US3773510A - Additives to bleach/fix baths - Google Patents

Additives to bleach/fix baths Download PDF

Info

Publication number
US3773510A
US3773510A US00153713A US3773510DA US3773510A US 3773510 A US3773510 A US 3773510A US 00153713 A US00153713 A US 00153713A US 3773510D A US3773510D A US 3773510DA US 3773510 A US3773510 A US 3773510A
Authority
US
United States
Prior art keywords
bleach
bath
fix
multivalent element
fix bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00153713A
Inventor
R Fisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Minnesota Mining and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Mining and Manufacturing Co filed Critical Minnesota Mining and Manufacturing Co
Application granted granted Critical
Publication of US3773510A publication Critical patent/US3773510A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/42Bleach-fixing or agents therefor ; Desilvering processes
    • G03C7/421Additives other than bleaching or fixing agents

Definitions

  • a developable silver salt image is developed with an aromatic primary amino developing agent of the paraphenylene diamine type (a so-called color developer") in the presence of a compound which will combine with the oxidation products of the color developer to form an azomethine or quinoneimine dye (a so-called color coupler).
  • the dye is thus formed in situ with the developed silver image.
  • the product must be treated with a bleach bath and a fixing bath (or a combined bleach/fix bath) thereby to remove silver and any residual silver halide or other silver salt, leaving only the dye image.
  • a bleach/fix immediately follows the developer step there may be difficulty in effecting the full dye image. in detailing a technique to overcome such a deficiency, U.S. Pat. No.
  • 3,189,452 describes the use of an additional oxidizing bath immediately following the bleach/fix bath to effect the formation of the full dye density available.
  • additives to bleach/fix baths having a complexed or sequestered metal oxidizing agent can significantly improve the available dye density without the need for additional steps.
  • These additives also make it possible to use pH values below 7.
  • the additives of this invention are water soluble ionic compounds in which one of the ionic species is inorganic and contains at least one multivalent element at one of its higher valence states, which compounds increase the oxidation potential of such baths by at least 30, preferably 50, millivolts in a concentration not in excess of 50 gm/liter. The concentration used may vary greatly with the compound but obviously should not be large enough to render the bath unstable.
  • the oxidation potential of the baths may be increased by lowering the pH, this technique by itself can lead to the loss of dye density (especially cyan), as mentioned earlier.
  • the inclusion of the additives allows the formulation of bleach/fix baths with significantly increased oxidation potentials, above that of the bleach/fix alone at a given pH. This makes it possible to obtain the desired dye density without the necessity for additional processing baths or steps and further makes it possible to achieve this advantage independently of the pH of the bleach/fix bathywhich is prefer ably above pH 4..
  • the preferred additives are inorganic compounds (including inorganic salts of organic acids) which contain at least one multivalent element at one of its higher valence states, including such multivalent elements as a heavy metal, oxygen, a halogen, nitrogen, sulfur, etc.
  • Illustrative additives are the vanadates, chromates and persulfates which are soluble in and compatible with the bleach/fix baths. Examples of specific additive compounds are vanadium oxalate, cupric acetate, cupric chloride, vanadium pentoxide, potassium persulfate, sodium periodate, sodium dichromate, ceric ammonium nitrate, etc.
  • Such bleach/fix baths contain, as the silver oxidizing agent, a complexed or sequestered metal oxidizing agent (e.g. the iron complex of ethylene diamine tetraacetic acid) and a silver solvent (usually sodium or ammonium thiosulfate, which are reducing agents).
  • a complexed or sequestered metal oxidizing agent e.g. the iron complex of ethylene diamine tetraacetic acid
  • a silver solvent usually sodium or ammonium thiosulfate, which are reducing agents.
  • the oxidation potential of bleach baths may be measured with a millivolt measuring device utilizing a platinum indicating electrode and a saturated calomel electrode at 20C. As is illustrated in the examples below, dye density is seen to be directly related to the oxidation potential.
  • a multilayer photosensitive material specifically a color print paper containing a ketomethylene yellow coupler, a pyrazolone magenta coupler and a phenolic cyan coupler (i.e. 3M Mark III RC Color Print Paper, a product of 3M Company, Saint Paul, Minn., U.S.A.) was exposed and-then processed at F. in the following sequence: color de used.
  • EXAMPLE 1 An aqueous bleach/fix bath was prepared using the following basic formula plus additives, shown in Table with a standard color densitometer.
  • EXAMPLE 2 Sodium nitrate in amounts varying from 0 to 200 grams/liter were added to the bleach/fix formula, and the oxidation potential was measured. The following data describes the results.
  • a bleach/fix bath for color photo-graphic processing said bath having a pH above 4 and having a sequestered metal oxidizing agent as the bleaching agent, the improvement which comprises a water soluble ionic compound in which one of the ionic species is inorganic and contains at least one multivalent element at one of its higher valence states, which compound increases the oxidation potential of said bath by at least 30 millivolts in a quantity not in excess of 50 grams per liter without rendering said bath unstable.
  • a color photographic process including a development step in which an exposed silver halide image is developed with an aromatic primary amino developing agent in the presence of color coupler and a bleachhigher valence states, which compound increases the oxidation potential of said bath by at least 30 milli-volts in a quantity not in excess of 50 grams per liter without rendering said bath unstable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)

Abstract

In a bleach/fix bath for color photographic processing, said bath having a complexed or sequestered metal oxidizing agent as the bleaching agent, the improvement which comprises a water soluble ionic compound in which one of the ionic species is inorganic and contains at least one multivalent element at one of its higher valence states, which compound increases the oxidation potential of said bath by at least 30 millivolts in a quantity not in excess of 50 grams per liter without rendering said bath unstable.

Description

United States Patent 1191 Fisch Nov. 20, 1973 4] ADDITIVES To BLEACH/FIX BATHS 3,619,188 11 1971 Alcock 96 60 BF [75] Inventor: Richard S. Fisch, St. Paul, Minn. Primary Examiner Norman G. Torchin [73] Assignee: Minnesota Mining and Assistant Examiner-M. F. Kelley Manufacturing Company, St. Paul, Attorney-Kinney, Alexander, Sell, Steldt & Delahunt Minn. 22 Filed: June 26, 1971 [571 ABSTRACT In a bleach/fix bath for color photographic processing, [21] Appl' 153713 said bath having a complexed or sequestered metal oxidizing agent as the bleaching agent, the improvement [52] US. Cl. 96/60 BF, 96/61 R which comprises a Water l le i nic compound in [51] Int. Cl G03c 5/32, G03c 5/38 which one of the ionic sp i s is in rganic and con- [58] Field of Search 96/60, 60 BF, 61 wins at least one multivalent element at one of its higher valence states, which compound increases the [56] References Cit d oxidation potential of said bath by at least 30 milli- UNITED STATES PATENTS volts in a quantity not in excess of 50 grams per liter 2,322,084 6/1943 Young et al. 96/53 wlthout rendermg bath unstable 3,335,004 8/1967 Wrisley et a1 96/22 10 Claims, 1 Drawing Figure OXIDAT/ON POTENTIAL (m. M)
Patented Nov. 20, 1973 OX/DAT/ON pOTENT/AL INVENTOR. i-P/cHARo 5. F/scH ATTORNEYS This invention relates to color photography and more particularly to the processing of photographic material 7 comprising silver halide emulsion layers and adapted for processing to yield color images, hereinafter referred to simply as color photographic material."
in the conventional processing of such color photographic material, such as color print paper, a developable silver salt image is developed with an aromatic primary amino developing agent of the paraphenylene diamine type (a so-called color developer") in the presence of a compound which will combine with the oxidation products of the color developer to form an azomethine or quinoneimine dye (a so-called color coupler). The dye is thus formed in situ with the developed silver image. Subsequently the product must be treated with a bleach bath and a fixing bath (or a combined bleach/fix bath) thereby to remove silver and any residual silver halide or other silver salt, leaving only the dye image. However, when a bleach/fix immediately follows the developer step there may be difficulty in effecting the full dye image. in detailing a technique to overcome such a deficiency, U.S. Pat. No.
3,189,452 describes the use of an additional oxidizing bath immediately following the bleach/fix bath to effect the formation of the full dye density available.
Great care has been taken in the past to remove unused color developer from the photographic material before the latter enters the bleach bath, usually by treatment with an acid stop bath and/or a washing operation. It is especially difficult to avoid color fogging when the stop bath is omitted, even if the pH of the bleach bath is kept below 7, except by use of a prolonged washing operation after development. Unfortunately at low pH values the cyan dyes formed by coupling of naphthol derivatives with p-phenylenediamine derivatives are converted to the" colorless leuco form, so bleach/fix baths of pH values about 7 have been recommended to avoid loss of cyan dye.
We have found that the inclusion of certain additives to bleach/fix baths having a complexed or sequestered metal oxidizing agent can significantly improve the available dye density without the need for additional steps. These additives also make it possible to use pH values below 7.The additives of this invention are water soluble ionic compounds in which one of the ionic species is inorganic and contains at least one multivalent element at one of its higher valence states, which compounds increase the oxidation potential of such baths by at least 30, preferably 50, millivolts in a concentration not in excess of 50 gm/liter. The concentration used may vary greatly with the compound but obviously should not be large enough to render the bath unstable. Although the oxidation potential of the baths may be increased by lowering the pH, this technique by itself can lead to the loss of dye density (especially cyan), as mentioned earlier. The inclusion of the additives allows the formulation of bleach/fix baths with significantly increased oxidation potentials, above that of the bleach/fix alone at a given pH. This makes it possible to obtain the desired dye density without the necessity for additional processing baths or steps and further makes it possible to achieve this advantage independently of the pH of the bleach/fix bathywhich is prefer ably above pH 4..
We have found that the preferred additives are inorganic compounds (including inorganic salts of organic acids) which contain at least one multivalent element at one of its higher valence states, including such multivalent elements as a heavy metal, oxygen, a halogen, nitrogen, sulfur, etc. Illustrative additives are the vanadates, chromates and persulfates which are soluble in and compatible with the bleach/fix baths. Examples of specific additive compounds are vanadium oxalate, cupric acetate, cupric chloride, vanadium pentoxide, potassium persulfate, sodium periodate, sodium dichromate, ceric ammonium nitrate, etc. Such bleach/fix baths contain, as the silver oxidizing agent, a complexed or sequestered metal oxidizing agent (e.g. the iron complex of ethylene diamine tetraacetic acid) and a silver solvent (usually sodium or ammonium thiosulfate, which are reducing agents).
Some of the additives encompassed by this-invention have been previously used in other processes. U.S. Pat. No. 2,322,084, for example, cites the use of ammonium vanadate in a simultaneous dye and silver bleaching and fixing bath for the silver dye bleach process, which is not a conventional bleach/fix bath having a complexed or sequestered metal oxidizing agent. That process also differs from the conventional color forming process described in this invention in the fact that the dye essentially making up the visible image is not formed in situ but rather is present during the exposing and processing and is destroyed imagewise by the action of the silver formed by development and the bleaching bath. Some bath additives have previously been mentioned as chemical toning agents for color materials, see History of Color Photography, J. S. Friedman (American Photography Co., Boston, 1944) pages 322 and 324. Other additives in bleach/fix baths have been used to minimize stain, accelerate fixing and accelerate bleaching. Among the reported additives are thiosemicarbizide (U.S. Pat. No. 3,293,036), thiocarbamide or ascorbic acid (British Pat. No. 777,635), sodium iodide (British Pat. No. 926,569), thiourea (British Pat. No. 991,412), mercaptotetrazole (British Pat. No. 1,138,813), and hydrazine sulfate (U.S. Pat. No. 3,293,036).
For the purpose of this invention and its examples the oxidation potential of bleach baths may be measured with a millivolt measuring device utilizing a platinum indicating electrode and a saturated calomel electrode at 20C. As is illustrated in the examples below, dye density is seen to be directly related to the oxidation potential.
In all of the following examples a multilayer photosensitive material, specifically a color print paper containing a ketomethylene yellow coupler, a pyrazolone magenta coupler and a phenolic cyan coupler (i.e. 3M Mark III RC Color Print Paper, a product of 3M Company, Saint Paul, Minn., U.S.A.) was exposed and-then processed at F. in the following sequence: color de used.
EXAMPLE 1 An aqueous bleach/fix bath was prepared using the following basic formula plus additives, shown in Table with a standard color densitometer.
40 grams/liter l5 grams/liter TABLE I Quantity of Cyan additive Oxidation Dye Additive (grams/liter) Potential Density None 94 m.v. 0.74 Magnesium Sulfate 5 31 94 m.v. 0.75 Sodium Nitrate 200 7| m.v. 0.78 Cupric Chloride 5 62 m.v. 1.25 Sodium Dichromate 2 22 m.v. l.6l Potassium Persulfate 2 4 m.v. 1.78 yanadium Pentoxide 5 +110 m.v. 2.38
Using the same millivolt measuring device described above the bleach/fix formula, various other chemical compounds were incorporated into this standard solution, the resultant oxidation values were measured and recorded (the pH of each of the samples was adjusted to pH 4.5 by the use of citric acid or potassium hydroxide as needed before measuring the oxidation potential). Results are presented in Table ll.
TABLE ll Quantity of Change in additive Oxidation Sample Additive grams/liter Potential Control no additive, standard screening hath A thiourca 5 B magnesium sulfate O C 5 phenyl mercaptatctrazole 2 O D hydroxylamine sulfate 5 0 E thiosemicarbizide 3 0 F ethylene thiourea 5 O G ceric ammonium nitrate 30 42 H cupric chloride 5 32 l sodium periodatc 25 30 .l m-dinitrobenzene 2 O K sodium dichromate 2 72 L potassium persulfate 2 90 M vanadium pentoxide 5 +204 N sodium nitrate 200 25 The oxidation potentials were measured with a platinum indicating electrode and a saturated calomel electrode at 20C. In all instances those baths which contained the additives that raised the oxidation potential at least 30 m.v. were highly effective in developing the full dye density, especially of the cyan dye. No significant increase in oxidation potential occurs when additives A F and J were used in higher concentrations up to 50 grams/liter. The direct relationship between oxidation potential and dye density is immediately apparent from these data.
EXAMPLE 2 Sodium nitrate in amounts varying from 0 to 200 grams/liter were added to the bleach/fix formula, and the oxidation potential was measured. The following data describes the results.
TABLE III Sodium nitrate concentration Oxidation Potential 200 grams/liter 70 m.v. 125 grams/liter 70 m.v. 80 grams/liter 75 m.v.
30 grams/liter 82 m.v. l0 grams/liter 90 m.v. 0 grams/liter 94 m.v.
As can be seen from Table III, increasing quantities of this compound did not change the oxidation potential greatly, and the oxidation potential never increased more than 24 m.v. above that of the starting standard solution. Using the same procedures with vanadium pentoxide additive instead of sodium nitrate, the oxidation data in Table IV and the cyan dye density relationship to oxidation potential in the FIGURE, were obtained.
TABLE IV Vanadium pentoxide concentration Oxidation Potential l0 grams/liter +100 m.v. 5 grams/liter 30 m.v. 2 grams/liter 47 m.v. 0.5 grams/liter 37 m.v. 0 grams/liter 95 m.v.
A comparison of the effect of sodium nitrate and vanadium pentoxide on dye density at different concentration levels is presented in Table V.
TABLE V Quantity of additive Oxidation Cyan Dye Additive grams/liter Potential Density (control) 95 m.v. 0.75 sodium nitrate 70 m.v. 0.75 sodium nitrate 200 70 m.v. 0.75 vanadium pentoxide 2 47 2.10 vanadium pentoxide 5 +l l0 m.v. 2.38
With the additives of this invention the effect of increasing additive concentration on oxidation potential continues until a maximum dye density is achieved or until the solution solubility limit of the additive is reached.
What is claimed is:
1. In a bleach/fix bath for color photo-graphic processing, said bath having a pH above 4 and having a sequestered metal oxidizing agent as the bleaching agent, the improvement which comprises a water soluble ionic compound in which one of the ionic species is inorganic and contains at least one multivalent element at one of its higher valence states, which compound increases the oxidation potential of said bath by at least 30 millivolts in a quantity not in excess of 50 grams per liter without rendering said bath unstable.
2. The bleach/fix bath of claim 1 in which said multivalent element is a heavy metal.
3. The bleach/fix bath of claim 1 in which said multivalent element is chromium.
4. The bleach/fix bath of claim 1 in which said multivalent element is sulfur.
5. The bleach/fix bath of claim 1 in which said multi' valent element is copper.
6. The bleach/fix bath of claim 1 in which said multivalent element is a halogen.
7. The bleach/fix bath of claim 1 in which said multivalent element is a nitrogen.
' 8. The bleach/fix bath of claim 1 in which said multivalent element is vanadium.
9. The bleach/fix bath of claim 1 in which said multivalent element is oxygen.
10. In a color photographic process including a development step in which an exposed silver halide image is developed with an aromatic primary amino developing agent in the presence of color coupler and a bleachhigher valence states, which compound increases the oxidation potential of said bath by at least 30 milli-volts in a quantity not in excess of 50 grams per liter without rendering said bath unstable.
7 um'mb 53m ns QATENT OFFICE CERTIFICATE (9F CORRECTION Patent No, "3,773,510 Dated ovember 20, 1973 Inventor) RICHARD S. F ISCH It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 3, Table I, under column headed Oxidation Potential, second item: "31 9M m.v.", should be:
Column l, Table IV, under column headed Oxidation Potential, seconditem: "3O 7O m.v.",. should be: 70 m.v.
Signed and sealed this 1st day of October 1974.
(SEAL) Attest:
MCCOY M. GIBSON JR. c. MARSHALL DANN Attesting Officer I Commissioner of Patents FORM P0-1D50 (10-69) a n u s ouvnnmzm nmnna ornc: nu 0-16-31

Claims (9)

  1. 2. The bleach/fix bath of claim 1 in which said multivalent element is a heavy metal.
  2. 3. The bleach/fix bath of claim 1 in which said multivalent element is chromium.
  3. 4. The bleach/fix bath of claim 1 in which said multivalent element is sulfur.
  4. 5. The bleach/fix bath of claim 1 in which said multivalent element is copper.
  5. 6. The bleach/fix bath of claim 1 in which said multivalent element is a halogen.
  6. 7. The bleach/fix bath of claim 1 in which said multivalent element is a nitrogen.
  7. 8. The bleach/fix bath of claim 1 in which said multivalent element is vanadium.
  8. 9. The bleach/fix bath of claim 1 in which said multivalent element is oxygen.
  9. 10. In a color photographic process including a development step in which an exposed silver halide image is developed with an aromatic primary amino developing agent in the presence of color coupler and a bleach/fix step in which a sequestered metal oxidizing agent is used as the bleaching agent, the improvement which comprises the use of a bleach fix bath having a pH above 4 and containing a water soluble ionic compound in which one of the ionic species is inorganic and contains at least one multivalent element at one of its higher valence states, which compound increases the oxidation potential of said bath by at least 30 milli-volts in a quantity not in excess of 50 grams per liter without rendering said bath unstable.
US00153713A 1971-06-26 1971-06-26 Additives to bleach/fix baths Expired - Lifetime US3773510A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15371371A 1971-06-26 1971-06-26

Publications (1)

Publication Number Publication Date
US3773510A true US3773510A (en) 1973-11-20

Family

ID=22548417

Family Applications (1)

Application Number Title Priority Date Filing Date
US00153713A Expired - Lifetime US3773510A (en) 1971-06-26 1971-06-26 Additives to bleach/fix baths

Country Status (1)

Country Link
US (1) US3773510A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4040838A (en) * 1975-03-05 1977-08-09 Fuji Photo Film Co., Ltd. Processing color photographic materials
US4088486A (en) * 1975-08-06 1978-05-09 Eastman Kodak Company Process of bleaching silver images to form dye images using cobalt complexes and peroxides
US4097278A (en) * 1975-09-02 1978-06-27 Eastman Kodak Company Redox amplification process employing a combination of oxidizing agents
US4277556A (en) * 1976-08-18 1981-07-07 Konishiroku Photo Industry Co., Ltd. Process for treating light-sensitive silver halide color photographic materials
DE3423100A1 (en) * 1983-06-23 1985-01-03 Konishiroku Photo Industry Co., Ltd., Tokio/Tokyo TREATMENT BATH WITH BLEACH TO LIGHT-SENSITIVE (COLOR) PHOTOGRAPHIC SILVER HALOGENIDE RECORDING MATERIALS
US4812389A (en) * 1985-09-25 1989-03-14 Fuji Photo Film Co., Ltd. Process for processing silver halide color photographic material containing DIR coupler having a group functioning as a development inhibitor
US5264332A (en) * 1990-10-08 1993-11-23 Fuji Photo Film Co., Ltd. Silver halide color photographic material
WO1997008287A2 (en) * 1995-08-30 1997-03-06 The Dow Chemical Company Polyamino monosuccinic acid derivative degradable chelants, uses and compositions thereof
EP0762203A1 (en) * 1995-08-30 1997-03-12 Eastman Kodak Company Succinic acid derivative degradable chelants, uses and compositions thereof
US6022680A (en) * 1996-06-11 2000-02-08 Fuji Photo Film Co., Ltd. Silver halide color photographic light-sensitive material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2322084A (en) * 1940-01-11 1943-06-15 Eastman Kodak Co Simultaneous bleaching and fixing bath
US3335004A (en) * 1963-12-09 1967-08-08 Eastman Kodak Co Method for stabilization processing of color emulsions
US3619188A (en) * 1968-07-24 1971-11-09 Ilford Ltd Bleach-fix processing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2322084A (en) * 1940-01-11 1943-06-15 Eastman Kodak Co Simultaneous bleaching and fixing bath
US3335004A (en) * 1963-12-09 1967-08-08 Eastman Kodak Co Method for stabilization processing of color emulsions
US3619188A (en) * 1968-07-24 1971-11-09 Ilford Ltd Bleach-fix processing

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4040838A (en) * 1975-03-05 1977-08-09 Fuji Photo Film Co., Ltd. Processing color photographic materials
US4088486A (en) * 1975-08-06 1978-05-09 Eastman Kodak Company Process of bleaching silver images to form dye images using cobalt complexes and peroxides
US4097278A (en) * 1975-09-02 1978-06-27 Eastman Kodak Company Redox amplification process employing a combination of oxidizing agents
US4277556A (en) * 1976-08-18 1981-07-07 Konishiroku Photo Industry Co., Ltd. Process for treating light-sensitive silver halide color photographic materials
DE3423100A1 (en) * 1983-06-23 1985-01-03 Konishiroku Photo Industry Co., Ltd., Tokio/Tokyo TREATMENT BATH WITH BLEACH TO LIGHT-SENSITIVE (COLOR) PHOTOGRAPHIC SILVER HALOGENIDE RECORDING MATERIALS
US4563405A (en) * 1983-06-23 1986-01-07 Konishiroku Photo Industry Co., Ltd. Processing solution having bleaching ability for light-sensitive silver halide color photographic material
US4812389A (en) * 1985-09-25 1989-03-14 Fuji Photo Film Co., Ltd. Process for processing silver halide color photographic material containing DIR coupler having a group functioning as a development inhibitor
EP0452984A1 (en) 1985-09-25 1991-10-23 Fuji Photo Film Co., Ltd. Process for processing silver halide color photographic material for photographing use
US5264332A (en) * 1990-10-08 1993-11-23 Fuji Photo Film Co., Ltd. Silver halide color photographic material
WO1997008287A2 (en) * 1995-08-30 1997-03-06 The Dow Chemical Company Polyamino monosuccinic acid derivative degradable chelants, uses and compositions thereof
EP0762203A1 (en) * 1995-08-30 1997-03-12 Eastman Kodak Company Succinic acid derivative degradable chelants, uses and compositions thereof
WO1997008287A3 (en) * 1995-08-30 1997-05-15 Dow Chemical Co Polyamino monosuccinic acid derivative degradable chelants, uses and compositions thereof
US6022680A (en) * 1996-06-11 2000-02-08 Fuji Photo Film Co., Ltd. Silver halide color photographic light-sensitive material

Similar Documents

Publication Publication Date Title
US3822129A (en) Photographic materials and processes
EP0602600B1 (en) Photographic persulfate bleaches with ferric catalysts
US3748138A (en) Metal complex in silver halide development
US3773510A (en) Additives to bleach/fix baths
DE3129849A1 (en) METHOD FOR DEVELOPING A COLOR PHOTOGRAPHIC SILVER HALOGENIDE MATERIAL AND AQUEOUS COLOR DEVELOPER SOLUTION FOR CARRYING OUT THIS METHOD
DE2448433C2 (en) Aqueous treatment bath for combined color and silver bleaching and a process for processing silver color bleaching materials
US3168400A (en) Rapid processing of photographic color materials
JP2622839B2 (en) Bleaching parts composition
US2515121A (en) Process for preventing stains in photographic color material by treatment with basic acids immediately prior to drying
GB1421126A (en) Processing silver halide photographic materials
US3591380A (en) Rapid stabilizing process for color photographic materials
US3642478A (en) Processes and compositions for converting zero valent metals photographic images to formazan dye images
GB1200777A (en) Colour photography
US3615507A (en) Photographic bleach-fix solutions
DE1772123A1 (en) Process for developing silver photographic images
US4229521A (en) Method of processing photographic materials
DE2738190A1 (en) METHOD FOR GENERATING PHOTOGRAPHICAL IMAGES
US3843367A (en) Photographic color developing process
DE3939756A1 (en) Bleach baths for processing silver halide photographic materials - contg. ferric iron complex with biodegradable nitrilo mono:acetic acid di:carboxylic acid complex former
JPH07168333A (en) Bleaching-fixing composition containing ternary-system secondary ferrate
US2706687A (en) Preventing formation of prussian blue stain in color developed photographic prints
JPS5916261B2 (en) Color image forming method
US3749572A (en) Process for inhibiting the bleaching of photographic silver images
JPH0128375B2 (en)
US3761262A (en) Photographic color developing process