US3746860A - Soft x-ray generator assisted by laser - Google Patents

Soft x-ray generator assisted by laser Download PDF

Info

Publication number
US3746860A
US3746860A US00227177A US3746860DA US3746860A US 3746860 A US3746860 A US 3746860A US 00227177 A US00227177 A US 00227177A US 3746860D A US3746860D A US 3746860DA US 3746860 A US3746860 A US 3746860A
Authority
US
United States
Prior art keywords
plasma
laser
energy
radiation
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00227177A
Inventor
J Stettler
H Meyer
R Shatas
T Roberts
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3746860A publication Critical patent/US3746860A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • G21B1/23Optical systems, e.g. for irradiating targets, for heating plasma or for plasma diagnostics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • Soft x-ray pulses of submicrosecond duration are needed to test materials and components of pulsed fusion reactions.
  • Techniques presently employed to generate such pulses are (a) electron diode guns bombarding a heavy metal target, (b) underground fusion devices and (c) dense focus with high Z-material elec trode tips which erode during the pulse.
  • Electron diode guns at the required x-ray energies of fractional MeV are very inefficient because of conversion efficiency of electron beam energy into Bremsstrahlung decreases superlinearly with the decrease of electron energy for a given target anode, a fact which is well known to the designers of flash x-ray tubes.
  • the space charge of electron beams is not cancelled by relativistic effects and limits severely the maximum current density of the electron beam available at the target anode.
  • the electric fields at the cathode are usually not sufficient to obtain a copious electron emission by the field effect and therefore thermionic cathodes must be employed which intrinsically yield a much lower electron emission current density than field emitters.
  • Present electron beam-Bremsstrahlung flash generators of useful x-ray fluence therefore employ electron beams in the several MeV range. They generate x-ray flashes of spectral distribution which contains most of the photon energy in the hard x-ray spectral range. Because the x-ray penetration depth decreases superlinearly with the photon energy, the deposited x-ray energy density in test materials and components is substantially different for soft and hard x-ray flashes of identical fluence at the source. Therefore, pass-fail conclusions of tests on materials, components and devices performed with many MeV energy electron beam x-ray flash generators are not directly scalable to predict the performance under a soft x-ray flash.
  • Underground fusion flash tests suffer from the intrinsic inability to separate the various components of radiations and expansion waves generated during the test. Therefore, various radiation and blast wave effects cannot be readily differentiated and only the cumulative, gross effects are observed. Thus, the materials designer is handicapped in separating the individual contributions from each damaging radiation.
  • the plasma focus alone can also be used as a soft x-ray flash generator by altering the electrode design and configuration such as to increase the evaporation and erosion of certain portions of the electrodes. Because only the energy stored in the plasma focus can be used for soft x-ray production, the fluence of x-ray flash is limited. In addition, a full control of erosion of the electrodes cannot be achieved in this case. Therefore, the intensity and the spectral distribution of x-ray flashes varies from one firing to another.
  • all of these dificiencies are either eliminated or substantially reduced by a programmed evaporation of high Z-material by laser pre-pulse, injection of heavy z-ions into the dense focus by laser-induced ion detonation wave and by heating of the high z-plasma by the main laser pulse.
  • the laser assisted soft x-ray generator comprises a device that utilizes laser energy deposition in the plasma of the coaxial plasma gun to create the necessary conditions for a copious emission of x-rays at kilovolt energies.
  • the high energy laser, dense plasma focus combination is arranged and. operated in the following way: First, the dense focus gun is fired and as a consequence of an electric breakdown initiated shock wave of charged particles between the gun electrodes, a dense plasma focus is created at the center electrode of the gun.
  • hydrogen or hydrogen-isotop gas is used to create the initial plasma in the gun. This hydrogen or hydrogen-isotope plasma is a weak source of xrays, although it may produce a burst of thermonuclear neutrons.
  • the energy for the x-ray radiation is extracted from the plasma focus which stores a certain amount of energy in thermal, motional and magnetic energies, the enhanced radiation would cease, upon rapidly exhausing these stored energies.
  • a separate energy source is needed to sustain the temperature of the highly radiating plasma. This is accomplished by heating the plasma focus with a high energy laser pulse which is chosen in frequency and in geometrical configuration as to be as completely as possible absorbed by the radiating plasma focus.
  • FIG. 1 is a diagrammatic view of the x-ray generator of the present invention.
  • FIG. 2 is a diagrammatic view of an alternate em bodiment of the present invention.
  • the apparatus of the present invention includes a plasma gun l0 and a laser 12 disposed in axial alignment.
  • a power supply 14 is provided for the plasma gun I0 and the electrical system therefor includes a charging resistor R,, condenser bank 16, starting switch 18, pulse generator 20 and switch 21.
  • the electrical system for the laser includes a power supply 22, charging resistor R and an electrical laser pulser 24.
  • Plasma gun It includes an insulator 25, an outer electrode 26 and an inner electrode 28.
  • the plasma gun is operationally connected to the laser through a light pipe 30, optical attenuator 32, photo-diode 34 and a signal delay generator 36 which is connected to the electrical laser pulser 24.
  • a member 38 of high Z- material is disposed in plasma gun 10 along a longitudinal axis 40 extending through plasma gun I0 and laser 12.
  • the plasma gun is arranged so the insulator 25 is away from the laser beam.
  • Lens 50 is shown mounted in the path of the laser output within the center electrode. The positioning of the lens is arbitrary within the center electrode it only being necessary that the laser radiation is focused onto the plasma. With the laser and plasma gun in this arrangement, ions are blown back into the focus at a velocity of about 10 cm/sec.
  • both the coaxial plasma gun l0 and the high energy CO laser 12 are filled to the desired pressures with the gases to be used; and the power supplies l4 and 22 have charged through their respective charging resistors R and R the condenser bank 16 and the laser pulser 24 to the working voltages.
  • the sequence of events is now started by closing starting switch 18. This causes the pulse generator 20 to close the switch 21 and the voltage of the condenser bank 16 appears across the electrodes of the coaxial dense plasma focus gun 10.
  • the gas in the coaxial plasma gun breaks down near insulator 25 forming current sheath 37 The current sheath then propagates between the outer electrode 26 and the center electrode 28.
  • the current sheath is driven by the magnetic pressure of its own magnetic field, and the discharge becomes more intense as the sheath propagates.
  • the current sheath reaches the end of the electrodes it folds back on itself and rapidly collapses the plasma toward the axis of the tube as in a z-pinch.
  • variable optical attenuator 32 is preset so that the light intensity will not cause the signal delay generator 36 to begin operating until the current sheath has reached a predetermined location in the coaxial plasma g'un. In this manner the jitter of all events prior to the time the signal delay generator is started are avoided and have no effect on the problem of synchronizing the laser firing.
  • the signal which starts signal delay generator 36 is delayed a preset amount and is then used to actuate the laser pulser 26 which has already been precharged up to the required electrical energy level by the power supply 22 so that the entire voltage of laser pulser 24 appears across the discharge electrodes 40 and 42 of the high energy pulsed CO laser 12.
  • the preferred embodiment of the laser is the high pressure electron beam preionized electrical discharge pumped arrangement in which the electric field intensity between the discharge sustaining electrodes 40 and 42 is chosen such as to maximize the transfer of electrical energy into molecular rotational and vibrational energy of the lasing gas.
  • the electron beam in ionizing collisions with the lasing gas provides the positive-and negative charge carriers which drift at relatively slow velocities under the sustainer field and in colliding with neutral atoms or molecules of the lasing gas transfer a part of their kinetic energy into rotational-vibration excitations.
  • the shape of this pulse can be tailored somewhat if desired by rotating mirror 44 so that the laser is Q-switched.
  • the laser beam is focused onto the member 38 of high Z-material by a lens 50 which may be made of Na C1 or any other material which transmits energy at l0.6 pm.
  • the laser radiation vaporizes member 38 and a metered quantity of high Z-material is injected into the plasma through the laser initiated ion burst wave into the volume element of the formation of the dense plasma focus for enhancement of x-ray radiation.
  • the plasma is confined to a volume of the order of 10 cm in the presence of a magnetic field of the order of a megagauss for times of the order of nanoseconds.
  • the electron and ion densities and the temperature during this time are about 2.10 cm' and 1 to 5 keV, respectively.
  • both the absorption of the laser radiation and the production of x-rays is strongly dependent on the presence of a small amount of high z-impurity in the plasma.
  • the absorption and reradiation of the energy will be calculated for a pure hydrogen plasma and for a hydrogen plasma which contains 5 percent (atomic) of heavy ions with an effective Z of 20. For example, this could be tungsten ionized to the 20th degree.
  • the absorption is primarily describable by a free-free electron transion in the field of positive ions (inverse Bremsstrahlung).
  • the absorption constant is awZ N w" 2 6 zyo 1 A cm where n [1 (m m) ]l/2 and A -T2/3 A 3 X 10 for T 10 eV and 10.6 .m.
  • the effective ion charge of 20 was calculated assuming a nanosecond duration as the time available for ionization when the temperature is of the order of 10 eV and the atomic number of the injected material is much greater than 20. If the energy to heat and ionize the high A component of the plasma is supplied by the dense plasma focus, for example, by introducing the high Z impurity during the early formative stages of the discharge, there may be more time available for ionization and the effective charge might be greater than 20. However, an early introduction of high Z material will limit the plasma temperature because of an intense line radiation.
  • the primary plasma cooling mechanisms consist of radiation losses. These losses are compensated by the absorption of laser energy which is supplied at a rate tai lored to the desired spectral shift of the Xrays during the simulation event. For the purposes of this discussiOn, it is taken that the laser power is equal to the total X-ray radiated power and therefore the electron temperature remains nearly constant.
  • the radiation losses consist of a Bremsstrahlung continuum which results from free-free (ff) transitions, a recombination continuum which results from free-bound (fb) transitions and line radiation which results from bound-bound (bb) transitions.
  • the power density radiated in the form of Bremsstrahlung is given byj B N N,- Z W cm (4) where B varies as T" and is a constant here as postulated above.
  • the recombination radiation is given by the ratio where E, is the effective ionization potential and T, the electron temperature. Therefore, for a pure hydrogen isotope plasma the recombination radiation is negligible. However, for the high Z component of the impure plasma the effective ionization potential can be taken as E, 2.2 Z eV and therefore the ratio is P /P z 0.9.
  • the total power radiated by the pure hydrogen plasma consists essentially of Bremsstrahlung while the total power radiated by the impure hydrogen plasma is given y PT P,,,, [5, 1 I /P P /P 1.47 x 10 W.
  • the CO laser referred to herein may be of the type described by G. J. Dezenberg et al, IEEE J. Quantum Electron. 0E4), 652 (I970).
  • a typical plasma generator utilized in conjunction with the laser may be of the type developed by J. W. Mather at Los Alamos Scientific Laboratories, Los Alamos, NM. and disclosed in Phys. Fluids 8, 366 (I965).
  • a laser assisted x-ray generator comprising a pulsed plasma generator for generating a plasma, said plasma generator having center and outer concentric electrodes; pulsed laser means for producing a laser beam for conditioning said plasma for enhanced radiation of x-rays, said laser beam being compatiblewith triggering means connected to said laser for triggering said laser; light sensing means positioned so as to detect the light energy in said plasma generator and to generate a signal upon the light energy reaching a predetermined value, said signal disposed for triggering said triggering means into operation at a predetermined time.

Abstract

A high desnity pulsed plasma generator is disposed in axial alignment with a high energy pulse laser to receive laser radiation from the laser axially to the movement of the plasma blob along the centterline of the center electrode of the plasma gun. A high Z-material is disposed between the laser output and the plasma for evaporation by the laser and subsequent injection of heavy z-ions into the plasma for enhancing x-ray radiation from the plasma. Electrrical circuit means is provided for energizing the plasma gun and the laser at predetermined times.

Description

United States Patent 1 1 1 1 3,746,860 Shatas et al. 1 July 17, 1973 [5 SOFT X-RAY GENERATOR ASSISTED BY 3,294,970 12/1966 .lenckel 25/419 s12 S R 3,406,349 10/1968 Swain et al 250/419 SE 2,240,478 5/1941 Bischoff et a1... 259/90 Inventors: Romas Shams, 8003 Nauias 3,652,393 3 1972 Kaiser 250/84.5
S.E.; Thomas G. Roberts, 2712 M t Lake J Primary Examiner-Harold A. Dixon Stealer, 410 Cumberland Attorney-Harry M. Saragovitz, Edward J. Kelly Harry C. Meyer, III, 10002 Conrad et Dr., 5.13., all of'l-luntsville, Ala. 22 Fl (1' F b 17 1972 [57] ABSTRACT 1 l e e A high density pulsed plasma generator is disposed in [21 Appl. No.: 227,177 axial alignment with a high energy pulse laser to receive laser radiation from the laser axially to the movement of the plasma blob along the centterline of the center (g1 "BO/4222512853433 electrode of the plasma g A g Lmaterial is dis 58 Field of Search 250/845, 84, 41.9 SE, Psed the laser and Pl l 250/49 SB 90 evaporation by the laser and subsequent 1n3ect1on of heavy z-ions into the plasma for enhancing x-ray radia- [561 312125 15:31252121553332?5312x5525;
UNITED STATES PATENTS predetermined times. 3,360,733 12/1967 Vah et a1 250/419 SE 1 C a m, 2 a ng g res 22 311%? A OPTICAL SIGNAL ALTENUATOR -34 {1" 25 DELAY l GENERATOR ifl. r 3O 1.10m
GAS SUPPLY SOFT X-RAY GENERATOR ASSISTED BY LASER BACKGROUND OF THE INVENTION Soft x-ray pulses of submicrosecond duration are needed to test materials and components of pulsed fusion reactions. Techniques presently employed to generate such pulses are (a) electron diode guns bombarding a heavy metal target, (b) underground fusion devices and (c) dense focus with high Z-material elec trode tips which erode during the pulse. Electron diode guns at the required x-ray energies of fractional MeV are very inefficient because of conversion efficiency of electron beam energy into Bremsstrahlung decreases superlinearly with the decrease of electron energy for a given target anode, a fact which is well known to the designers of flash x-ray tubes. In addition, at low electron energies of fractional MeV, the space charge of electron beams is not cancelled by relativistic effects and limits severely the maximum current density of the electron beam available at the target anode. Furthermore, the electric fields at the cathode are usually not sufficient to obtain a copious electron emission by the field effect and therefore thermionic cathodes must be employed which intrinsically yield a much lower electron emission current density than field emitters. Present electron beam-Bremsstrahlung flash generators of useful x-ray fluence therefore employ electron beams in the several MeV range. They generate x-ray flashes of spectral distribution which contains most of the photon energy in the hard x-ray spectral range. Because the x-ray penetration depth decreases superlinearly with the photon energy, the deposited x-ray energy density in test materials and components is substantially different for soft and hard x-ray flashes of identical fluence at the source. Therefore, pass-fail conclusions of tests on materials, components and devices performed with many MeV energy electron beam x-ray flash generators are not directly scalable to predict the performance under a soft x-ray flash. Underground fusion flash tests suffer from the intrinsic inability to separate the various components of radiations and expansion waves generated during the test. Therefore, various radiation and blast wave effects cannot be readily differentiated and only the cumulative, gross effects are observed. Thus, the materials designer is handicapped in separating the individual contributions from each damaging radiation.
The plasma focus alone can also be used as a soft x-ray flash generator by altering the electrode design and configuration such as to increase the evaporation and erosion of certain portions of the electrodes. Because only the energy stored in the plasma focus can be used for soft x-ray production, the fluence of x-ray flash is limited. In addition, a full control of erosion of the electrodes cannot be achieved in this case. Therefore, the intensity and the spectral distribution of x-ray flashes varies from one firing to another.
In the apparatus of the present invention all of these dificiencies are either eliminated or substantially reduced by a programmed evaporation of high Z-material by laser pre-pulse, injection of heavy z-ions into the dense focus by laser-induced ion detonation wave and by heating of the high z-plasma by the main laser pulse.
SUMMARY OF THE INVENTION The laser assisted soft x-ray generator comprises a device that utilizes laser energy deposition in the plasma of the coaxial plasma gun to create the necessary conditions for a copious emission of x-rays at kilovolt energies. The high energy laser, dense plasma focus combination is arranged and. operated in the following way: First, the dense focus gun is fired and as a consequence of an electric breakdown initiated shock wave of charged particles between the gun electrodes, a dense plasma focus is created at the center electrode of the gun. Usually, hydrogen or hydrogen-isotop gas is used to create the initial plasma in the gun. This hydrogen or hydrogen-isotope plasma is a weak source of xrays, although it may produce a burst of thermonuclear neutrons. However, since the intensity of X-rays increases very rapidly with the effective electric charge of the highly ionized, hot plasma of the dense focus gun, a short burst of laser radiation is employed to vaporize a metered quantity of high Z-material and to inject it through the laser initiated ion burst wave into the volume element of the formation of the dense plasma focus. Once within the plasma, these ions enhance the x-ray radiation of the plasma in all of the three dominant radiation processes: Bremsstrahlung, line radiation, and electron-positive ion recombination radiation. By choosing appropriate high Zmaterials, a variety of x-ray spectral distributions in these three constituent components can be obtainedl. However, because the energy for the x-ray radiation is extracted from the plasma focus which stores a certain amount of energy in thermal, motional and magnetic energies, the enhanced radiation would cease, upon rapidly exhausing these stored energies. Since by appropriately metering the injected high z-plasma component into the plasma focus many thousand-fold enhancement of x-ray radiation can be obtained, a separate energy source is needed to sustain the temperature of the highly radiating plasma. This is accomplished by heating the plasma focus with a high energy laser pulse which is chosen in frequency and in geometrical configuration as to be as completely as possible absorbed by the radiating plasma focus.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a diagrammatic view of the x-ray generator of the present invention.
FIG. 2 is a diagrammatic view of an alternate em bodiment of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT As shown in the FIGS., the apparatus of the present invention includes a plasma gun l0 and a laser 12 disposed in axial alignment. A power supply 14 is provided for the plasma gun I0 and the electrical system therefor includes a charging resistor R,, condenser bank 16, starting switch 18, pulse generator 20 and switch 21. The electrical system for the laser includes a power supply 22, charging resistor R and an electrical laser pulser 24.
Plasma gun It) includes an insulator 25, an outer electrode 26 and an inner electrode 28. The plasma gun is operationally connected to the laser through a light pipe 30, optical attenuator 32, photo-diode 34 and a signal delay generator 36 which is connected to the electrical laser pulser 24. A member 38 of high Z- material is disposed in plasma gun 10 along a longitudinal axis 40 extending through plasma gun I0 and laser 12.
In the embodiment illustrated in FIG. 2, wherein like numerals refer to like parts, the plasma gun is arranged so the insulator 25 is away from the laser beam. Lens 50 is shown mounted in the path of the laser output within the center electrode. The positioning of the lens is arbitrary within the center electrode it only being necessary that the laser radiation is focused onto the plasma. With the laser and plasma gun in this arrangement, ions are blown back into the focus at a velocity of about 10 cm/sec.
Referring to the Figures, before the sequence of events is started both the coaxial plasma gun l0 and the high energy CO laser 12 are filled to the desired pressures with the gases to be used; and the power supplies l4 and 22 have charged through their respective charging resistors R and R the condenser bank 16 and the laser pulser 24 to the working voltages. The sequence of events is now started by closing starting switch 18. This causes the pulse generator 20 to close the switch 21 and the voltage of the condenser bank 16 appears across the electrodes of the coaxial dense plasma focus gun 10. The gas in the coaxial plasma gun breaks down near insulator 25 forming current sheath 37 The current sheath then propagates between the outer electrode 26 and the center electrode 28. The current sheath is driven by the magnetic pressure of its own magnetic field, and the discharge becomes more intense as the sheath propagates. When the current sheath reaches the end of the electrodes it folds back on itself and rapidly collapses the plasma toward the axis of the tube as in a z-pinch. This produces the hot plasma volume 14 where electron or ion number density may be as high as 2 X 10" cm, the temperature may be as high as several times 10 Kelvin and the confining magnetic fields are of the order of megagauss. At this time and for a period of the order of a 100 nanoseconds neutrons are produced. As the current sheath is moving down the coaxial gun and the light intensity of the discharge increases, it is being detected by light pipe 30 which carries it to photo diode 34 after having passed through the variable optical attenuator 32. Variable optical attenuator 32 is preset so that the light intensity will not cause the signal delay generator 36 to begin operating until the current sheath has reached a predetermined location in the coaxial plasma g'un. In this manner the jitter of all events prior to the time the signal delay generator is started are avoided and have no effect on the problem of synchronizing the laser firing. The signal which starts signal delay generator 36 is delayed a preset amount and is then used to actuate the laser pulser 26 which has already been precharged up to the required electrical energy level by the power supply 22 so that the entire voltage of laser pulser 24 appears across the discharge electrodes 40 and 42 of the high energy pulsed CO laser 12. The preferred embodiment of the laser is the high pressure electron beam preionized electrical discharge pumped arrangement in which the electric field intensity between the discharge sustaining electrodes 40 and 42 is chosen such as to maximize the transfer of electrical energy into molecular rotational and vibrational energy of the lasing gas. The electron beam in ionizing collisions with the lasing gas provides the positive-and negative charge carriers which drift at relatively slow velocities under the sustainer field and in colliding with neutral atoms or molecules of the lasing gas transfer a part of their kinetic energy into rotational-vibration excitations. This creates a medium of very high gain between mirrors 44 and 46, disposed at opposite ends of the laser tube. Therefore, oscillations are set up between the mirrors and the energy in the inversion is extracted in a pulse of radiation at 10.6 nm. The shape of this pulse can be tailored somewhat if desired by rotating mirror 44 so that the laser is Q-switched.
The laser beam is focused onto the member 38 of high Z-material by a lens 50 which may be made of Na C1 or any other material which transmits energy at l0.6 pm. The laser radiation vaporizes member 38 and a metered quantity of high Z-material is injected into the plasma through the laser initiated ion burst wave into the volume element of the formation of the dense plasma focus for enhancement of x-ray radiation.
In the device shown in the Figures, the plasma is confined to a volume of the order of 10 cm in the presence of a magnetic field of the order of a megagauss for times of the order of nanoseconds. The electron and ion densities and the temperature during this time are about 2.10 cm' and 1 to 5 keV, respectively.
When the apparatus of the present invention is operated for generation of x-rays, both the absorption of the laser radiation and the production of x-rays is strongly dependent on the presence of a small amount of high z-impurity in the plasma. To illustrate this, the absorption and reradiation of the energy will be calculated for a pure hydrogen plasma and for a hydrogen plasma which contains 5 percent (atomic) of heavy ions with an effective Z of 20. For example, this could be tungsten ionized to the 20th degree.
Assume the temperature and charge density to be spatially uniform, and the electrons to have a Maxwellian distribution. The absorption is primarily describable by a free-free electron transion in the field of positive ions (inverse Bremsstrahlung). The absorption constant is awZ N w" 2 6 zyo 1 A cm where n [1 (m m) ]l/2 and A -T2/3 A 3 X 10 for T 10 eV and 10.6 .m.
For most hydrogen isotope plasmas at high temperatures the laser beam will penetrate the plasma and be efiiciently absorbed only when the electron density is such that the plasma frequency, (u is near but less than the laser frequency, 0),. When to, m, an anomalous absorption may occur such that the energy is totally absorbed in a very thin layer near the surface of the plasma. Absorption coefficients and the penetration depths or e-folding distances, for the pure hydrogen plasma and the impure hydrogen plasma with 5 percent high Z material where Z 20, calculated in the wings of the function n where n is approximately unity, are geven by and a 32/n cm 32 cm", d 3 X l0 2 cm.
These calculations do not include the effects of anomalous absorption mentioned above; therefore, the actual penetration depths can be expected to be somewhat smaller, depending whether the electric field intensity associated with the laser flux is sufficient to drive the plasma into the anamolous region. Thus, if we neglect the enhancement of absorption by plasma instabilities the pure hydrogen plasma in the dense plasma focus considered here is optically thin to the CO laser radiation unless the electron density is fairly accurately controlled so that the plasma frequency remains quite close to the laser frequency. However, the hydrogen plasma with 5% Z 20 ions is optically thick to the CO laser radiation even when n is near unity, and it may be assumed that this impure plasma in the small volume of the plasma focus device absorbs nearly all of the energy in the laser beam, e.g., we neglect reflections.
The effective ion charge of 20 was calculated assuming a nanosecond duration as the time available for ionization when the temperature is of the order of 10 eV and the atomic number of the injected material is much greater than 20. If the energy to heat and ionize the high A component of the plasma is supplied by the dense plasma focus, for example, by introducing the high Z impurity during the early formative stages of the discharge, there may be more time available for ionization and the effective charge might be greater than 20. However, an early introduction of high Z material will limit the plasma temperature because of an intense line radiation.
PLASMA RADIATION During the 100 nanosecond confinement time the primary plasma cooling mechanisms consist of radiation losses. These losses are compensated by the absorption of laser energy which is supplied at a rate tai lored to the desired spectral shift of the Xrays during the simulation event. For the purposes of this discussiOn, it is taken that the laser power is equal to the total X-ray radiated power and therefore the electron temperature remains nearly constant. The radiation losses consist of a Bremsstrahlung continuum which results from free-free (ff) transitions, a recombination continuum which results from free-bound (fb) transitions and line radiation which results from bound-bound (bb) transitions.
The power density radiated in the form of Bremsstrahlung is given byj B N N,- Z W cm (4) where B varies as T" and is a constant here as postulated above. For a hydrogen isotope plasma the power radiated ty typical dense plasma focus device considered here is P 1.1 X 10 W and for a 5 percent impurity with Z, we have a Bremsstrahlung ratio of P /P ,=fZ(l +Z+Z fl+ 1 =42 wheref=0.05
- is the fraction of high Z ions taken with respect to hydrogen. (Each of these high Z ions has a positive charge of 20. Therefore, the power P, radiated by the freefree transitions of plasma to which high Z ions have been admixed amounts to 46 X [0 W.
The recombination radiation is given by the ratio where E, is the effective ionization potential and T, the electron temperature. Therefore, for a pure hydrogen isotope plasma the recombination radiation is negligible. However, for the high Z component of the impure plasma the effective ionization potential can be taken as E, 2.2 Z eV and therefore the ratio is P /P z 0.9.
Therefore, with our choice of high Z ions added the radiation of the plasma recombination continuum is nearly equal to the Bremsstrahlung continuum, i.e.,
The power emitted in the form of line radiation is given by the ratio and again the line radiation from the hydrogen plasma alone is completely negligible. However, for the high Z component of the impure plasma we have so that p z X 10 W.
The total power radiated by the pure hydrogen plasma consists essentially of Bremsstrahlung while the total power radiated by the impure hydrogen plasma is given y PT P,,,, [5, 1 I /P P /P 1.47 x 10 W.
ENERGY BALANCE The energy which needs to be supplied by the laser in order to maintain the electron temperature nearly constant during the nanoseconds of plasma confinement time amounts to the total energy loss in the form of radiation, the thermal energy required to heat the added high Z material and the ionization energy required to ionize the added high Z material. This total is given by Ex (Bremsstrahlung, recombination, line) 147 Joules E (heating added high Z material) 30 Joules E (ionizing added high Z material) 10 Joules E l87 Joules The efficiency of converting the absorbed laser energy at 10.6 am into soft X-ray energy is then r= EX.....,/ET.,,..l 147/187 0.79.
In order to operate the laser assisted x-ray generator again, one must first change the gases in the coaxial plasma gun and the high energy CO) laser by way of gas supplies S4 and 56 and pumps 58 and 60 and recharge condenser bank 16 and laser pulser 24.
The CO laser referred to herein may be of the type described by G. J. Dezenberg et al, IEEE J. Quantum Electron. 0E4), 652 (I970).
A typical plasma generator utilized in conjunction with the laser may be of the type developed by J. W. Mather at Los Alamos Scientific Laboratories, Los Alamos, NM. and disclosed in Phys. Fluids 8, 366 (I965).
We claim:
H. A laser assisted x-ray generator comprising a pulsed plasma generator for generating a plasma, said plasma generator having center and outer concentric electrodes; pulsed laser means for producing a laser beam for conditioning said plasma for enhanced radiation of x-rays, said laser beam being compatiblewith triggering means connected to said laser for triggering said laser; light sensing means positioned so as to detect the light energy in said plasma generator and to generate a signal upon the light energy reaching a predetermined value, said signal disposed for triggering said triggering means into operation at a predetermined time.
* III

Claims (1)

1. A laser assisted x-ray generator comprising a pulsed plasma generator for generating a plasma, said plasma generator having center and outer concentric electrodes; pulsed laser means for producing a laser beam for conditioning said plasma for enhanced radiation of x-rays, said laser beam being compatible with said plasma so that the plasma will absorb energy therefrom, said laser means being disposed in axial alignment with said center electrode; a member of high ionic charge ions disposed for vaporization by said laser beam for injection into said plasma for enhanced radiation of x-rays from said plasma; a lens positioned coaxially with said center electrode of said plasma generator for focusing the laser beam into said plasma generator; triggering means connected to said laser for triggering said laser; light sensing means positioned so as to detect the light energy in said plasma generator and to generate a signal upon the light energy reaching a predetermined value, said signal disposed for triggering said triggering means into operation at a predetermined time.
US00227177A 1972-02-17 1972-02-17 Soft x-ray generator assisted by laser Expired - Lifetime US3746860A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US22717772A 1972-02-17 1972-02-17

Publications (1)

Publication Number Publication Date
US3746860A true US3746860A (en) 1973-07-17

Family

ID=22852075

Family Applications (1)

Application Number Title Priority Date Filing Date
US00227177A Expired - Lifetime US3746860A (en) 1972-02-17 1972-02-17 Soft x-ray generator assisted by laser

Country Status (1)

Country Link
US (1) US3746860A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946236A (en) * 1974-04-04 1976-03-23 The United States Of America As Represented By The Secretary Of The Army Energetic electron beam assisted X-ray generator
US3946240A (en) * 1974-04-04 1976-03-23 The United States Of America As Represented By The Secretary Of The Army Energetic electron beam assisted fusion neutron generator
US3959659A (en) * 1974-04-04 1976-05-25 The United States Of America As Represented By The Secretary Of The Army Intense, energetic electron beam assisted fusion neutron generator
US3969628A (en) * 1974-04-04 1976-07-13 The United States Of America As Represented By The Secretary Of The Army Intense, energetic electron beam assisted X-ray generator
US4042848A (en) * 1974-05-17 1977-08-16 Ja Hyun Lee Hypocycloidal pinch device
US4058486A (en) * 1972-12-29 1977-11-15 Battelle Memorial Institute Producing X-rays
US4206364A (en) * 1979-01-16 1980-06-03 The United States Of America As Represented By The Secretary Of The Navy Device for producing extended elongated plasmas for x-ray lasers
US4272319A (en) * 1978-02-28 1981-06-09 The United States Of America As Represented By The United States Department Of Energy Device and method for electron beam heating of a high density plasma
US4368538A (en) * 1980-04-11 1983-01-11 International Business Machines Corporation Spot focus flash X-ray source
EP0105261A1 (en) * 1982-04-14 1984-04-18 Battelle Development Corp Providing x-rays.
FR2551615A1 (en) * 1983-09-02 1985-03-08 Centre Nat Rech Scient X-MOUSE RAY SOURCE USING PLASMA MICROCANAL OBTAINED BY PHOTO-IONIZATION OF A GAS
US4504964A (en) * 1982-09-20 1985-03-12 Eaton Corporation Laser beam plasma pinch X-ray system
US4553256A (en) * 1982-12-13 1985-11-12 Moses Kenneth G Apparatus and method for plasma generation of x-ray bursts
US4589123A (en) * 1985-02-27 1986-05-13 Maxwell Laboratories, Inc. System for generating soft X rays
US4598415A (en) * 1982-09-07 1986-07-01 Imaging Sciences Associates Limited Partnership Method and apparatus for producing X-rays
US4602376A (en) * 1983-09-02 1986-07-22 Centre National De La Recherche Scientifique Soft X-ray source with cylindrical plasma compression
US4618971A (en) * 1982-09-20 1986-10-21 Eaton Corporation X-ray lithography system
US4627086A (en) * 1984-09-07 1986-12-02 Hitachi, Ltd. Plasma X-ray source
US4628513A (en) * 1983-09-26 1986-12-09 At&T Bell Laboratories Tunable indium UV anti-Stokes Raman laser
US4771430A (en) * 1985-07-24 1988-09-13 Princeton University Enhancement of soft X-ray lasing action with thin blade radiators
US5459771A (en) * 1994-04-01 1995-10-17 University Of Central Florida Water laser plasma x-ray point source and apparatus
US20060146906A1 (en) * 2004-02-18 2006-07-06 Cymer, Inc. LLP EUV drive laser
US20170314541A1 (en) * 2016-04-27 2017-11-02 Anthony Calomeris Ultrashort pulse laser-driven shock wave gas compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2240478A (en) * 1937-10-07 1941-05-06 Firm Siemens Reiniger Werke Ag X-ray apparatus
US3294970A (en) * 1961-10-26 1966-12-27 Jenckel Ludolf Means comprising a source of coherent radiant energy for the production of ions for mass spectrometry
US3360733A (en) * 1964-11-12 1967-12-26 Boeing Co Plasma formation and particle acceleration by pulsed laser
US3406349A (en) * 1965-06-16 1968-10-15 Atomic Energy Commission Usa Ion beam generator having laseractivated ion source
US3652393A (en) * 1967-02-10 1972-03-28 Wolfgang Kaiser Arrangement for bringing about nuclear fusion reactions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2240478A (en) * 1937-10-07 1941-05-06 Firm Siemens Reiniger Werke Ag X-ray apparatus
US3294970A (en) * 1961-10-26 1966-12-27 Jenckel Ludolf Means comprising a source of coherent radiant energy for the production of ions for mass spectrometry
US3360733A (en) * 1964-11-12 1967-12-26 Boeing Co Plasma formation and particle acceleration by pulsed laser
US3406349A (en) * 1965-06-16 1968-10-15 Atomic Energy Commission Usa Ion beam generator having laseractivated ion source
US3652393A (en) * 1967-02-10 1972-03-28 Wolfgang Kaiser Arrangement for bringing about nuclear fusion reactions

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058486A (en) * 1972-12-29 1977-11-15 Battelle Memorial Institute Producing X-rays
US3946240A (en) * 1974-04-04 1976-03-23 The United States Of America As Represented By The Secretary Of The Army Energetic electron beam assisted fusion neutron generator
US3959659A (en) * 1974-04-04 1976-05-25 The United States Of America As Represented By The Secretary Of The Army Intense, energetic electron beam assisted fusion neutron generator
US3969628A (en) * 1974-04-04 1976-07-13 The United States Of America As Represented By The Secretary Of The Army Intense, energetic electron beam assisted X-ray generator
US3946236A (en) * 1974-04-04 1976-03-23 The United States Of America As Represented By The Secretary Of The Army Energetic electron beam assisted X-ray generator
US4042848A (en) * 1974-05-17 1977-08-16 Ja Hyun Lee Hypocycloidal pinch device
US4272319A (en) * 1978-02-28 1981-06-09 The United States Of America As Represented By The United States Department Of Energy Device and method for electron beam heating of a high density plasma
US4206364A (en) * 1979-01-16 1980-06-03 The United States Of America As Represented By The Secretary Of The Navy Device for producing extended elongated plasmas for x-ray lasers
US4368538A (en) * 1980-04-11 1983-01-11 International Business Machines Corporation Spot focus flash X-ray source
EP0105261A4 (en) * 1982-04-14 1985-09-16 Battelle Development Corp Providing x-rays.
EP0105261A1 (en) * 1982-04-14 1984-04-18 Battelle Development Corp Providing x-rays.
US4598415A (en) * 1982-09-07 1986-07-01 Imaging Sciences Associates Limited Partnership Method and apparatus for producing X-rays
US4618971A (en) * 1982-09-20 1986-10-21 Eaton Corporation X-ray lithography system
US4504964A (en) * 1982-09-20 1985-03-12 Eaton Corporation Laser beam plasma pinch X-ray system
US4553256A (en) * 1982-12-13 1985-11-12 Moses Kenneth G Apparatus and method for plasma generation of x-ray bursts
US4627088A (en) * 1983-09-02 1986-12-02 Centre National De La Recherche Scientifique Intense X-ray source using a plasma microchannel
US4602376A (en) * 1983-09-02 1986-07-22 Centre National De La Recherche Scientifique Soft X-ray source with cylindrical plasma compression
FR2551615A1 (en) * 1983-09-02 1985-03-08 Centre Nat Rech Scient X-MOUSE RAY SOURCE USING PLASMA MICROCANAL OBTAINED BY PHOTO-IONIZATION OF A GAS
EP0140730A1 (en) * 1983-09-02 1985-05-08 CNRS, Centre National de la Recherche Scientifique Soft X-ray source utilising a microch annel plasma created by photoionization of a gas
US4628513A (en) * 1983-09-26 1986-12-09 At&T Bell Laboratories Tunable indium UV anti-Stokes Raman laser
US4627086A (en) * 1984-09-07 1986-12-02 Hitachi, Ltd. Plasma X-ray source
US4589123A (en) * 1985-02-27 1986-05-13 Maxwell Laboratories, Inc. System for generating soft X rays
US4771430A (en) * 1985-07-24 1988-09-13 Princeton University Enhancement of soft X-ray lasing action with thin blade radiators
US5459771A (en) * 1994-04-01 1995-10-17 University Of Central Florida Water laser plasma x-ray point source and apparatus
US20060146906A1 (en) * 2004-02-18 2006-07-06 Cymer, Inc. LLP EUV drive laser
US20170314541A1 (en) * 2016-04-27 2017-11-02 Anthony Calomeris Ultrashort pulse laser-driven shock wave gas compressor
US10704540B2 (en) * 2016-04-27 2020-07-07 Anthony Calomeris Ultrashort pulse laser-driven shock wave gas compressor

Similar Documents

Publication Publication Date Title
US3746860A (en) Soft x-ray generator assisted by laser
US3969628A (en) Intense, energetic electron beam assisted X-ray generator
Mesi︠a︡t︠s︡ et al. Pulsed gas lasers
KR101722226B1 (en) Systems for enhancing preignition conditions of thermonuclear fusion reactions
US3526575A (en) Production and utilization of high density plasma
US4263095A (en) Device and method for imploding a microsphere with a fast liner
Bacal et al. Negative ion sources
US4252607A (en) Radiation source
Shkarofsky Review of Gas-Breakdown Phenomena Induced by High-Power Lasers-11
US3946236A (en) Energetic electron beam assisted X-ray generator
US5014289A (en) Long life electrodes for large-area x-ray generators
Sharkov et al. Laser ion sources
US3748475A (en) Neutron generator axially assisted by laser
Batani Transport in dense matter of relativistic electrons produced in ultra-high-intensity laser interactions
JPH02248094A (en) X-ray pre-ionization pulse laser device
US3766004A (en) Laser assisted neutron generator
Newman et al. Production of hard x rays in a plasma focus
US4248665A (en) Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners
Laska et al. Factors influencing parameters of laser ion sources
Shatas et al. Soft x-ray generator assisted by laser
Kurilenkov et al. On nuclear DD synthesis at the initial stage of nanosecond vacuum discharge with deuterium-loaded Pd anode
Kwan High current ion sources and injectors for induction linacs in heavy ion fusion
Desparois et al. Study of laser-induced breakdown in a 30-cm air gap under a uniform field
Culfa et al. Plasma scale length and quantum electrodynamics effects on particle acceleration at extreme laser plasmas
Nakajima Particle acceleration by ultraintense laser interactions with beams and plasmas