US3746456A - Ball point pen writing ball composed of a cemented carbide composition - Google Patents

Ball point pen writing ball composed of a cemented carbide composition Download PDF

Info

Publication number
US3746456A
US3746456A US00187493A US3746456DA US3746456A US 3746456 A US3746456 A US 3746456A US 00187493 A US00187493 A US 00187493A US 3746456D A US3746456D A US 3746456DA US 3746456 A US3746456 A US 3746456A
Authority
US
United States
Prior art keywords
percent
carbide
weight
ball
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00187493A
Inventor
F Hill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bankers Trust Co
Original Assignee
Parker Pen Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Parker Pen Co filed Critical Parker Pen Co
Application granted granted Critical
Publication of US3746456A publication Critical patent/US3746456A/en
Assigned to BANKERS TRUST COMPANY reassignment BANKERS TRUST COMPANY SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PARKER PEN (BENELUX) N.V.
Assigned to PARKER PEN (BENELUX) N.V. reassignment PARKER PEN (BENELUX) N.V. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: PARKER PEN COMPANY, THE
Assigned to PARKER PEN (BENELUX) N.V. reassignment PARKER PEN (BENELUX) N.V. RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BANKERS TRUST COMPANY
Assigned to PARKER PEN (BENELUX) B.V. reassignment PARKER PEN (BENELUX) B.V. RE-RECORD OF INSTRUMENT RECORDED MARCH 5, 1986, AT REEL 4562 FRAMES 0893-898 TO CORRECT NAME OF ASSIGNEE IN A PREVIOUSLY RECORDED ASSIGNEE. Assignors: PARKER PEN COMPANY, THE, A DE CORP.
Assigned to BANKERS TRUST COMPANY reassignment BANKERS TRUST COMPANY RE-RECORD OF INSTRUMENT RECORDED MARCH 5, 1986 AT REEL 4547 FRAMES -0644-0648 TO CORRECT NAME OF ASSIGNOR IN A PREVIOUSLY RECORDED ASSIGNMENT. Assignors: PARKER PEN (BENELUX) B.V.
Assigned to PARKER PEN (BENELUX) B.V. reassignment PARKER PEN (BENELUX) B.V. RE-RECORD OF AN INSTRUMENT RECORDED JAN. 14, 1988, AT REEL 4823, FRAME 983-987 TO CORRECT THE NAME OF THE ASSIGNEE Assignors: BANKERS TRUST COMPANY, A DE. CORP.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43KIMPLEMENTS FOR WRITING OR DRAWING
    • B43K1/00Nibs; Writing-points
    • B43K1/08Nibs; Writing-points with ball points; Balls or ball beds
    • B43K1/082Balls
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles

Definitions

  • Cemented carbide compositions containing a hard metal carbide bonded by a metal alloy binder are well known in the art.
  • the hard metal carbide is typically a tungsten or titanium carbide and the metal alloy binder is typically an iron group metal.
  • the hard metal carbide is normally present in the cemented carbide, composition in at least major proportion by weight. Cemented carbide compositions can be used where hard and wear resistant compositions are required such as in cutting tools, turning tools, etc.
  • 3,215,510 to employ compositions of tungsten carbide and about 10 to about 25 percent, but not more than 30 percent, by weight of binder of chromium and nickel wherein the ratio by weight of chromium to the combined weight of nickel and chromium ranges from about 0.015 to about 0.15.
  • This composition is said to give outstanding corrosion resistance particularly to acids and alkalis.
  • An object of the present invention is the provision of novel and improved corrosion resistant cemented carbide compositions.
  • a further object of the present invention is the provision of improved shaped bodies made from said cemented carbide compositions.
  • Novel corrosion resistant cemented carbide compositions and shaped bodies produced therefrom are provided containing tungsten carbide or titanium carbide and a binder alloy containing cobalt and nickel and, by weight, about 18 to 20 percent chromium, 0.1 to I percent platinum and to 3 percent iron.
  • the cemented carbide compositions of the present invention are produced by powder metallurgy techniques.
  • Powder metallurgy techniques are, in general, well known in the art and include pressing amixture of powders of the desired carbide and binder metals and then sintering the pressed mixture of powders to form a cemented composition. More particularly, a powder mixture of tungsten carbide or titanium carbide and the metals cobalt, nickel, chromium, platinum and iron is prepared and screened to obtain proper size particles.
  • the powders may be mixed, for example, in a ball mill wherein the powders are suspended in a suitable liquid such as benzene. The milled powder is then dried, mixed with a suitable binder-lubricant and pressed or compacted.
  • the pressed mixture is preferably presintered and then given a final sinter at conventional temperatures and preferably in vacuo.
  • the final sintering is generally carried out under reduced pressure. It is conventional to form cemented carbide compositions by milling together the carbide and binder alloy metals as elemental powders. 1t has been found, however, that cobalt and nickel coated carbide powders with chromium, platinum and iron added as elemental powders may be milled together with equally good results.
  • the finally sintered cemented carbide compositions can be shaped by conventional technique as by grinding. Small diameter spherical shapes have been found to have excellent properties for use as writing points which will rotate freely against an inking magazine in a pen. Pens of this nature are conventionally referred to as ball-point pens. Pen as used in this context, however, is intended to refer to any instrument which can be used to apply ink or other fluid or viscous material to a receptive surface.
  • cemented carbide compositions of the present invention possess outstanding corrosion resistance properties, particularly to aqueous ink and ferric chloride solutions. Additionally, shaped cemented carbide compositions of the present invention possess crush strengths comparable to conventional cobalt or nickel bound carbides. The above properties, therefore, make the cemented carbide compositions of the present invention particularly advantageous for use as writing points in ball-point pens as described above.
  • the cemented carbide compositions of the present invention preferably contain about 75 to 95 percent by weight of tungsten carbide or titanium carbide and about 5 to 25 percent or, more preferably, about 3 to percent by weight of binder alloy.
  • the binder alloy compositions according to the present invention usu ally contain, by weight, about 30 to 60 percent cobalt, to 50 percent nickel, 18 to 20 percent chromium, 0.1 to 1 percent platinum and 0 to 3 percent iron.
  • the preferred binder alloy compositions contain, by weight, about 45 to 55 percent cobalt, to percent nickel, 18 to 20 percent chromium, 0.5 to 1 percent platinum and 0 percent iron.
  • binder alloy compositions were prepared as shown in table 1. Table 1 lists the composition of binder alloys A through E in parts by weight of metal components.
  • a writing ball for a ball-point pen was prepared by grinding tungsten carbide and titanium carbide compositions cemented with nickel and cobalt binders and by grinding tungsten carbide and titanium carbide compositions cemented with Alloy C binder from Table 1 to compare the crush strength and microhardness properties of these compositions when formed into shaped bodies. The results of this test are set forth in Table 3.
  • the powders were ball milled for 92 hours under benzene in a steel mill with steel balls.
  • the milled powder was dried, mixed with Carbowax 1000 (a water-soluble lubricant available from Union Carbide Corp.) as a binder-lubricant and compacted in a steel die at 20 tons/sq. in. pressure. Cylindrical pieces of V4 inch dia.
  • X .6 inch in length were packed in a graphite-alundum mixture and presintered by heating slowly to 1850F in a dissociated ammonia atmosphere. The pieces were then given a final sintering in vacuo at 2550 for one hour under 100-200 microns pressure. A flat may be ground on the side of selected presintered pieces prior to final sintering if profilometer measurements or other corrosion tests are contemplated.
  • Titanium carbide, cobalt, nickel, chromium and platinum powders were prepared and screened. The total charge of powders and corresponding particle size were as follows:
  • the powders were ball milled for 96 hours under benzene in a steel mill with steel balls.
  • the milled powder was dried, mixed with a resin binder-lubricant and formed into 0.060 inch diameter spheres.
  • the green spheres were packed in a graphite-alundum mixture and presintered by heating slowly to 1850F in a dissociated ammonia atmosphere. F inal sintering of the spheres was carried out in vacuo at 2650F for A hour under 500 microns pressure.
  • the spheres had shrunk to approximately 0.047 inch diameter and were then ground into 0.043 inch diameter balls for use as writing points in pens.
  • the material of Example 1 was also processed in like manner into balls for use as writing points in pens.
  • a pen having a writing ball which will rotate freely against an inking magazine
  • said writing ball formed from a cemented carbide composition comprising from about to percent by weight of a carbide selected from the group consisting of tungsten carbide and titanium carbide and from about 5 to 25 percent by weight of a binder alloy containing cobalt and nickel and, by weight, about 18 to 20 percent chromium, 0.1 to 1 percent platinum and 0 to 3 percent iron.
  • binder alloy contains, by weight, about 30 to 60 cobalt and 20 to 50 percent nickel.
  • binder alloy contains, by weight, about 45 to 55 percent cobalt and 25 to 35 percent nickel.
  • a cemented carbide writing ball for a ball point pen comprising from about 75 to 95 percent by weight of a carbide selected from the group consisting of tungsten carbide and titanium carbide and from about 5 to 25 percent by weight of a binder alloy containing co balt and nickel and, by weight, about 18 to 20 percent chromium, 0.1 to 1 percent platinum and 0 to 3 percent iron.
  • the writing ball of claim 4 wherein the binder alloy contains, by weight, about 30 to 60 percent cobalt and 20 to 50 percent nickel.

Abstract

Cemented carbide compositions and shaped bodies produced therefrom containing tungsten carbide or titanium carbide and a binder alloy containing cobalt and nickel, and, by weight, about 18 to 20 percent chromium, 0.1 to 1 percent platinum and 0 to 3 percent iron.

Description

iinited States Patent [191 Hill [ July 17, 1973 1 BALL POINT PEN WRITING BALL COMPOSED OF A CEMENTED CARBIDE COMPOSITION [75] Inventor: Franklin .1. Hill, Janesville, Wis.
[73] Assignee: The Parker Pen Company,
Janesville, Wis.
[22] Filed: Oct. 7, 1971 {21] Appl. No.: 187,493
Related U.S. Application Data [62] Division of Ser. No. 851,038, Aug. 18, 1969, Pat. No.
[52] U.S. C1 401/215, 29/1828, 75/204 [51 Int. Cl B43k 7/00 [58] Field of Search 401/215; 29/1828;
[56] References Cited UNITED STATES PATENTS 3,503,692 3/1970 Kubota et a1. 401/215 2,067,166 1/1937 Bulke.... 29/1828 3,628,921 12/1971 Hill 75/204 Primary Examiner-Carl D. Quarforth Assistant Examiner-B. l-l. Hunt Attorney-Bacon & Thomas [57] ABSTRACT 6 Claims, N0 Drawings BALL POINT PEN WRITING BALL COMPOSED OF A CEMENTED CARBIDE COMPOSITION This is a division of application Ser. No. 851,038, filed Aug. 18, 1969, now U.S. Pat. No. 3,628,291.
BACKGROUND OF THE INVENTION AND DESCRIPTION OF THE PRIOR ART Cemented carbide compositions containing a hard metal carbide bonded by a metal alloy binder are well known in the art. The hard metal carbide is typically a tungsten or titanium carbide and the metal alloy binder is typically an iron group metal. The hard metal carbide is normally present in the cemented carbide, composition in at least major proportion by weight. Cemented carbide compositions can be used where hard and wear resistant compositions are required such as in cutting tools, turning tools, etc.
It has been suggested to supplement the normal iron group metal alloy binder with small amounts of chromium. The addition of small amounts of chromium or chromium carbide to a tungsten carbide-cobalt system is said to improve the corrosion resistance of the alloy but with an accompanying reduction in strength and metallurgical soundness. Additionally, the corrosion resistance of a tungsten carbide-nickel system to certain environments is said to be increased by the addition of chromium carbide but with an accompanying reduction in strength. To overcome these disadvantages, it has been suggested in U.S. Pat. No. 3,215,510 to employ compositions of tungsten carbide and about 10 to about 25 percent, but not more than 30 percent, by weight of binder of chromium and nickel wherein the ratio by weight of chromium to the combined weight of nickel and chromium ranges from about 0.015 to about 0.15. This composition is said to give outstanding corrosion resistance particularly to acids and alkalis.
DESCRIPTION OF THE INENTION An object of the present invention is the provision of novel and improved corrosion resistant cemented carbide compositions.
A further object of the present invention is the provision of improved shaped bodies made from said cemented carbide compositions.
Further objects and improvements of the present invention will be apparent upon reading the undergoing specification and claims.
Novel corrosion resistant cemented carbide compositions and shaped bodies produced therefrom are provided containing tungsten carbide or titanium carbide and a binder alloy containing cobalt and nickel and, by weight, about 18 to 20 percent chromium, 0.1 to I percent platinum and to 3 percent iron.
The cemented carbide compositions of the present invention are produced by powder metallurgy techniques. Powder metallurgy techniques are, in general, well known in the art and include pressing amixture of powders of the desired carbide and binder metals and then sintering the pressed mixture of powders to form a cemented composition. More particularly, a powder mixture of tungsten carbide or titanium carbide and the metals cobalt, nickel, chromium, platinum and iron is prepared and screened to obtain proper size particles. The powders may be mixed, for example, in a ball mill wherein the powders are suspended in a suitable liquid such as benzene. The milled powder is then dried, mixed with a suitable binder-lubricant and pressed or compacted. The pressed mixture is preferably presintered and then given a final sinter at conventional temperatures and preferably in vacuo. The final sintering is generally carried out under reduced pressure. It is conventional to form cemented carbide compositions by milling together the carbide and binder alloy metals as elemental powders. 1t has been found, however, that cobalt and nickel coated carbide powders with chromium, platinum and iron added as elemental powders may be milled together with equally good results.
The finally sintered cemented carbide compositions can be shaped by conventional technique as by grinding. Small diameter spherical shapes have been found to have excellent properties for use as writing points which will rotate freely against an inking magazine in a pen. Pens of this nature are conventionally referred to as ball-point pens. Pen as used in this context, however, is intended to refer to any instrument which can be used to apply ink or other fluid or viscous material to a receptive surface.
The cemented carbide compositions of the present invention possess outstanding corrosion resistance properties, particularly to aqueous ink and ferric chloride solutions. Additionally, shaped cemented carbide compositions of the present invention possess crush strengths comparable to conventional cobalt or nickel bound carbides. The above properties, therefore, make the cemented carbide compositions of the present invention particularly advantageous for use as writing points in ball-point pens as described above.
The cemented carbide compositions of the present invention preferably contain about 75 to 95 percent by weight of tungsten carbide or titanium carbide and about 5 to 25 percent or, more preferably, about 3 to percent by weight of binder alloy. The binder alloy compositions according to the present invention usu ally contain, by weight, about 30 to 60 percent cobalt, to 50 percent nickel, 18 to 20 percent chromium, 0.1 to 1 percent platinum and 0 to 3 percent iron. The preferred binder alloy compositions contain, by weight, about 45 to 55 percent cobalt, to percent nickel, 18 to 20 percent chromium, 0.5 to 1 percent platinum and 0 percent iron.
In order to compare the properties of the novel cemented carbide compositions of the present invention with the properties of prior art cemented carbide compositions, binder alloy compositions were prepared as shown in table 1. Table 1 lists the composition of binder alloys A through E in parts by weight of metal components.
TABLE 1 Binder Alloy Co Ni Cr 1! A 40 20 B 40 40 I) 1 C 30 19 l D 30 50 19 1 E 20 19 l A comparison of the properties of tungsten carbidecobalt and tungsten carbide-nickel. cemented compositions with cemented compositions formed from tungsten carbide and binder alloys A through E from Table 1 is shown in Table 2. Corrosion data is given for aqueous ink and aqueous ferric chloride solutions.
TABLE 2 Profilometer Reading,
Microinches Cemented Carbide Composition, of Binder alloy After 1 After 1 year year By Weight Initial in ink in 25%FeCl at 140F at 100F WC+% Co 0.75 1.50 Attached, WC+10% Ni 0.75 1.50 Attacked, 20 WC+10% Alloy A 0.40 1.00 WC+10% Alloy B 1.50 2.00 Attacked, 20 W,C+10% Alloy C 1.50 1.50 Etched, 9 WC+10% Alloy D 1.00 2.00 Attacked, 20 WC+10% Alloy E 1.50 1.50 Attacked, 20
A writing ball for a ball-point pen was prepared by grinding tungsten carbide and titanium carbide compositions cemented with nickel and cobalt binders and by grinding tungsten carbide and titanium carbide compositions cemented with Alloy C binder from Table 1 to compare the crush strength and microhardness properties of these compositions when formed into shaped bodies. The results of this test are set forth in Table 3.
TABLE 3 Crush Micro- Cemented carbide composition Strength hardness of binder alloy by weight (lbs) (DPH) WC+9wt.%Ni 200 1510 WC+10wt.%Co 177 1450 WC 10 wt. Alloy C 173 1680 TiC 20 wt. Ni 128 1608 TiC 20 wt. Co 157 1626 TiC 20 wt. Alloy C 136 1680 The following non-limitative examples illustrate the invention:
EXAMPLE 1 Cobalt and nickel coated tungsten carbide powders, tungsten carbide powders and elemental chromium and platinum powders were prepared and screened to minus 325 mesh. The total charge of powders was as follows:
Carbide Binder Alloy 30.55 g. Co (9%) Coated WC 27.80 g. 2.75 g.
18.33 g. Ni (9%) Coated WC 16.68 g. 1.65 g.
5.02 g. WC 5.02 g.
1.04 g Cr 1.04 g.
0.06 g Pt 0.06 g.
55.00 g 49.50 g. 5.50 g.
The powders were ball milled for 92 hours under benzene in a steel mill with steel balls. The milled powder was dried, mixed with Carbowax 1000 (a water-soluble lubricant available from Union Carbide Corp.) as a binder-lubricant and compacted in a steel die at 20 tons/sq. in. pressure. Cylindrical pieces of V4 inch dia.
X .6 inch in length were packed in a graphite-alundum mixture and presintered by heating slowly to 1850F in a dissociated ammonia atmosphere. The pieces were then given a final sintering in vacuo at 2550 for one hour under 100-200 microns pressure. A flat may be ground on the side of selected presintered pieces prior to final sintering if profilometer measurements or other corrosion tests are contemplated.
EXAMPLE 2 Titanium carbide, cobalt, nickel, chromium and platinum powders were prepared and screened. The total charge of powders and corresponding particle size were as follows:
40 g. Ti 5 microns 5 g. Co 1.5 microns 3 g Ni 7-13 microns 1.9 g. Cr -325 mesh 0.1 g. Pt -325 mesh 50.0 g.
The powders were ball milled for 96 hours under benzene in a steel mill with steel balls. The milled powder was dried, mixed with a resin binder-lubricant and formed into 0.060 inch diameter spheres. The green spheres were packed in a graphite-alundum mixture and presintered by heating slowly to 1850F in a dissociated ammonia atmosphere. F inal sintering of the spheres was carried out in vacuo at 2650F for A hour under 500 microns pressure. The spheres had shrunk to approximately 0.047 inch diameter and were then ground into 0.043 inch diameter balls for use as writing points in pens. The material of Example 1 was also processed in like manner into balls for use as writing points in pens.
1 claim:
1. In a pen having a writing ball which will rotate freely against an inking magazine, the improvement comprising said writing ball formed from a cemented carbide composition comprising from about to percent by weight of a carbide selected from the group consisting of tungsten carbide and titanium carbide and from about 5 to 25 percent by weight of a binder alloy containing cobalt and nickel and, by weight, about 18 to 20 percent chromium, 0.1 to 1 percent platinum and 0 to 3 percent iron.
2. The pen of claim 1 wherein the binder alloy contains, by weight, about 30 to 60 cobalt and 20 to 50 percent nickel.
3. The pen of claim 1 wherein the binder alloy contains, by weight, about 45 to 55 percent cobalt and 25 to 35 percent nickel.
4. A cemented carbide writing ball for a ball point pen, comprising from about 75 to 95 percent by weight of a carbide selected from the group consisting of tungsten carbide and titanium carbide and from about 5 to 25 percent by weight of a binder alloy containing co balt and nickel and, by weight, about 18 to 20 percent chromium, 0.1 to 1 percent platinum and 0 to 3 percent iron.
5. The writing ball of claim 4 wherein the binder alloy contains, by weight, about 30 to 60 percent cobalt and 20 to 50 percent nickel.
6. The writing ball of claim 4 wherein the binder alloy contains, by weight, about 45 to 55 percent cobalt and 25 to 35 percent nickel.
t a: a: i
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION 'P'atent llo. 3,746, 45 I V Dated 17 y 1973 Inventor(s) Franklin J. Hill It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Title page, Col. 1, line 17 Pat. No. 3, 628, 291 should be 3, 628, 921
Col. 2, line 5 r e "in vacuo" should be underscored Col. 3, line 9 "attached" should be attacked C01. 3, line 58 "in vacuo" should be underscored C0]. 4, line 22 Y "in vacuo' should be underscored Col, 4, line 41 after "so" the Sign should be added (301 4, line 47" after "75" the% Sign should be added Col. 4, line 49 after "5" the Sign should be added I I Signed and sealed this 22nd day of January 197L SEAL) At t e 813 3 EDWARD MIFLE TCHER, JR; RENE D. TEGTMEYER M g Officer 7 Acting Commissioner of Patents :nmu pnnnsn (10.69)
, UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent l lof" 3,746; 45 I. Dated 17 y 1973 nventors) Franklin J. Hill It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Title page, Col. 1, line 17 i Pat. No. 3, 628, 291 should be 3, 628,921
Col. 1, line 5 Pat. No 3, 628, 291 should be -r 3, 628, 921
Col. 2, line 5 "in vacuo" should be underscored C01. 3, line 9 v "attached" should be attacked Col. 3, line 58 "in vacuo" should be underscored Co]. 4, line 22 "in vacuo" should be underscored Col. 4, line 49' after "5" the Sign should be added Signed and sealed this 22 d day of January 1971 sEAm Attest:
EDWARD MTEEETCHERJR. RENE D. TEGTMEIYER A sfi g Officer Act ing Commissioner of Patents

Claims (5)

  1. 2. The pen of claim 1 wherein the binder alloy contains, by weight, about 30 to 60 cobalt and 20 to 50 percent nickel.
  2. 3. The pen of claim 1 wherein the binder alloy contains, by weight, about 45 to 55 percent cobalt and 25 to 35 percent nickel.
  3. 4. A cemented carbide writing ball for a ball point pen, comprising from about 75 to 95 percent by weight of a carbide selected from the group consisting of tungsten carbide and titanium carbide and from about 5 to 25 percent by weight of a binder alloy containing cobalt and nickel and, by weight, about 18 to 20 percent chromium, 0.1 to 1 percent platinum and 0 to 3 percent iron.
  4. 5. The writing ball of claim 4 wherein the binder alloy contains, by weight, about 30 to 60 percent cobalt and 20 to 50 percent nickel.
  5. 6. The writing ball of claim 4 wherein the binder alloy contains, by weight, about 45 to 55 percent cobalt and 25 to 35 percent nickel.
US00187493A 1969-08-18 1971-10-07 Ball point pen writing ball composed of a cemented carbide composition Expired - Lifetime US3746456A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US85103869A 1969-08-18 1969-08-18
US18749371A 1971-10-07 1971-10-07

Publications (1)

Publication Number Publication Date
US3746456A true US3746456A (en) 1973-07-17

Family

ID=26883084

Family Applications (1)

Application Number Title Priority Date Filing Date
US00187493A Expired - Lifetime US3746456A (en) 1969-08-18 1971-10-07 Ball point pen writing ball composed of a cemented carbide composition

Country Status (1)

Country Link
US (1) US3746456A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182627A (en) * 1977-09-26 1980-01-08 National Research Development Corporation Balls containing tungsten carbide
US4653950A (en) * 1982-10-26 1987-03-31 Kyocera Kabushiki Kaisha Nonoxide ceramic ball-point pen ball
WO1996027687A1 (en) * 1995-03-03 1996-09-12 Kennametal Inc. Corrosion resistant cermet wear parts
WO1999032681A1 (en) * 1997-12-22 1999-07-01 Sandvik Ab (Publ) Improved point ball for ball point pens
EP1092786A2 (en) * 1999-10-12 2001-04-18 Plansee Tizit Aktiengesellschaft Hard metal alloy for shaping by electrical discharge machining
US6423111B1 (en) * 2000-07-19 2002-07-23 Tsubaki Nakashima Co., Ltd. Ball for ball-point pen
US6443648B1 (en) * 2001-10-04 2002-09-03 Chung Ping Chao Ballpoint pen with a ball bearing of shape memory alloy
US20050072269A1 (en) * 2003-10-03 2005-04-07 Debangshu Banerjee Cemented carbide blank suitable for electric discharge machining and cemented carbide body made by electric discharge machining
US20060283811A1 (en) * 2002-11-04 2006-12-21 Unhoch Michael J Method of water treatment
WO2009116676A1 (en) * 2008-03-17 2009-09-24 The Pilot Ink Co., Ltd. Water-based ballpoint pen
CN102423979A (en) * 2011-08-25 2012-04-25 张勇 Hard alloy ball bead for gel pen and production method thereof
US8440314B2 (en) 2009-08-25 2013-05-14 TDY Industries, LLC Coated cutting tools having a platinum group metal concentration gradient and related processes
US8512882B2 (en) 2007-02-19 2013-08-20 TDY Industries, LLC Carbide cutting insert
CN106048362A (en) * 2016-06-07 2016-10-26 上海鼎申文化用品有限公司 Hard alloy, titanium-based ball bead and preparation method thereof, pen refill and pen
USD776485S1 (en) 2016-02-11 2017-01-17 Donald Joseph Bradley Food and/or beverage tray
WO2020158097A1 (en) * 2019-01-30 2020-08-06 三菱鉛筆株式会社 Water-based ballpoint pen
WO2020230431A1 (en) * 2019-05-14 2020-11-19 三菱鉛筆株式会社 Water-based ballpoint pen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2067166A (en) * 1933-03-06 1937-01-12 Ramet Corp Tantalum carbide alloy
US3503692A (en) * 1964-11-21 1970-03-31 Sumitomo Electric Industries Ballpoint pen
US3628921A (en) * 1969-08-18 1971-12-21 Parker Pen Co Corrosion resistant binder for tungsten carbide materials and titanium carbide materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2067166A (en) * 1933-03-06 1937-01-12 Ramet Corp Tantalum carbide alloy
US3503692A (en) * 1964-11-21 1970-03-31 Sumitomo Electric Industries Ballpoint pen
US3628921A (en) * 1969-08-18 1971-12-21 Parker Pen Co Corrosion resistant binder for tungsten carbide materials and titanium carbide materials

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182627A (en) * 1977-09-26 1980-01-08 National Research Development Corporation Balls containing tungsten carbide
US4653950A (en) * 1982-10-26 1987-03-31 Kyocera Kabushiki Kaisha Nonoxide ceramic ball-point pen ball
WO1996027687A1 (en) * 1995-03-03 1996-09-12 Kennametal Inc. Corrosion resistant cermet wear parts
US5603075A (en) * 1995-03-03 1997-02-11 Kennametal Inc. Corrosion resistant cermet wear parts
US5658678A (en) * 1995-03-03 1997-08-19 Kennametal Inc. Corrosion resistant cermet wear parts
US5802955A (en) * 1995-03-03 1998-09-08 Kennametal Inc. Corrosion resistant cermet wear parts
WO1999032681A1 (en) * 1997-12-22 1999-07-01 Sandvik Ab (Publ) Improved point ball for ball point pens
US6375707B1 (en) 1997-12-22 2002-04-23 Sandvik A.B. Point ball for ball point pens
EP1092786A2 (en) * 1999-10-12 2001-04-18 Plansee Tizit Aktiengesellschaft Hard metal alloy for shaping by electrical discharge machining
EP1092786A3 (en) * 1999-10-12 2003-01-02 Plansee Tizit Aktiengesellschaft Hard metal alloy for shaping by electrical discharge machining
US6423111B1 (en) * 2000-07-19 2002-07-23 Tsubaki Nakashima Co., Ltd. Ball for ball-point pen
US6443648B1 (en) * 2001-10-04 2002-09-03 Chung Ping Chao Ballpoint pen with a ball bearing of shape memory alloy
US20060283811A1 (en) * 2002-11-04 2006-12-21 Unhoch Michael J Method of water treatment
US20050072269A1 (en) * 2003-10-03 2005-04-07 Debangshu Banerjee Cemented carbide blank suitable for electric discharge machining and cemented carbide body made by electric discharge machining
US8512882B2 (en) 2007-02-19 2013-08-20 TDY Industries, LLC Carbide cutting insert
WO2009116676A1 (en) * 2008-03-17 2009-09-24 The Pilot Ink Co., Ltd. Water-based ballpoint pen
US20110013967A1 (en) * 2008-03-17 2011-01-20 The Pilot Ink Co., Ltd. Water-based ballpoint pen
US8511926B2 (en) 2008-03-17 2013-08-20 The Pilot Ink Co., Ltd. Water-based ballpoint pen
US8440314B2 (en) 2009-08-25 2013-05-14 TDY Industries, LLC Coated cutting tools having a platinum group metal concentration gradient and related processes
CN102423979A (en) * 2011-08-25 2012-04-25 张勇 Hard alloy ball bead for gel pen and production method thereof
USD776485S1 (en) 2016-02-11 2017-01-17 Donald Joseph Bradley Food and/or beverage tray
CN106048362A (en) * 2016-06-07 2016-10-26 上海鼎申文化用品有限公司 Hard alloy, titanium-based ball bead and preparation method thereof, pen refill and pen
WO2020158097A1 (en) * 2019-01-30 2020-08-06 三菱鉛筆株式会社 Water-based ballpoint pen
WO2020230431A1 (en) * 2019-05-14 2020-11-19 三菱鉛筆株式会社 Water-based ballpoint pen

Similar Documents

Publication Publication Date Title
US3746456A (en) Ball point pen writing ball composed of a cemented carbide composition
US3628921A (en) Corrosion resistant binder for tungsten carbide materials and titanium carbide materials
US5778301A (en) Cemented carbide
JP2895107B2 (en) Sintered hard metal composite and method for producing the same
US5482670A (en) Cemented carbide
CN101528961B (en) Metal powder
GB1309634A (en) Cutting tools
US3165822A (en) Tungsten carbide tool manufacture
US3551991A (en) Infiltrated cemented carbides
Upadhyaya et al. Sintering of submicron WC-10wt.% Co hard metals containing nickel and iron
US5358545A (en) Corrosion resistant composition for wear products
JP4174689B2 (en) Pre-alloyed copper-containing powder and its use in the production of diamond tools
US3957451A (en) Ruthenium powder metal alloy
US3503692A (en) Ballpoint pen
GB1379004A (en) High temperature-resistand wearproof sintered alloys
US2711009A (en) Corrosion resistant sintered stock containing mixed carbides
EP1042522B1 (en) Improved point ball for ball point pens
DE2129789C3 (en) Use of a hard metal alloy as a material for the press die of a tool for pressing ferrite powders in a magnetic field
US4339272A (en) Tungsten carbide-based hard metals
US4331478A (en) Corrosion-resistant stainless steel powder and compacts made therefrom
US4702772A (en) Sintered alloy
US1842103A (en) Refractory materiai
US2909808A (en) Process of producing powdered or granular metallic material
US2081049A (en) Sintered hard carbide composition
US3708283A (en) Process for preparing cemented ferrochrome

Legal Events

Date Code Title Description
AS Assignment

Owner name: PARKER PEN (BENELUX) N.V., TAKKEBIJSTERS 1, (4811

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PARKER PEN COMPANY THE A CORP. OF DE.;REEL/FRAME:004562/0893

Effective date: 19860131

Owner name: BANKERS TRUST COMPANY

Free format text: SECURITY INTEREST;ASSIGNOR:PARKER PEN (BENELUX) N.V.;REEL/FRAME:004547/0644

Effective date: 19860131

AS Assignment

Owner name: PARKER PEN (BENELUX) N.V.,NETHERLANDS

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:BANKERS TRUST COMPANY;REEL/FRAME:004823/0983

Effective date: 19871029

Owner name: PARKER PEN (BENELUX) N.V., TAKKEBIJSTERS 1, (4811

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:BANKERS TRUST COMPANY;REEL/FRAME:004823/0983

Effective date: 19871029

AS Assignment

Owner name: PARKER PEN (BENELUX) B.V.

Free format text: RE-RECORD OF INSTRUMENT RECORDED MARCH 5, 1986, AT REEL 4562 FRAMES 0893-898 TO CORRECT NAME OF ASSIGNEE IN A PREVIOUSLY RECORDED ASSIGNEE.;ASSIGNOR:PARKER PEN COMPANY, THE, A DE CORP.;REEL/FRAME:004880/0123

Effective date: 19880316

Owner name: BANKERS TRUST COMPANY

Free format text: RE-RECORD OF INSTRUMENT RECORDED MARCH 5, 1986 AT REEL 4547 FRAMES -0644-0648 TO CORRECT NAME OF ASSIGNOR IN A PREVIOUSLY RECORDED ASSIGNMENT.;ASSIGNOR:PARKER PEN (BENELUX) B.V.;REEL/FRAME:004880/0131

Effective date: 19880316

AS Assignment

Owner name: PARKER PEN (BENELUX) B.V.

Free format text: RE-RECORD OF AN INSTRUMENT RECORDED JAN. 14, 1988, AT REEL 4823, FRAME 983-987 TO CORRECT THE NAME OF THE ASSIGNEE;ASSIGNOR:BANKERS TRUST COMPANY, A DE. CORP.;REEL/FRAME:005093/0539

Effective date: 19871029