US3768159A - Can opener cutter assembly release - Google Patents

Can opener cutter assembly release Download PDF

Info

Publication number
US3768159A
US3768159A US00271108A US3768159DA US3768159A US 3768159 A US3768159 A US 3768159A US 00271108 A US00271108 A US 00271108A US 3768159D A US3768159D A US 3768159DA US 3768159 A US3768159 A US 3768159A
Authority
US
United States
Prior art keywords
pin
latch
cutter
frame
feed wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00271108A
Other languages
English (en)
Inventor
R Emmons
M Boissonneault
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dynamics Corp of America
Original Assignee
Dynamics Corp of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynamics Corp of America filed Critical Dynamics Corp of America
Application granted granted Critical
Publication of US3768159A publication Critical patent/US3768159A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67BAPPLYING CLOSURE MEMBERS TO BOTTLES JARS, OR SIMILAR CONTAINERS; OPENING CLOSED CONTAINERS
    • B67B7/00Hand- or power-operated devices for opening closed containers
    • B67B7/38Power-operated cutting devices

Definitions

  • ABSTRACT A push-pull latch in a powered household can opener is manually movable between alternate positions in both of which it is subjected to favorable frictional conditions with respect to a pivotally mounted cutter assembly that is removable for cleansing purposes.
  • Push button release latches having a spring driven automatic relatching snap action for receiving and holding releasable can opener cutter assemblies in working position require an inherent looseness in their latching cooperation. Due to assembly or wear, this causes faulty operation of the conventional cutter and feed wheel assemblies, particularly with cans having assorted bead tolerances. Under such conditions extra strain and wear is placed upon the latching assemblies that pivotally carry the heavy axial load on the pivot pin and increase the undesirable performances as where an axially removable pivot pin carrying a cutter receives with little overlap a spring closed latch element transversely in a circumferential groove which rotates less than under load with respectto thelatch element.
  • the interengaged overlapping contact area of the latching relationship area is limited to a crescent of a length less than the diameter of the pivot pin and less than half the pin radius in depth. If a greater contact area is sought, difficulty is experienced in camming the snap action with the tapered head on the pin engaging the keyhole opening in the latch. In order to provide a maximumend thrust contact area between the narrower portion of the keyhole opening and a groove shallow enough to leave sufficient neck stock to withstand the axial thrusts, the narrow portion of the slot must be elongated a distance equal to the sum of the pin and neck radii whereupon automatic camming relatching tolerances become critical. The problem may also include a latch stop that is not spaced sufficiently so that it does not interfere with the fullness of the contact for the contact area designed.
  • a snap latch particularly if it has a keyhole opening, must be limited in its closing movement by other than the groove for the tapered head to be operatively received. Otherwise, the latch overshoots a'desirable relatch ready position and has to be manually assisted in order to receive the pin in whole or in part therethrough for ultimate relatching purposes. Also, for the latch to be loose enough to operate with a snap action the axial working tolerances for the pin and cutter assembly have to be substantial, which contributes to wear and the faulty operation in opening cans.
  • the manual throw of the latch by a frictionally supported push-pull slide button may be either unlimited, or limited only by the full depth of the latch engagement, and, the cutter pin receiving opening can be as large or small as desired.
  • the latch member is pivoted on the feed wheel shaft for concentric movement with an already determined fixed radius between the latch portion and the cutter pin as the latch is manually moved to its alternate positions.
  • a dual spring element one portion of which is disposed between the frame and latch member with the latch member engaging against the transmission gear wheel carried by the feed wheel shaft to hold the feed wheel at its working position tolerance at all times and avoid any possibility of interference with a can bead being inserted in place between the cutter and feed wheel.
  • the keyhole opening on the latch is oriented with the large portion thereof leading in the direction of rotation of the feed wheel shaft and any friction developed therebetween is not adverse but favorable to the latch in either of its positions.
  • the other spring engages the end of the cutter pin not only to hold the cutter assembly at its working position tolerancesbut also partially ejects the assembly when unlatched.
  • the cutter pin assembly is then manually returned and the pin pressed axially into the path of latch engagement whereupon the slide button is manually actuated to move the latch back into pin engaging position and the springs take up all pin and shaft tolerances.
  • FIG. 1 is a perspective view of a powered can opener embodying the invention
  • FIG. 2 is a top perspective of the can opener shown in FIG. 1 with the cutter assembly released and removed for cleaning;
  • FIG. 3 is a vertical sectional view taken on line 33 in FIG. 1;
  • FIGS. 4, 5 and 6 are side, edge, and perspective views, respectively, taken on lines 44 and 5-5 in FIGS. 3' and 4 of the latching relationship embodying theinvention.-
  • the frame of a household can opener 10 is indicated at 12 and journals both a pin 14 of a cutter-handle assembly 16 that is removable axially for cleansing (FIG. 2), and the shaft 18 of a feed wheel assembly which includes a stamped gear wheel 20 on the inner end thereof meshing with a speed reducing gear 22 that is powered by a motor 24 under the control of a pressure switch 26 located at the top of the frame.
  • the cutter assembly 16 includes a can head piercing cutter wheel 28 journalled at 30 as canted at an angle on a handle 32 to shear the can head close to the bead.
  • the handle in turn is secured to the pin 14 for pivotal movement of the cutter towards and away from a peripherally toothed feed wheel 34 on the shaft 18.
  • the switch 26 is closed by the han dle and power is applied to sever a can head (not shown) in a well known manner from the rim bead of conventional cans having edibles in them that are purchased for household consumption.
  • the axes of rotation of the cutter wheel 28, the pin 14, and the feed wheel shaft 18 preferably are in essentially vertical alignment in operation for the reaction of the feed wheel and cutter to be in a direction holding them in cutting position and the handle in a position maintaining the switch 26 closed during the cutting operation, but works with other arrangements, one of which is shown.
  • the inner end of the pin 14 is circumferentially grooved at 36 beyond which a head 38, preferably tapered, extends into the space behind its journal 40.
  • a latch mechanism 42 coacting with the groove 36 and head 38 is mounted on the rear exposed end of the feed wheel shaft 18 and includes a latch plate 44 journalled on the shaft 18 next to the reduction gear 20.
  • the upper end of the plate 44 has a latch slot 46 in it to receive the neck 48 defined by groove 36 behind the head 38 when the plate is moved in the direction of rotation of the gear 20.
  • a finger 50 extends through a slot 52 in the top of the frame 12 to receive a push-pull button 54 that is frictionally mounted to manually reciprocate the plate for engagement and disengagement of the slot 46 and groove 36.
  • a dual spring element 56 journalled on the feed wheel shaft is a dual spring element 56 in which concentric portions 56A and 56B are canted with respect to each other as integrally joined at 58 at their lower edges from which they diverge.
  • the inner circular portion 56A exerts a pressure between the bearing 57 in the frame 12 and the plate 44 for the latter to engage the gear wheel and urge the feed wheel shaft 18 inwardly.
  • the outer portion 568 urges the cutter assembly pin 14 outwardly so that the full working space between the cutter and feed wheel is maintained at all times when the can opener is ready for receiving and cutting the can top.
  • the outer spring 56B has an upwardly extending finger 60 biased to engage the inner end of the pin 14.
  • the spring 56B also serves to eject the pin 14 and the cutter assembly 16 when the latch is released.
  • the pin 14 being urged outwardly carries the latch member 44 against the frame portion 40 in collapsing all clearances and thus permits sufficient tolerances to be provided for the easy relatching of the outer assembly after cleansing.
  • the springs are held in proper position against rotation with respect to the plate 44 by the sides 72 in the plate through which it extends and by the interlock between the notch 74 in the spring and tongue 76 on the plate 44 as shown in FIGS. 4 and 6.
  • the cutter and feed wheel are held in their working positions to assist in easily receiving the rim of a can between them as they are advanced, and, as noted in FIG. 3 the cutter wheel 28 has a slight squeeze at contour 62 on the rim side that takes up any tolerances that it may have on its journal when it is advanced to sever the can top along the rim.
  • the gear wheel 20 is turning and any friction developing between it and the latch plate 44 is favorable expended in a direction that does not disturb the latch plate having its slot 46 in engagement with the groove 36 of the pin 14.
  • the latch continues to remain engaged until manual movement of the pushpull button 54 moves it to its latch release position posed against the frame on one side tends to hold the latch against reengagement until the push-pull button 54 is manually moved to its latching position.
  • latch slot portion 46A may open on the edge of the plate 44 it is shown as part of the keyhole slot 46 shown which provides best strength and shear tolerances for the latch and also the large portion 66 of the slot cooperates with the tapered head 38 to some degree to assure the release position of the latch to receive the pin 14 after the cutter assembly has been cleansed. Thereupon the latch is manually moved by the push-pull button 54 to its latching position.
  • the push-pull button 54 loosely receives the upper end of the finger 50 when snapped into the frictional track 68 on the frame and terminal shrouds 70 overlie the slot 52. Suitable indicia on the housing at opposite ends of the shrouds indicate the respective positions of the button described.
  • a rotatable feed wheel assembly including a shaft journalled in the frame and an element rotatable therewith having a surface engageable on the shaft side thereof,
  • a cutter assembly including a cutter movable in and out of co-action with said feed wheel in axially offset relationship and a mounting pin pivotally journalled in the frame for axial removal for cleansing of the cutter,
  • said pin having a headed end portion engaged by said latch
  • a stamping carried by said shaft urging said latch in engagement with said surface and having a spring element engaging the end of the pin to partially eject the pin when said latch means is manually actuated in a direction opposite to the direction of feed wheel rotation.
  • a spring metal stamping having two spring portions journalled onsaid feed wheel shaft, one spring portion enterengaging latch means and frame to urge said contacting relationship, and the other spring portion engaging said mounting pin to partially eject said mounting pin upon release of said latch means.
  • a pressure sensitive normally OFF switch supported in the frame for controlling said motor
  • said cutter assembly including a handle engaging said switch to close it when the cutter is moved into said coaction with said feed wheel by said handle,
  • said axes of said pin shaft and cutter wheel being in predetermined orientation for the cutting reaction to assist holding said handle in position closing said switch.
  • said spring means comprises a central portion normally canted in part in an axial direction to the axis of said shaft located under compression between said means and said frame, and
  • a can opener having a frame, a rotatable feed wheel assembly including a shaft journalled in the frame and an element thereon having a rotatable frictional surface, a cutter assembly including a cutter to releasably coact with said feed wheel and a mounting pin pivotally journalled in the frame for movement of the cutter and axial removal of the assembly for cleansing of the cutter,
  • said latch means comprises a member movable in a plane transverse to said pin and having a keyhole slot therein where minor width extends a distance greater than the radius of said pin in the direction of rotation of said feed wheel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Devices For Opening Bottles Or Cans (AREA)
US00271108A 1972-07-12 1972-07-12 Can opener cutter assembly release Expired - Lifetime US3768159A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US27110872A 1972-07-12 1972-07-12

Publications (1)

Publication Number Publication Date
US3768159A true US3768159A (en) 1973-10-30

Family

ID=23034227

Family Applications (1)

Application Number Title Priority Date Filing Date
US00271108A Expired - Lifetime US3768159A (en) 1972-07-12 1972-07-12 Can opener cutter assembly release

Country Status (3)

Country Link
US (1) US3768159A (ja)
JP (1) JPS5443432B2 (ja)
CA (1) CA973345A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239757A (en) * 1992-10-19 1993-08-31 Weaber Tim E Portable can opener apparatus
GB2455518A (en) * 2007-12-11 2009-06-17 Hui Ling Lee Motor driven can opener with lever
US20100101391A1 (en) * 2008-10-27 2010-04-29 Rexon Industrial Corp., Ltd. Quick-release mechanism for saw machine
US8955227B2 (en) 2012-09-03 2015-02-17 Hui-Ling Lee Can opener

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2810952A (en) * 1956-03-16 1957-10-29 Frank J Curran Power driven can opener
US3646671A (en) * 1969-12-19 1972-03-07 Rival Manufacturing Co Electric can opener with removable hand lever and frame-engaging pin assembly
US3673682A (en) * 1969-04-23 1972-07-04 Aichi Electric Mfg Can opener device
US3688398A (en) * 1970-02-19 1972-09-05 Rival Manufacturing Co Can opener with cutting element carrying hand lever and push button operated mechanism for removing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5041367Y2 (ja) * 1971-01-30 1975-11-25

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2810952A (en) * 1956-03-16 1957-10-29 Frank J Curran Power driven can opener
US3673682A (en) * 1969-04-23 1972-07-04 Aichi Electric Mfg Can opener device
US3646671A (en) * 1969-12-19 1972-03-07 Rival Manufacturing Co Electric can opener with removable hand lever and frame-engaging pin assembly
US3688398A (en) * 1970-02-19 1972-09-05 Rival Manufacturing Co Can opener with cutting element carrying hand lever and push button operated mechanism for removing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239757A (en) * 1992-10-19 1993-08-31 Weaber Tim E Portable can opener apparatus
GB2455518A (en) * 2007-12-11 2009-06-17 Hui Ling Lee Motor driven can opener with lever
US20100101391A1 (en) * 2008-10-27 2010-04-29 Rexon Industrial Corp., Ltd. Quick-release mechanism for saw machine
US8955227B2 (en) 2012-09-03 2015-02-17 Hui-Ling Lee Can opener

Also Published As

Publication number Publication date
JPS5443432B2 (ja) 1979-12-20
CA973345A (en) 1975-08-26
JPS4936488A (ja) 1974-04-04

Similar Documents

Publication Publication Date Title
US3768159A (en) Can opener cutter assembly release
US3254406A (en) Can opener
US3689999A (en) Can opener
US4053981A (en) Power operated can opener having automatic shutoff means, a removable hand lever assembly, and a manual crank
US3216108A (en) Can opener
EP0169224B1 (en) Can-openers
US3706135A (en) An electrically powered can opener
US3313023A (en) Can opener
CA2358730C (en) Hand-held can opener
US2257549A (en) Can opener
US4754550A (en) Can openers
US3006070A (en) Can opener
US3139211A (en) Containers and openers therefor
US1989807A (en) Can opener
US3146555A (en) Apparatus for opening cans and sharpening knives
JPH0218873B2 (ja)
US2563569A (en) Can openek
US3815226A (en) Automatic can opener with can disengagement through motor reversal
US3909860A (en) Combination can-opener tool
CA2258974A1 (en) Can opener appliance having a side-cutting mechanism
US2354469A (en) Can opener
US3798764A (en) Electrically powered can opener
US2287442A (en) Rotary type can opener
US3142902A (en) Engaging and opening mechanism for a can opener
US2932086A (en) Can opener