US3791365A - Air starter - Google Patents

Air starter Download PDF

Info

Publication number
US3791365A
US3791365A US00236026A US3791365DA US3791365A US 3791365 A US3791365 A US 3791365A US 00236026 A US00236026 A US 00236026A US 3791365D A US3791365D A US 3791365DA US 3791365 A US3791365 A US 3791365A
Authority
US
United States
Prior art keywords
starter
clutch member
piston
fluid
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00236026A
Inventor
R Pharr
R Broyden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ingersoll Rand Co
Original Assignee
Ingersoll Rand Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ingersoll Rand Co filed Critical Ingersoll Rand Co
Application granted granted Critical
Publication of US3791365A publication Critical patent/US3791365A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N7/00Starting apparatus having fluid-driven auxiliary engines or apparatus
    • F02N7/08Starting apparatus having fluid-driven auxiliary engines or apparatus the engines being of rotary type

Definitions

  • a pneumatically operated starter having a combination piston-valve, located in a first chamber downstream of the usual on-off valve, that throttles the starter to a low speed initially in its closed position and as air is supplied opens in response to the air pressure and simultaneously engages the starter pinion with the engine ring gear and upon further engagement of the starter pinion allows air to freely pass and accelerate the starter.
  • the piston-valve Upon the starting of the engine, the piston-valve is automatically returned to its initial position by a combination of mechanical helical pinion throwout, spring return and latching pressurization of a second chamber behind the piston-valve.
  • Latching pressurization is accomplished by a second valve admitting air pressure behind the piston-valve in response to a pressure signal developed in the starting cycle.
  • the air supply may then be shut off manually to stop the throttled rotation of the starterand to reset the second valve controlling the latching pressurization of the chamber behind the piston-valve to ready the starter for the next starting cycle.
  • This invention relates to a pneumatically operated air starter for driving internal combustion engines to start them and more particularly to a new type of starter that combines the best features of both of the two general classes of starters known as the preengaged starter and the inertialengaged starter.
  • the pre-engaged starter has a mechanism for moving the pinion into engagement with an engine ring gear prior to the rotation of the starter motor while the inertial-engaged starter screws its pinion axially into engagement with the engine ring gear as the starter motor rotates.
  • Pre-engaged starters were developed because of the high shock loads created by the inertial-engaged starters. These high shock loads tend to excessively wear the teeth on the pinion and ring gear and can cause breakage of parts of the starter and engine.
  • pre-engaged starters are more complicated and expensive than inertial-engaged starters.
  • Pre-engaged starters need a separate mechanism for moving the pinion axially, usually a piston in an air starter, and an overrunning clutch to protect the starter motor against being driven by the engine after the engine is started.
  • Pre-engaged air starters also need additional air circuits for acting on the pinion engaging piston prior to opening the main air supply valve of the starter.
  • the principal object of this invention is to provide an air starter that combines the good features of both the pre-engaged and inertial-engaged starters while minimizing or overcoming the undesirable characteristics of both types of starters.
  • the air-operated starter 1 shown in FIG. 1 includes a casing 2 comprising a cylinder 3 with a backhead 4 and nose 5 attached at its opposite ends.
  • the cylinder 3 forms part of an air motor that includes a rotor 6 fixed to a drive shaft 7 and a pair of end plates 8 and 9 located at the ends of the cylinder 3.
  • the rotor 6 carries several sliding vanes 10 spaced around its periphery.
  • the drive shaft 7 includes a rear portion 11 extending into the backhead 4 and rotating in a roller bearing 12.
  • a forward portion 14 of the drive shaft 7 extends into the nose 5 and carries a helical spline 15 on its periphery.
  • a pinion 18 having a rearwardly opening socket 19 fits over the forward portion 14 of the drive shaft 7 and carries internal splines cooperating with the helical splines 15 to form a screw joint therebetween.
  • the splines 15 are arranged to screw the pin ion 18 to the right as shown in FIG. 1 when the motor turns in a counter-clockwise direction looking at the starter from the left as shown in FIG. 1.
  • the pinion 18 supports the forward portion 14 of the drive shaft 7 and is in turn supported in a pair of roller bearings 20 mounted in the nose 5.
  • the bearings 20 allow the'pinion 18 to slide axially without interference from such bearings.
  • the end of the socket 19in the pinion 18 carries a hollow nut 21 that encircles and slides axially on an annular portion of the drive shaft 7'to limit the dis tance that the pinion 18 can be extended from and retracted into the nose 5.
  • the nose 5 also serves as a means for muffling the exhaust from the air motor.
  • the front end plate 9 cooperates with the rear end of the nose 5 to form a first chamber 23 receiving exhaust from the motor through several ports 24.
  • the first chamber communicates through several ports 26 to a second chamber 27 formed by a perforated sleeve 28 surrounding the nose 5. Exhaust in the second chamber 27 is exhausted to atmosphere through the perforations in the sleeve 28 which are sized and located to provide the best muf fling characteristics.
  • the nose 5 also includes a flange 30 for mounting the starter 1 on a flywheel housing of an engine in a conventional manner.
  • the backhead 4 contains an air supply port 32 and a plenum chamber 33 separated by a sliding pistonvalve 34.
  • the plenum chamber '33 supplies air to the motor through ports (16) provided in the rear end plate 8 (see FIG. 7 for approximate location).
  • the piston-valve 34 is threaded to a rod 35 extending through the hollow drive shaft 7 and attached to the pinion 18.
  • the piston-valve 34 slides in an arcuate valve seat 38 to serve as a valve between the supply port 32 and the mouth 39 of the plenum chamber 33, as shown in FIG. 2.
  • FIG. 3 shows the chamber 33 as a substantially annular space separated at the top by a top radial web 36.
  • the arcuate valve seat 38 contains a groove 31 that allows acontrolled leakage of the air from the supply port 32 to the plenum chamber 33 while the pistonvalve 34 is in its fully closed position, as shown in FIG. 1. This allows the starter motor to begin turning slowly as soon as air pressure is admitted to the supply port 32.
  • the hollow drive shaft 7 contains a spring 40 engaged between the end of the piston-valve 34 and a shoulder 41 formed in the drive shaft 7 urging the piston-valve 34 and rod 35 rearwardly.
  • the annular space in the drive shaft 7 containing the spring 40 is designated spring chamber 43.
  • the driving torque of the motor will cause the helical splines to force the pinion 18 into full mesh with the ring gear.
  • the slow rotation of the motor will continue to rotate the pinion 18 until it meshes with the ring gear.
  • the piston rod 35 opens the piston-valve 34 to full open position, shown in FIG. 5, wherein the starter motor is supplied with full air pressure and it drives the pinion with full power.
  • Means is provided to reduce the thrust force on the pinion 18 after the starter motor pinion 18 is engaged with the engine ring gear.
  • Such means allow air pressure to enter the spring chamber 43 to balance the air pressure on the rear end of the piston-valve 34, thereby reducing the effective area of the piston-valve 34 to the cross section of the rod 35. Reduction of the piston area to the red cross section results in reducing the force on the piston-valve 34 caused by the air to a magnitude of less than the retracting force applied to the piston-valve 34 by the spring 40.
  • the pinion 18 remains in meshed engagement with the ring gear as the result of the motor torque transmitted through the splines 15.
  • the reduction or cancellation of the engaging force on the pinion 18 can be accomplished immediately after the pinion 18 engages the ring gear or can be delayed until the pinion 18 is fully meshed with the ring gear. We prefer to do it immediately after the pinion 18 begins to mesh with the ring gear and prior to being fully meshed with the ring gear.
  • the camming force of the helical splines 15 on the pinion 18 will overcome the retracting force applied to, the pinion 18 by the spring 40, resulting in the pinion remaining in its engaged position.
  • the engine will rapidly gain speed until the torque supplied by the starter motor through the splines 15 drops to a small enough value or magnitude for the spring 40 to retract the pinion 18.
  • the driving of the starter will cause the splines 15 to automatically cam the pinion 18 to a disengaged position, thereby preventing the starter from being damaged by being driven by the engine.
  • the backhead 4 includes a lateral passage 45 communicating with the spring chamber 43 by an opening 46 provided in the drive shaft portion 11.
  • the lateral passage 45 is connected to a longitudinal passage 47 extending to the air supply port 32 and normally closed by a sliding valve 48.
  • the valve 48 slides in a bore 49 and is urged to the closing position of the passage 47 by aspring 50 located in the bore 49.
  • a second passage 52 communicates between the plenum chamber 33 and the valve bore 49, and the valve 38 contains an internal conduit 53 extending between the passage 52 and the end face 54 of the valve 48.
  • the end face 54 is located on the valve end remote from the spring 50 and is arranged whereby pressure applied to it will urge the valve 48 toward its open position.
  • valve 48 opens, as shown in FIG. 5, the supply pressure in the passage 47 holds it open.
  • the strength of the spring 50 is selected so that the valve 48 will remain closed, as shown in FIGS. 1 and 4, until the pressure in the plenum chamber rises to near the supply air pressure, and this will not occur until after the pin ion 18 is meshed at least partly with the engine ring gear and the starter motor is operating under full power conditions.
  • the opening of the valve 48 admits the supply air pressure from the supply port 32 to the springchamber 43 to balance the pressure on the rear end of the piston-valve 34, as previously explained.
  • the pinion 18 will be retracted after the engine starts and gains sufficient speed for the force of the spring 40 to overcome the force of the helical splines 15 holding the pinion 18 engaged.
  • the piston-valve 34 is also retracted simultaneously to close the mouth 38 of the plenum chamber 33 and thereby throttle the air to the starter causing it to rotate slowly.
  • the air supply may then be shut off normally by means of a conventional valve (not shown) to stop the slow throttled rotation of the starter and to reset sliding valve 48 for the next starting cycle.
  • Sliding valve 48 acts as a latching valve preventing a reengagement of the starter until it is reset by shutting off the air pressure to the starter.
  • FIGS. 7 to 10 A second starter embodiment is shown in FIGS. 7 to 10, wherein parts or elements similar to the first embodiment are identified with the same reference numbers.
  • the only change in this second embodiment 60 is in the mechanism for reducing or cancelling the effect of the air pressure on the combined piston-valve 34' after the pinion 18 begins to mesh with the engine spring gear.
  • the longitudinal position of the piston-valve 34' in the valve seat 38 determines when the balancing air pressure is allowed to enter the spring chamber 43.
  • the piston-valve 34' contains an internal bore 61 containing a small spool valve 62 urged forwardly by a light spring 63.
  • the rod 35 contains a central passage 65 extending from its rear end, wherein it opens into the bore 61, to a port 66 opening into the spring chamber 43.
  • the spool valve 62 is urged forwardly to close the central passage 65 and thereby prevent air pressure from entering the spring chamber 43.
  • the piston-valve 34 As the piston-valve 34 moves forward to the position shown in FIG. 8, it contains a front port 68 that passes an opening 69 provided in the rear portion 11 of the drive shaft 7. The opening 69 communicates with a pas I At this point the air pressure in the supply port 32 is free to flow into the valve chamber 43. As the spool valve 62 is moved rearwardly by the air pressure, it uncovers a rear port 74 provided in the piston-valve 34 that opens into a longitudinal groove 75 extending from the port 74 to the rear of the piston-valve 34', thereby allowing the air pressure from the supply port 32 to flow into the bore 61 to latch and hold the spool valve 62 in its open, rear position, as shown in FIGS. 9 and 10, throughout the remainder of the cycle of the starter, until the air pressure is removed from the supply port 32. As the air pressure is exhausted from the supply port 32 after the end of the starting cycle, the spool valve 62 returns to its beginning position shown in FIG. 1.
  • piston-valve 34 and mating surface 38 may be suitably machined and properly guided to effect positive shut off without effecting the operation described above.
  • a fluid-operated starter comprising;
  • a piston located in a first fluid chamber in said casing and connected to said starter clutch member to move with it in engaging and disengaging directions;
  • fluid-pressure counter-biasing means for automatically reducing the large fluid force applied to said piston to a smaller fluid force by reducing the fluid pressure differential across the piston immediately after the starter clutch member is engaged and prior to the starting of the engine whereby said starter clutch member can be disengaged by the engine driving the starter motor after the engine starts.
  • said starter clutch member is threadably engaged to said motor shaft whereby thedriving of said starter clutch member by said motor urges the starter clutch memeber toward engagement with the engine clutch member and the driving of the starter clutch member by the engine urges the starter clutch member toward its disengaged position.
  • said piston is connected to a first valve that moves with the piston between closed and open positions supplying fluid to the starter motor and corresponds respectively to disengaged and engaged positions of said starter clutch member.
  • the starter of claim 1 including:
  • the starter of claim 4 including:
  • said means for reducing said large fluid force in cludes a second valve that opens to admit fluid pressure to a second chamber located on the opposite face of said piston from said first chamber.
  • said second valve opens to admit fluid to said second chamber while said starter clutch member is completing its engagement movement with the engine clutch member.
  • said second valve opens in response to the location of said piston in its movement in the starter clutch member engaging direction.
  • said second valve opens in response to the pressure of fluid supplied to said motor.
  • a fluid-operated starter comprising:
  • helical spline means interconnecting said starter clutch member and motor shaft for driving said starter clutch member and operative to cause said starter clutch member to be screwed into engagement with an engine clutch member by the driving rotation of said motor;
  • a piston located in a first fluid chamber in said casing and connected to said starter clutch member to move with it in engaging and disengaging directions, and A a means for admitting fluid pressure to said first chamber to apply a large fluid force to said piston to cause it to move said starter clutch member in an engaging direction;
  • fluid-pressure counter-biasing means for automatically reducing the force applied to said piston by reducing the fluid pressure differential across the piston immediately after said starter clutch member is engaged with said engine clutch member and while the starter is driving the engine.
  • said means for reducing said force includes valve means for applying a second fluid force to said piston acting in said disengaging direction to at least partially counter-balance said large fluid force.
  • the starter of claim 11 including:

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanisms For Operating Contacts (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Transmission Devices (AREA)

Abstract

A pneumatically operated starter having a combination pistonvalve, located in a first chamber downstream of the usual on-off valve, that throttles the starter to a low speed initially in its closed position and as air is supplied opens in response to the air pressure and simultaneously engages the starter pinion with the engine ring gear and upon further engagement of the starter pinion allows air to freely pass and accelerate the starter. Upon the starting of the engine, the piston-valve is automatically returned to its initial position by a combination of mechanical helical pinion throwout, spring return and latching pressurization of a second chamber behind the piston-valve. Latching pressurization is accomplished by a second valve admitting air pressure behind the piston-valve in response to a pressure signal developed in the starting cycle. The air supply may then be shut off manually to stop the throttled rotation of the starter and to reset the second valve controlling the latching pressurization of the chamber behind the piston-valve to ready the starter for the next starting cycle.

Description

Waited States Fatet n91 Pharr et al.
[45 Feb.12,1974
[ AIR STARTER [75] Inventors: Robert S. Phat-r; Robert H.
Broyden, both of Roanoke, Va.
[73] Assignee: lngersol-Rand Company, Woodcliff Lake, NJ.
[22] Filed: Mar. 20, 1972 [21] Appl. No.2 236,026
Primary Examiner-Al Lawrence Smith I Assistant Examiner-W. H. Rutledge, Jr.
Attorney, Agent, or Firm-David W. Tibbott 5 7 ABSTRACT A pneumatically operated starter having a combination piston-valve, located in a first chamber downstream of the usual on-off valve, that throttles the starter to a low speed initially in its closed position and as air is supplied opens in response to the air pressure and simultaneously engages the starter pinion with the engine ring gear and upon further engagement of the starter pinion allows air to freely pass and accelerate the starter. Upon the starting of the engine, the piston-valve is automatically returned to its initial position by a combination of mechanical helical pinion throwout, spring return and latching pressurization of a second chamber behind the piston-valve. Latching pressurization is accomplished by a second valve admitting air pressure behind the piston-valve in response to a pressure signal developed in the starting cycle. The air supply may then be shut off manually to stop the throttled rotation of the starterand to reset the second valve controlling the latching pressurization of the chamber behind the piston-valve to ready the starter for the next starting cycle.
15 Claims, 10 Drawing Figures PAIENTEU FEB 2W4 MEI 1 BF 3 AIR STARTER BACKGROUND OF THE INVENTION This invention relates to a pneumatically operated air starter for driving internal combustion engines to start them and more particularly to a new type of starter that combines the best features of both of the two general classes of starters known as the preengaged starter and the inertialengaged starter.
The pre-engaged starter has a mechanism for moving the pinion into engagement with an engine ring gear prior to the rotation of the starter motor while the inertial-engaged starter screws its pinion axially into engagement with the engine ring gear as the starter motor rotates. Pre-engaged starters were developed because of the high shock loads created by the inertial-engaged starters. These high shock loads tend to excessively wear the teeth on the pinion and ring gear and can cause breakage of parts of the starter and engine.
On the other hand, pre-engaged starters are more complicated and expensive than inertial-engaged starters. Pre-engaged starters need a separate mechanism for moving the pinion axially, usually a piston in an air starter, and an overrunning clutch to protect the starter motor against being driven by the engine after the engine is started. Pre-engaged air starters also need additional air circuits for acting on the pinion engaging piston prior to opening the main air supply valve of the starter.
SUMMARY OF INVENTION The principal object of this invention is to provide an air starter that combines the good features of both the pre-engaged and inertial-engaged starters while minimizing or overcoming the undesirable characteristics of both types of starters.
Other important objects of this invention are: to provide a pre-engaged starter that eliminates the use of an overrunning clutch in this type of starter; to provide a pre-engaged starter that automatically disengages and reduces its air supply with the starting of the engine, to provide a pre-engaged starter having internal piping and a motor throttling valve mechanically connected to the pinion engagement mechanism, and to provide an air starter that automatically opens the throttling valve to accelerate the starter motor with the engagement of the pinion or starter clutch member and automatically disengages its pinion or clutch member and slows the starter motor to a safe rotation speed with the starting of the engine.
BRIEF DESCRIPTION OF DRAWINGS put combination piston-valve in various positions sequentially during an operating cycle.
DESCRIPTION OF PREFERRED EMBODIMENTS The air-operated starter 1 shown in FIG. 1 includes a casing 2 comprising a cylinder 3 with a backhead 4 and nose 5 attached at its opposite ends. The cylinder 3 forms part of an air motor that includes a rotor 6 fixed to a drive shaft 7 and a pair of end plates 8 and 9 located at the ends of the cylinder 3. The rotor 6 carries several sliding vanes 10 spaced around its periphery. The drive shaft 7 includes a rear portion 11 extending into the backhead 4 and rotating in a roller bearing 12. A forward portion 14 of the drive shaft 7 extends into the nose 5 and carries a helical spline 15 on its periphery.
A pinion 18 having a rearwardly opening socket 19 fits over the forward portion 14 of the drive shaft 7 and carries internal splines cooperating with the helical splines 15 to form a screw joint therebetween. In a typical starter, the splines 15 are arranged to screw the pin ion 18 to the right as shown in FIG. 1 when the motor turns in a counter-clockwise direction looking at the starter from the left as shown in FIG. 1. The pinion 18 supports the forward portion 14 of the drive shaft 7 and is in turn supported in a pair of roller bearings 20 mounted in the nose 5. The bearings 20 allow the'pinion 18 to slide axially without interference from such bearings. The end of the socket 19in the pinion 18 carries a hollow nut 21 that encircles and slides axially on an annular portion of the drive shaft 7'to limit the dis tance that the pinion 18 can be extended from and retracted into the nose 5.
The nose 5 also serves as a means for muffling the exhaust from the air motor. The front end plate 9 cooperates with the rear end of the nose 5 to form a first chamber 23 receiving exhaust from the motor through several ports 24. The first chamber communicates through several ports 26 to a second chamber 27 formed by a perforated sleeve 28 surrounding the nose 5. Exhaust in the second chamber 27 is exhausted to atmosphere through the perforations in the sleeve 28 which are sized and located to provide the best muf fling characteristics. The nose 5 also includes a flange 30 for mounting the starter 1 on a flywheel housing of an engine in a conventional manner.
The backhead 4 contains an air supply port 32 and a plenum chamber 33 separated by a sliding pistonvalve 34. The plenum chamber '33 supplies air to the motor through ports (16) provided in the rear end plate 8 (see FIG. 7 for approximate location).
The piston-valve 34 is threaded to a rod 35 extending through the hollow drive shaft 7 and attached to the pinion 18. The piston-valve 34 slides in an arcuate valve seat 38 to serve as a valve between the supply port 32 and the mouth 39 of the plenum chamber 33, as shown in FIG. 2. As the piston-valve 34 moves axially forward, it uncovers the mouth 39 of the plenum chamber 33, as can be seen in FIG. 4. FIG. 3 shows the chamber 33 as a substantially annular space separated at the top by a top radial web 36.
The arcuate valve seat 38 contains a groove 31 that allows acontrolled leakage of the air from the supply port 32 to the plenum chamber 33 while the pistonvalve 34 is in its fully closed position, as shown in FIG. 1. This allows the starter motor to begin turning slowly as soon as air pressure is admitted to the supply port 32.
The hollow drive shaft 7 contains a spring 40 engaged between the end of the piston-valve 34 and a shoulder 41 formed in the drive shaft 7 urging the piston-valve 34 and rod 35 rearwardly. The annular space in the drive shaft 7 containing the spring 40 is designated spring chamber 43.
When air pressure is supplied to the inlet port 32, it acts on the exposed ends of the piston-valve 34 and rod 35 to begin moving the rod 35 and pinion 18 to the right as shown in FIG. 1. This is normally accomplished by means of the operator opening a conventional valve (not shown) to supply air pressure to the port 32. Simultaneously, the controlled leakage of the air by the piston-valve 34 via the grooves 31 will start the motor to rotating slowly. The motor has the ability to be driven at slow speeds by small amounts of air. As the motor rotates and the pinion 18 moves axially, the pinion 18 will engage the ring gear (not shown) of the engine. As soon as the teeth of the pinion 18 mesh with the ring gear, the driving torque of the motor will cause the helical splines to force the pinion 18 into full mesh with the ring gear. In case the teeth of the pinion and ring gear abut end to end, the slow rotation of the motor will continue to rotate the pinion 18 until it meshes with the ring gear. As the splines 15 force the pinion 18 into fully meshed engagement with the ring gear, the piston rod 35 opens the piston-valve 34 to full open position, shown in FIG. 5, wherein the starter motor is supplied with full air pressure and it drives the pinion with full power.
Means is provided to reduce the thrust force on the pinion 18 after the starter motor pinion 18 is engaged with the engine ring gear. Such means allow air pressure to enter the spring chamber 43 to balance the air pressure on the rear end of the piston-valve 34, thereby reducing the effective area of the piston-valve 34 to the cross section of the rod 35. Reduction of the piston area to the red cross section results in reducing the force on the piston-valve 34 caused by the air to a magnitude of less than the retracting force applied to the piston-valve 34 by the spring 40. However, the pinion 18 remains in meshed engagement with the ring gear as the result of the motor torque transmitted through the splines 15. The reduction or cancellation of the engaging force on the pinion 18 can be accomplished immediately after the pinion 18 engages the ring gear or can be delayed until the pinion 18 is fully meshed with the ring gear. We prefer to do it immediately after the pinion 18 begins to mesh with the ring gear and prior to being fully meshed with the ring gear.
As long as the starter motor is driving the engine, the camming force of the helical splines 15 on the pinion 18 will overcome the retracting force applied to, the pinion 18 by the spring 40, resulting in the pinion remaining in its engaged position. When the engine starts, it will rapidly gain speed until the torque supplied by the starter motor through the splines 15 drops to a small enough value or magnitude for the spring 40 to retract the pinion 18. In case the pinion 18 is not retracted before the engine attempts to drive the starter, the driving of the starter will cause the splines 15 to automatically cam the pinion 18 to a disengaged position, thereby preventing the starter from being damaged by being driven by the engine.
The backhead 4 includes a lateral passage 45 communicating with the spring chamber 43 by an opening 46 provided in the drive shaft portion 11. The lateral passage 45 is connected to a longitudinal passage 47 extending to the air supply port 32 and normally closed by a sliding valve 48. The valve 48 slides in a bore 49 and is urged to the closing position of the passage 47 by aspring 50 located in the bore 49. A second passage 52 communicates between the plenum chamber 33 and the valve bore 49, and the valve 38 contains an internal conduit 53 extending between the passage 52 and the end face 54 of the valve 48. The end face 54 is located on the valve end remote from the spring 50 and is arranged whereby pressure applied to it will urge the valve 48 toward its open position.
Once the valve 48 opens, as shown in FIG. 5, the supply pressure in the passage 47 holds it open. The strength of the spring 50 is selected so that the valve 48 will remain closed, as shown in FIGS. 1 and 4, until the pressure in the plenum chamber rises to near the supply air pressure, and this will not occur until after the pin ion 18 is meshed at least partly with the engine ring gear and the starter motor is operating under full power conditions.
The opening of the valve 48 admits the supply air pressure from the supply port 32 to the springchamber 43 to balance the pressure on the rear end of the piston-valve 34, as previously explained.
As earlier explained, with the pressure on the pistonvalve 34 being less than the retracting force of the spring 40, the pinion 18 will be retracted after the engine starts and gains sufficient speed for the force of the spring 40 to overcome the force of the helical splines 15 holding the pinion 18 engaged. With the retraction of the pinion, the piston-valve 34 is also retracted simultaneously to close the mouth 38 of the plenum chamber 33 and thereby throttle the air to the starter causing it to rotate slowly. The air supply may then be shut off normally by means of a conventional valve (not shown) to stop the slow throttled rotation of the starter and to reset sliding valve 48 for the next starting cycle. Sliding valve 48 acts as a latching valve preventing a reengagement of the starter until it is reset by shutting off the air pressure to the starter.
SECOND EMBODIMENT A second starter embodiment is shown in FIGS. 7 to 10, wherein parts or elements similar to the first embodiment are identified with the same reference numbers. The only change in this second embodiment 60 is in the mechanism for reducing or cancelling the effect of the air pressure on the combined piston-valve 34' after the pinion 18 begins to mesh with the engine spring gear. In this second embodiment, the longitudinal position of the piston-valve 34' in the valve seat 38 determines when the balancing air pressure is allowed to enter the spring chamber 43.
The piston-valve 34' contains an internal bore 61 containing a small spool valve 62 urged forwardly by a light spring 63. The rod 35 contains a central passage 65 extending from its rear end, wherein it opens into the bore 61, to a port 66 opening into the spring chamber 43. In the at-rest position of the starter shown in FIG. 7, the spool valve 62 is urged forwardly to close the central passage 65 and thereby prevent air pressure from entering the spring chamber 43.
As the piston-valve 34 moves forward to the position shown in FIG. 8, it contains a front port 68 that passes an opening 69 provided in the rear portion 11 of the drive shaft 7. The opening 69 communicates with a pas I At this point the air pressure in the supply port 32 is free to flow into the valve chamber 43. As the spool valve 62 is moved rearwardly by the air pressure, it uncovers a rear port 74 provided in the piston-valve 34 that opens into a longitudinal groove 75 extending from the port 74 to the rear of the piston-valve 34', thereby allowing the air pressure from the supply port 32 to flow into the bore 61 to latch and hold the spool valve 62 in its open, rear position, as shown in FIGS. 9 and 10, throughout the remainder of the cycle of the starter, until the air pressure is removed from the supply port 32. As the air pressure is exhausted from the supply port 32 after the end of the starting cycle, the spool valve 62 returns to its beginning position shown in FIG. 1.
We have chosen to allow the piston-valve to throttle air to the starter motor in the preferred embodiments shown for reasons of manufacturing economy and because of the limited usefulness of a complete shut off valve in view of the upstream main shut off valve. However, if desired, it should be obvious to one skilled in the art that piston-valve 34 and mating surface 38 may be suitably machined and properly guided to effect positive shut off without effecting the operation described above.
Although we have described our invention in connection with a starter-engine clutch including a pinion and ring gear, it should be understood that our invention is not limited thereby and could be used with other types of axially engaging clutches such as-a pair of axially engaging jaws or splines, these alternate clutches being commonly used on gas turbines wherein the axis of the starter clutch member is aligned with the turbine clutch member.
While several embodiments of the invention are shown and described in detail, this invention is not limited simply to the specifically described embodiments but contemplates other embodiments and variations utilizing the concepts and teachings of this invention.
We claim:
1. A fluid-operated starter comprising;
a casing containing a fluid-operated motor driving a shaft;
a starter clutch member slidable axially and rotatably mounted in said casing;
means interconnecting said starter clutch member and motor shaft for driving said starter clutch member and operative, in response to the driving rotation of said motor, to cause said clutch member to remain in engagement with an engine clutch member;
a piston located in a first fluid chamber in said casing and connected to said starter clutch member to move with it in engaging and disengaging directions;
means for applying a large fluid force to said piston to cause it to move said starter clutch member in an engaging direction; and
fluid-pressure counter-biasing means for automatically reducing the large fluid force applied to said piston to a smaller fluid force by reducing the fluid pressure differential across the piston immediately after the starter clutch member is engaged and prior to the starting of the engine whereby said starter clutch member can be disengaged by the engine driving the starter motor after the engine starts.
2. The starter of claim 1 wherein:
said starter clutch member is threadably engaged to said motor shaft whereby thedriving of said starter clutch member by said motor urges the starter clutch memeber toward engagement with the engine clutch member and the driving of the starter clutch member by the engine urges the starter clutch member toward its disengaged position.
3. The starter of claim 2 wherein:
said piston is connected to a first valve that moves with the piston between closed and open positions supplying fluid to the starter motor and corresponds respectively to disengaged and engaged positions of said starter clutch member.
4. The starter of claim 1 including:
a spring urging said piston toward the disengaged position of said starter clutch member with a force that exceeds the force applied to said piston by said smaller fluid force and is less than the force applied to said piston by said large fluid force.
5. The starter of claim 4 including:
means for bypassing a small amount of pressure fluid around said first valve in its closed position to drive said starter motor slowly.
6. The starter of claim 5 wherein:
said means for reducing said large fluid force in cludes a second valve that opens to admit fluid pressure to a second chamber located on the opposite face of said piston from said first chamber.
7'. The starter of claim 6 wherein:
said second valve opens to admit fluid to said second chamber while said starter clutch member is completing its engagement movement with the engine clutch member.
8. The starter of claim 7 wherein:
said second valve opens in response to the location of said piston in its movement in the starter clutch member engaging direction.
9. The starter of claim 7 wherein:
said second valve opens in response to the pressure of fluid supplied to said motor.
10. A fluid-operated starter comprising:
a casing containing a fluid-operated motor driving a shaft;
a starter clutch member slidable axially and rotatably mounted in said casing;-
helical spline means interconnecting said starter clutch member and motor shaft for driving said starter clutch member and operative to cause said starter clutch member to be screwed into engagement with an engine clutch member by the driving rotation of said motor;
a piston located in a first fluid chamber in said casing and connected to said starter clutch member to move with it in engaging and disengaging directions, and A a means for admitting fluid pressure to said first chamber to apply a large fluid force to said piston to cause it to move said starter clutch member in an engaging direction; and
fluid-pressure counter-biasing means for automatically reducing the force applied to said piston by reducing the fluid pressure differential across the piston immediately after said starter clutch member is engaged with said engine clutch member and while the starter is driving the engine.
11. The starter of claim 10 wherein:
said means for reducing said force includes valve means for applying a second fluid force to said piston acting in said disengaging direction to at least partially counter-balance said large fluid force.
12. The starter of claim 11 including:
a spring urging said piston in the starter clutch member disengaging direction and being weaker than said large force but stronger than the effective fluid fluid supplied to said motor.

Claims (15)

1. A fluid-operated starter comprising; a casing containing a fluid-operated motor driving a shaft; a starter clutch member slidable axially and rotatably mounted in said casing; means interconnecting said starter clutch member and motor shaft for driving said starter clutch member and operative, in response to the driving rotation of said motor, to cause said clutch member to remain in engagement with an engine clutch member; a piston located in a first fluid chamber in said casing and connected to said starter clutch member to move with it in engaging and disengaging directions; means for applying a large fluid force to said piston to cause it to move said starter clutch member in an engaging direction; and fluid-pressure counter-biasing means for automatically reducing the large fluid force applied to said piston to a smaller fluid force by reducing the fluid pressure differential across the piston immediately after the starter clutch member is engaged and prior to the starting of the engine whereby said starter clutch member can be disengaged by the engine driving the starter motor after the engine starts.
2. The starter of claim 1 wherein: said starter clutch member is threadably engaged to said motor shaft whereby the driving of said starter clutch member by said motor urges the starter clutch memeber toward engagement with the engine clutch member and the driving of the starter clutch member by the engine urges the starter clutch member toward its disengaged position.
3. The starter of claim 2 wherein: said piston is connected to a first valve that moves with the piston between closed and open positions supplying fluid to the starter motor and corresponds respectively to disengaged and engaged positions of said starter clutch member.
4. The starter of claim 1 including: a spring urging said piston toward the disengaged position of said starter clutch member with a force that exceeds the force applied to said piston by said smaller fluid force and is less than the force applied to said piston by said large fluid force.
5. The starter of claim 4 including: means for bypassing a small amount of pressure fluid around said first valve in its closed position to drive said starter motor slowly.
6. The starter of claim 5 wherein: said means for reducing said large fluid force includes a second valve that opens to admit fluid pressure to a second chamber located on the opposite face of said pistOn from said first chamber.
7. The starter of claim 6 wherein: said second valve opens to admit fluid to said second chamber while said starter clutch member is completing its engagement movement with the engine clutch member.
8. The starter of claim 7 wherein: said second valve opens in response to the location of said piston in its movement in the starter clutch member engaging direction.
9. The starter of claim 7 wherein: said second valve opens in response to the pressure of fluid supplied to said motor.
10. A fluid-operated starter comprising: a casing containing a fluid-operated motor driving a shaft; a starter clutch member slidable axially and rotatably mounted in said casing; helical spline means interconnecting said starter clutch member and motor shaft for driving said starter clutch member and operative to cause said starter clutch member to be screwed into engagement with an engine clutch member by the driving rotation of said motor; a piston located in a first fluid chamber in said casing and connected to said starter clutch member to move with it in engaging and disengaging directions; and a means for admitting fluid pressure to said first chamber to apply a large fluid force to said piston to cause it to move said starter clutch member in an engaging direction; and fluid-pressure counter-biasing means for automatically reducing the force applied to said piston by reducing the fluid pressure differential across the piston immediately after said starter clutch member is engaged with said engine clutch member and while the starter is driving the engine.
11. The starter of claim 10 wherein: said means for reducing said force includes valve means for applying a second fluid force to said piston acting in said disengaging direction to at least partially counter-balance said large fluid force.
12. The starter of claim 11 including: a spring urging said piston in the starter clutch member disengaging direction and being weaker than said large force but stronger than the effective fluid force on said piston after said large fluid force is counterbalanced by said second fluid force.
13. The starter of claim 12 wherein: said valve means admits fluid pressure into a second chamber located on the opposite face of said piston from said first fluid chamber.
14. The starter of claim 13 wherein: said valve means opens in response to the location of said piston in its movement in the engaging direction.
15. The starter of claim 13 wherein: said valve means opens in response to the pressure of fluid supplied to said motor.
US00236026A 1972-03-20 1972-03-20 Air starter Expired - Lifetime US3791365A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US23602672A 1972-03-20 1972-03-20

Publications (1)

Publication Number Publication Date
US3791365A true US3791365A (en) 1974-02-12

Family

ID=22887814

Family Applications (1)

Application Number Title Priority Date Filing Date
US00236026A Expired - Lifetime US3791365A (en) 1972-03-20 1972-03-20 Air starter

Country Status (8)

Country Link
US (1) US3791365A (en)
JP (1) JPS496324A (en)
BE (1) BE797071A (en)
CA (1) CA967445A (en)
DE (1) DE2312419A1 (en)
FR (1) FR2177366A5 (en)
GB (1) GB1397192A (en)
IT (1) IT981355B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126113A (en) * 1977-10-17 1978-11-21 Sarro Manuel B Engine air starter
DE3531848A1 (en) * 1985-09-06 1987-03-19 Duesterloh Gmbh GEAR AIR STARTER
US4694791A (en) * 1985-11-15 1987-09-22 Showa Precision Machinery Co., Ltd. Starting device with air motor for internal combustion engines
US5255644A (en) * 1992-06-02 1993-10-26 Ingersoll-Rand Company Positive gear engagement mechanism
FR2691754A1 (en) * 1992-06-02 1993-12-03 Ingersoll Rand Co Starter motor.
US20080257295A1 (en) * 2007-04-18 2008-10-23 Ingersoll Rand Company Rear serviceable engine starter
US20080276893A1 (en) * 2007-05-10 2008-11-13 Ingersoll Rand Company Single piece rotor
US20080282820A1 (en) * 2007-05-14 2008-11-20 Ingersoll Rand Company Balanced bearing assembly
US20100162983A1 (en) * 2008-12-30 2010-07-01 Mcgrew Bruce Pneumatic starting system
US20100251985A1 (en) * 2009-04-06 2010-10-07 Ingersoll Rand Company Air starter engagement system
CN113719390A (en) * 2021-09-07 2021-11-30 中船动力研究院有限公司 Redundant starting diesel engine and control method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047640U (en) * 1983-09-12 1985-04-03 川端 才太郎 car tow truck
JPS6380069A (en) * 1986-09-24 1988-04-11 Shigeru Kitagawa Starter for internal combustion engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2498697A (en) * 1947-07-12 1950-02-28 Molyneux John Chester Hydraulic starting mechanism
US2548268A (en) * 1947-11-13 1951-04-10 Bendix Aviat Corp Engine starter meshing means
US2558840A (en) * 1948-04-06 1951-07-03 Rolls Royce Starting gear for internalcombustion engines
US2653577A (en) * 1948-12-21 1953-09-29 Hydraulic Systems Inc Hydraulic starter drive
US2802452A (en) * 1953-10-20 1957-08-13 Bosch Arma Corp Hydraulic starter
US3051136A (en) * 1960-08-08 1962-08-28 Schwitzer Corp Starting motor control
US3616785A (en) * 1970-06-11 1971-11-02 Olin Corp Fluid actuated starter assembly

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2498697A (en) * 1947-07-12 1950-02-28 Molyneux John Chester Hydraulic starting mechanism
US2548268A (en) * 1947-11-13 1951-04-10 Bendix Aviat Corp Engine starter meshing means
US2558840A (en) * 1948-04-06 1951-07-03 Rolls Royce Starting gear for internalcombustion engines
US2653577A (en) * 1948-12-21 1953-09-29 Hydraulic Systems Inc Hydraulic starter drive
US2802452A (en) * 1953-10-20 1957-08-13 Bosch Arma Corp Hydraulic starter
US3051136A (en) * 1960-08-08 1962-08-28 Schwitzer Corp Starting motor control
US3616785A (en) * 1970-06-11 1971-11-02 Olin Corp Fluid actuated starter assembly

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126113A (en) * 1977-10-17 1978-11-21 Sarro Manuel B Engine air starter
DE3531848A1 (en) * 1985-09-06 1987-03-19 Duesterloh Gmbh GEAR AIR STARTER
US4694791A (en) * 1985-11-15 1987-09-22 Showa Precision Machinery Co., Ltd. Starting device with air motor for internal combustion engines
US5255644A (en) * 1992-06-02 1993-10-26 Ingersoll-Rand Company Positive gear engagement mechanism
FR2691754A1 (en) * 1992-06-02 1993-12-03 Ingersoll Rand Co Starter motor.
US7584676B2 (en) 2007-04-18 2009-09-08 Ingersoll Rand Company Rear serviceable engine starter
US20080257295A1 (en) * 2007-04-18 2008-10-23 Ingersoll Rand Company Rear serviceable engine starter
US20080276893A1 (en) * 2007-05-10 2008-11-13 Ingersoll Rand Company Single piece rotor
US7665439B2 (en) 2007-05-10 2010-02-23 Ingersoll Rand Company Single piece rotor
US20080282820A1 (en) * 2007-05-14 2008-11-20 Ingersoll Rand Company Balanced bearing assembly
US7806011B2 (en) 2007-05-14 2010-10-05 Ingersoll Rand Company Balanced bearing assembly
US20100162983A1 (en) * 2008-12-30 2010-07-01 Mcgrew Bruce Pneumatic starting system
US20100251985A1 (en) * 2009-04-06 2010-10-07 Ingersoll Rand Company Air starter engagement system
WO2010117482A1 (en) * 2009-04-06 2010-10-14 Ingersoll Rand Company Air starter engagement system
US7882816B2 (en) 2009-04-06 2011-02-08 Ingersoll Rand Company Air starter engagement system
CN102301125A (en) * 2009-04-06 2011-12-28 英格索尔-兰德公司 air starter engagement system
CN102301125B (en) * 2009-04-06 2015-07-29 英格索尔-兰德公司 air starter engagement system
CN113719390A (en) * 2021-09-07 2021-11-30 中船动力研究院有限公司 Redundant starting diesel engine and control method thereof
CN113719390B (en) * 2021-09-07 2022-12-06 中船动力研究院有限公司 Redundant starting diesel engine and control method thereof

Also Published As

Publication number Publication date
JPS496324A (en) 1974-01-21
FR2177366A5 (en) 1973-11-02
BE797071A (en) 1973-07-16
DE2312419A1 (en) 1973-10-04
CA967445A (en) 1975-05-13
GB1397192A (en) 1975-06-11
IT981355B (en) 1974-10-10

Similar Documents

Publication Publication Date Title
US3791365A (en) Air starter
GB1515200A (en) Power transmitting mechanism for initiating movement of a high inertia load
US4522269A (en) Dual motor torque delivering tool
US3643749A (en) Signal inhibitor for impact wrench
US2559006A (en) Rotary starting means for rotary engines with cartridge chamber and surplus gas releasing means
US4694791A (en) Starting device with air motor for internal combustion engines
US2206723A (en) Starting apparatus for internal combustion engines
GB831058A (en) Improvements relating to gear-changing arrangements for non-positively changed planetary change-speed gearings, in particular for motor vehicles
CA1176478A (en) Propeller brake for a turbo-prop engine
US3794009A (en) Air starter
US4679533A (en) Pneumatic starter
US3094845A (en) Engine starter arrangement
US3406762A (en) Control apparatus for fluid powered tools
US3792737A (en) Power wrench with a torque limiting coupling
US3440928A (en) Impulse tool having shutoff mechanism
US2557333A (en) Fluid control means
US2515831A (en) Transmission mechanism
US2608966A (en) Hydraulic starter
JPS6095113A (en) Internal combustion engine having disc shaped inlet valve
US3623557A (en) Turn-of-the-nut wrench shutoff system
US3172512A (en) Positioning means for wire wrapping tool
US3651640A (en) Gas turbine engine with aerodynamic torque converter drive
ES330742A1 (en) A compressed air starting engine of the construction type of a rotating bundle, for combustión engines. (Machine-translation by Google Translate, not legally binding)
US3377921A (en) Air starter
US2196969A (en) Engine starter