of water to clear a ship lane comprising the steps of: creating an ice/water interface between the surface ice and an area of open water, applying air under pressure to an area above the surface of the open water and the adjacent ice on either side of the interface with sufficient force to lower the surface of the water below the bottom of the ice adjacent the interface whereby the ice forms a ledge adjacent the interface that is unsupported by the buoyancy of the water, and moving said area of increased pressure in a direction toward the ice and away from the water to continuously break off the ice at the interface.
2. The method of claim 1 in which the air pressure applied over said area is sufficient to force air between the lower surface of the ice and the water over an area extending beyond the limits of said applied pressure to the top surface of the ice whereby a net upward force is applied to the ice away from the interface.
3. The method of claim 1 further comprising: raising and lowering the pressure at the interface to form surges of air to move in large bubbles under the surface of the ice.
4. The method of breaking ice to clear a path through the ice comprising the steps: forming an ice/water interface between surface ice and open water that is long relative to the thickness of the ice, and applying increased air pressure to the surface of the open water along said interface to depress the level of the water and reduce the upward buoyancy force of the water on thE ice along the interface, the water being depressed over sufficient area that the unsupported weight of the ice causes the pieces of ice to break off along the interface.
5. The method of claim 4 in which the area of increased air pressure is moved forward as the pieces of ice break off to advance the ice/water interface in the direction of said path.
US00295804A 1972-10-10 1972-10-10 Method of clearing a path through ice Expired - Lifetime US3808997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00295804A US3808997A (en) 1972-10-10 1972-10-10 Method of clearing a path through ice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00295804A US3808997A (en) 1972-10-10 1972-10-10 Method of clearing a path through ice

Publications (1)

Publication Number Publication Date
US3808997A true US3808997A (en) 1974-05-07

Family

ID=23139296

Family Applications (1)

Application Number Title Priority Date Filing Date
US00295804A Expired - Lifetime US3808997A (en) 1972-10-10 1972-10-10 Method of clearing a path through ice

Country Status (1)

Country Link
US (1) US3808997A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328760A (en) * 1979-07-05 1982-05-11 Dome Petroleum Limited Skirt construction
US9611007B1 (en) * 2016-04-18 2017-04-04 Bay Engineering, Inc. Wide beam, multi-hull icebreaker vessel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3192898A (en) * 1962-02-05 1965-07-06 Thomas H Oster Limnological process
US3295326A (en) * 1963-04-26 1967-01-03 Horlicks Ltd Breaking of sheet ice
US3572273A (en) * 1969-08-06 1971-03-23 Southwest Res Inst Apparatus for breaking a layer of ice on a body of water by repetitive combustive explosions
US3632172A (en) * 1969-07-17 1972-01-04 Dresser Ind Method of and apparatus for weakening ice for assisting an icebreaker
US3693360A (en) * 1970-10-02 1972-09-26 John E Holder Ice breaker for marine structures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3192898A (en) * 1962-02-05 1965-07-06 Thomas H Oster Limnological process
US3295326A (en) * 1963-04-26 1967-01-03 Horlicks Ltd Breaking of sheet ice
US3632172A (en) * 1969-07-17 1972-01-04 Dresser Ind Method of and apparatus for weakening ice for assisting an icebreaker
US3572273A (en) * 1969-08-06 1971-03-23 Southwest Res Inst Apparatus for breaking a layer of ice on a body of water by repetitive combustive explosions
US3693360A (en) * 1970-10-02 1972-09-26 John E Holder Ice breaker for marine structures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328760A (en) * 1979-07-05 1982-05-11 Dome Petroleum Limited Skirt construction
US9611007B1 (en) * 2016-04-18 2017-04-04 Bay Engineering, Inc. Wide beam, multi-hull icebreaker vessel

Similar Documents

Publication Publication Date Title
US7654211B2 (en) Marine vessel transfer system
US3763810A (en) High speed boat with planing hull
TWI314536B (en) Method for building ship on ground and launching ship using skid launching system
US2322790A (en) Low draft transport vessel
US3850125A (en) Icebreaking
US7464657B2 (en) Catamaran air cushion ship with folding, retractable seals
US3872814A (en) Twin-hull ship for drilling in ice-covered waters
US20090320737A1 (en) Powered boat hull
US3483838A (en) Non-broaching beach cargo ship
EP0335345B1 (en) Improved hull construction for a swath vessel
US2896564A (en) Ramp for seaplane
IE47743B1 (en) Service vessel
JP3660683B2 (en) Watercraft
US3648635A (en) Marine transport
AU2002254156A1 (en) Powered boat hull
US3929083A (en) Apparatus for clearing a path through ice
US4276845A (en) Ice cutting and breaking vessel
US6792886B1 (en) Planing landing craft
US3403652A (en) Hovership
US3808997A (en) Method of clearing a path through ice
US3808998A (en) Boat with bow outdrive and vertically swingable bow plane
US4622912A (en) Draft reduction system for ships
CA1043180A (en) Apparatus for clearing a path through ice
US20030033967A1 (en) STOVL joint strike fighter carrier
US2160449A (en) Apparatus for the starting and landing of aircraft

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHEMICAL BANK, A NY CORP.

Free format text: SECURITY INTEREST;ASSIGNOR:GLOBAL MARINE INC.;REEL/FRAME:005294/0214

Effective date: 19891027