US3737906A - Electrically steerable aircraft mounted antenna - Google Patents

Electrically steerable aircraft mounted antenna Download PDF

Info

Publication number
US3737906A
US3737906A US00199900A US3737906DA US3737906A US 3737906 A US3737906 A US 3737906A US 00199900 A US00199900 A US 00199900A US 3737906D A US3737906D A US 3737906DA US 3737906 A US3737906 A US 3737906A
Authority
US
United States
Prior art keywords
array
aircraft
cone
antenna
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00199900A
Inventor
L Maynard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minister of National Defence of Canada
Original Assignee
Minister of National Defence of Canada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minister of National Defence of Canada filed Critical Minister of National Defence of Canada
Application granted granted Critical
Publication of US3737906A publication Critical patent/US3737906A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array

Definitions

  • ABSTRACT discloses an electronically steerable aircraft-to-satellite antenna system using a linear series of parallel dipoles fed through phase-shifting controls.
  • phase-shift By variation of the phase-shift to the various dipoles, different cones of radiation (or preferred reception) are provided.
  • the cone axes are parallel to or coin: cident with the longitudinal axis of the aircraft, so that aircraft roll has little effect on the orientation of the cone.
  • This invention relates to electrically steerable antenna systems, and finds particular application in airborne mobile communications system intended for communication with an orbiting satellite.
  • an omni-directional antenna on a mobile platform enables communication between the mobile platform and a satellite whatever the bearing and elevation of the satellite (as long as it is radio range) but on the other hand such an antenna is inefficient as regards the transmission of energy towards the satellite and provides no rejection of signals from noise sources during reception.
  • some form of directional antenna in combination with some form of steering of the antenna is necessary.
  • an antenna system comprises at least three doublet elements arranged coaxially and spaced apart, together with means adapted to apply a common signal to all the elements but with a progressive change in the phase of the signal as received by the elements in one sense along the length of the array, the means adapted to apply the common signal being adjustable to permit a change in the rate of the progressive change in the phase, whereby by operating the antenna system at different rates of change of the progressive change in phase, different annular conical lobes of radiation, or of selective sensitivity'to radiation, are produced centered on the common axis of the elements.
  • a method of producing an annular conical, or a partannular-conical lobe of radiation or of selective sensitivity to radiation comprises-effecting a variable pattern of phase shifts to signals passing between an input- /output lead and a coaxial array of at least three doublet elements, the pattern being such that the phase shifts associated with the doublet elements vary in a progressive manner in one sense along the length of the array in such a manner as to produce the annular conical, or the part-annular-conical lobe, and the pattern being varied so as to change the halfangle of the lobe cone.
  • An object of the present invention is the provision of an electronically steerable antenna system suitable for particular applications and for those applications providing a system which offers a marked reduction in both cost and complexity.
  • FIG. 1 is a plan view of an antenna system according to the present invention
  • FIG. 2 is a side elevation of the effective radiation produced by the antenna system of FIG. 1 in free space;
  • FIG. 3 is a diagram showing the different zones of effective radiation produced at the plane III-III of FIG. 2 under different conditions of operation;
  • FIG. 4 is a diagram of the typical lobing structure of an array such as that shown in FIG. 1;
  • FIG. 5 is a graph showing the relationship between launch angle and beam width (in degrees) of antenna such as those shown in FIG. 1 but with varying numbers of dipole elements;
  • FIG. 6 is a perspective drawing of an aircraft carrying an antenna array such as that shown in FIG. 2, and also shows schematically the effective lobes produced by that antenna system when operating under different conditions.
  • the antenna system illustrated comprises nine dipoles 1A to II, the nine dipoles being arranged parallel and linearly on an axis 2.
  • the spacing between adjacent dipoles is not critical, but the spacing will affect the radiation pattern obtained when the various dipoles are energized with signals from the same source but at different phases.
  • the spacing between adjacent dipoles is onehalf (wavelength), and each dipole has an overall length of one-half (wavelength).
  • All nine dipoles are fed from a common input/output lead 3 through a phasing unit 5.
  • This unit introduces different delays to a common signal as it passes to leads 7 leading respectively to the various dipoles.
  • the lengths of at least most of the leads 7 will exceed one wavelength, and the lengths of the various leads will thus affect the phase of the signals actually reaching the dipoles.
  • the relative phase shifts introduced by the leads must be taken into account.
  • the phasing unit is arranged to enable the relative phases of the signals applied to the different dipoles to be varied.
  • the signals applied to the dipoles vary graduallyl0 sively in phase from one end of the array to the other end, in the same sense, i.e., either with progressively increasing amounts of phase lag or with progressively increasing amounts of phase advance.
  • a lobe of maximum radiation will be produced in the form of a hollow cone with its apex at the array and with its axis colinear with the axis of the array, as indicated in FIG. 2 by the hollow cone 11.
  • FIG. 3 indicates this point, and shows the annular form of three different lobes designated 11A, 11B and 11C, obtained in this manner.
  • a partial set of beams generated by a linear array of M4 dipoles mounted on the surface of an aircraft 21 may look somewhat like that shown in FIG. 6. In this case, only the upper half-cones 23, 25, 27, 29, 31, 33, 3S and 37 and the central disc 39 are present because of the shadowing effect of the aircraft.
  • the approximate power gain of an array of isotropic 5 radiators G is given by solid angular area of sphere solid angular area of array beam (or beams) 41r solid angular area of array beam (or beams) when the beamwidths are measured at the 3 db points.
  • the angular area A, of cone with apex halfangle 6 l2 is given by 6
  • the angular area A, of cone with apex half-angle 0 (/2) is given by A 1r [0 (/2)] 2
  • the angular area A, of radiated beam A is given by So for the case of a single conical beam 6 0/ 1 10 and for several equal amplitude conical beams G rr/(A -i- A 2/(0 dz, 0 42 EXAMPLE Consider the case where N 9 6 60 0.954 rad.
  • the measured -eamwidth from a synthesized pattern was 10.5 at -3dB.
  • 0 Ia/2 and therefore FIG. 5 shows curves relating beamwidth to launch angle. for arrays with 3, S, 7, 9 and 18 elements. A single quadrant is plotted since quadrant symmetry exists.
  • the minimum azimuthal beamwidth for such an array occurs broadside i.e., at 39 and equals about 8.
  • the elements of the antenna system have been described as dipoles. It will be appreciated that a variety of radiating elements, including doublets, may be used, the distinction being that a dipole is a doublet which has a length so related to the frequency at which it is used that the overall length of the doublet is a halfwavelength at that frequency.
  • the present invention includes in its scope the concept of changing the rate of change in phase along the array in a progressive manner.
  • the effect then produced will be of the nature of a radiation lobe which has a progressively changing cone half-angle.
  • these devices can be adjusted to produce zero phase lag at one end of the antenna array and a progressively increasing phase lag along the series of elements, while when it is desired to produce a rearwardly directed lobe, then these devices can be adjusted to produce zero phase lag at the other end of the antenna array, and a progressively increasing phase lag along the series of elements.
  • Such an array is capable of complete hemispherical coverage by varying a single array parameter, i.e., the cone angle.
  • a single array parameter i.e., the cone angle.
  • two angular parameters must be varied to allow complete hemispherical coverage.
  • An electrically steerable antenna system for use in an airborne communications system to provide communications between an aircraft and an orbiting satellite comprising:
  • an antenna comprising a fixed linear array of dipole elements mounted on the upper parts of the aircraft on a common axis parallel to the longitudinal axis of the aircraft;
  • phase shifting means connected to the array of dipole 'elements'for introducing into a signal to be communicated a predetermined phase shift between adjacent dipole elements to produce an annular lobe of maximum radiation in the form of a hollow cone with its apex at the array and its axis collinear with the axis of the array;
  • the antenna system of claim 1 wherein the means for varying the apex angle of the cone of radiation comprises means for varying the phase shift introduced between adjacent dipole elements.
  • a method of communication between an in-flight aircraft having a fixed linear dipole array antenna mounted on the upper parts of the aircraft on a common axis parallel to the logitudinal axis of the aircraft and an orbiting satellite which comprises:
  • the signal radiating from the antenna the signal to be communicated as an annular lobe of maximum radiation in the form of a hollow cone with its apex at the array and its axis parallel to the longitudinal axis of the aircraft;
  • step of adjusting the apex angle of the cone comprises varying the phase shift between adjacent dipoles.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

The application discloses an electronically steerable aircraftto-satellite antenna system using a linear series of parallel dipoles fed through phase-shifting controls. By variation of the phase-shift to the various dipoles, different cones of radiation (or preferred reception) are provided. The cone axes are parallel to or coincident with the longitudinal axis of the aircraft, so that aircraft roll has little effect on the orientation of the cone.

Description

United States Patent [191 Maynard 51 June 5,1973
[54] ELECTRICALLY STEERABLE AIRCRAFT MOUNTED ANTENNA [75] Inventor: Lawrence A. Maynard, Almonte,
Ontario, Canada [73] Assignee: Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence [22] Filed: Nov. 18, 1971 [21] Appl. No.: 199,900
[52] US. Cl. ..343/705, 343/814, 343/854 [51] Int. Cl. ..H01q 1/28 [58] Field of Search 343/705, 708, 854,
[56] References Cited UNITED STATES PATENTS 2,245,660 6/1941 Feldman et al ..343/854 2,464,276 3/1949 Varian ..343/854 Primary Examiner-Eli Lieberman A ttorney-R. S. Sciascia and Thomas 0. Watson, Jr.
[57] ABSTRACT The application discloses an electronically steerable aircraft-to-satellite antenna system using a linear series of parallel dipoles fed through phase-shifting controls. By variation of the phase-shift to the various dipoles, different cones of radiation (or preferred reception) are provided. The cone axesare parallel to or coin: cident with the longitudinal axis of the aircraft, so that aircraft roll has little effect on the orientation of the cone.
7 Claims, 6 Drawing Figures PATENTED JUN 51975 sum 1 OF 2 ELECTRICALLY STEERABLE AIRCRAFT MOUNTED ANTENNA STATEMENT OF GOVERNMENT INTEREST The invention described herein may be manufactured and used by or for The Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to electrically steerable antenna systems, and finds particular application in airborne mobile communications system intended for communication with an orbiting satellite.
Use of an omni-directional antenna on a mobile platform enables communication between the mobile platform and a satellite whatever the bearing and elevation of the satellite (as long as it is radio range) but on the other hand such an antenna is inefficient as regards the transmission of energy towards the satellite and provides no rejection of signals from noise sources during reception. In order to provide an acceptable level of effectiveness, some form of directional antenna in combination with some form of steering of the antenna is necessary.
2. Description of the Prior Art It is known to utilize for communication purposes antennas which are directional and which are physically steerable, and these are used both for UHF systems, in which arrays of dipoles are used as the antenna, and for systems for frequencies above UHF, in which latter systems sheet metal antennas are usually used. It is also known, for UHF systems, to use fixed antenna arrays of dipoles having radiation patterns which can be modified by varying the relative phases of the energizing signalsapplied to the different dipoles. To utilize such a system, of electronically steerable dipole arrays, for an aircraft communication system, is of great interest since the mechanical steering of antennas in this environment is difficult and sometimes impossible. In considering the airborne antenna system, a twodimensional angular steering of a conventional phased dipole array is necessary, and the associated control circuitry is complex.
SUMMARY OF THE INVENTION According to one aspect of the present invention, an antenna system comprises at least three doublet elements arranged coaxially and spaced apart, together with means adapted to apply a common signal to all the elements but with a progressive change in the phase of the signal as received by the elements in one sense along the length of the array, the means adapted to apply the common signal being adjustable to permit a change in the rate of the progressive change in the phase, whereby by operating the antenna system at different rates of change of the progressive change in phase, different annular conical lobes of radiation, or of selective sensitivity'to radiation, are produced centered on the common axis of the elements.
According to another aspect of the invention, a method of producing an annular conical, or a partannular-conical lobe of radiation or of selective sensitivity to radiation, comprises-effecting a variable pattern of phase shifts to signals passing between an input- /output lead and a coaxial array of at least three doublet elements, the pattern being such that the phase shifts associated with the doublet elements vary in a progressive manner in one sense along the length of the array in such a manner as to produce the annular conical, or the part-annular-conical lobe, and the pattern being varied so as to change the halfangle of the lobe cone.
OBJECT OF THE INVENTION An object of the present invention is the provision of an electronically steerable antenna system suitable for particular applications and for those applications providing a system which offers a marked reduction in both cost and complexity.
Other objects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawing.
BRIEF DESCRIPTION OF THE DRAWINGS The invention will now be described, by way of example, with reference to the accompanying drawings, in which:
FIG. 1 is a plan view of an antenna system according to the present invention;
FIG. 2 is a side elevation of the effective radiation produced by the antenna system of FIG. 1 in free space;
FIG. 3 is a diagram showing the different zones of effective radiation produced at the plane III-III of FIG. 2 under different conditions of operation;
FIG. 4 is a diagram of the typical lobing structure of an array such as that shown in FIG. 1;
FIG. 5 is a graph showing the relationship between launch angle and beam width (in degrees) of antenna such as those shown in FIG. 1 but with varying numbers of dipole elements; and
FIG. 6 is a perspective drawing of an aircraft carrying an antenna array such as that shown in FIG. 2, and also shows schematically the effective lobes produced by that antenna system when operating under different conditions.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring first to FIG. 1, the antenna system illustrated comprises nine dipoles 1A to II, the nine dipoles being arranged parallel and linearly on an axis 2. The spacing between adjacent dipoles is not critical, but the spacing will affect the radiation pattern obtained when the various dipoles are energized with signals from the same source but at different phases. In the example shown, the spacing between adjacent dipoles is onehalf (wavelength), and each dipole has an overall length of one-half (wavelength).
All nine dipoles are fed from a common input/output lead 3 through a phasing unit 5. This unit introduces different delays to a common signal as it passes to leads 7 leading respectively to the various dipoles.
As will be appreciated by those skilled in the art, the lengths of at least most of the leads 7 will exceed one wavelength, and the lengths of the various leads will thus affect the phase of the signals actually reaching the dipoles. For any given channel, the relative phase shifts introduced by the leads must be taken into account. For an antenna system intended to operate on several channels, it may be simpler to ensure that all the leads 7 have the same length, so that phase shift in the leads 7 will be equal for all dipoles at all frequencies.
Bearing the above points in mind, the phasing unit is arranged to enable the relative phases of the signals applied to the different dipoles to be varied. When the 5 tion, the signals applied to the dipoles vary progresl0 sively in phase from one end of the array to the other end, in the same sense, i.e., either with progressively increasing amounts of phase lag or with progressively increasing amounts of phase advance. In these circumstances, a lobe of maximum radiation will be produced in the form of a hollow cone with its apex at the array and with its axis colinear with the axis of the array, as indicated in FIG. 2 by the hollow cone 11.
By using the phasing unit 5 to vary the amount of phase lag or phase advance along the array from dipole to dipole, the cone half-angled (see FIG. 4) can be varied. Thus, by changing the phase shifts involved, it is possible to obtain different hollow cones of effective coverage by the antenna system. FIG. 3 indicates this point, and shows the annular form of three different lobes designated 11A, 11B and 11C, obtained in this manner.
A partial set of beams generated by a linear array of M4 dipoles mounted on the surface of an aircraft 21 may look somewhat like that shown in FIG. 6. In this case, only the upper half- cones 23, 25, 27, 29, 31, 33, 3S and 37 and the central disc 39 are present because of the shadowing effect of the aircraft.
The power gain G A of such an array will be approximated by where N the number of elements in the array and G 40 It is interesting to note that such an array is capable of scanning a complete hemisphere by varying the single parameter 0, the half-angle of the cone apex, (see FIG. 4).
The approximate power gain of an array of isotropic 5 radiators G, is given by solid angular area of sphere solid angular area of array beam (or beams) 41r solid angular area of array beam (or beams) when the beamwidths are measured at the 3 db points. The angular area A, of cone with apex halfangle 6 l2 is given by 6 The angular area A, of cone with apex half-angle 0 (/2) is given by A 1r [0 (/2)] 2 The angular area A, of radiated beam A is given by So for the case of a single conical beam 6 0/ 1 10 and for several equal amplitude conical beams G rr/(A -i- A 2/(0 dz, 0 42 EXAMPLE Consider the case where N 9 6 60 0.954 rad.
G 9 2/(0 dz) 2/(0.954
2/(O.954 X 9) 0.233 rad. 13.33
The measured -eamwidth from a synthesized pattern was 10.5 at -3dB. For an end-launched beam, 0 (Ia/2 and therefore FIG. 5 shows curves relating beamwidth to launch angle. for arrays with 3, S, 7, 9 and 18 elements. A single quadrant is plotted since quadrant symmetry exists.
In the U.l-I.F. band, fairly large effective apertures can be achieved using only a few elements. For example, an array of nine M4 dipoles will provide an effective aperture of about 1.5 square meters and a gain of about 13 db/iso at 250 MHz.
The minimum azimuthal beamwidth for such an array occurs broadside i.e., at 39 and equals about 8.
Only a few 12) sets of lobes generated by such an array will suffice to complete hemispherical coverage, and therefore the technique is well suited to a switchedarray antenna system.
It is common practice to utilize a single antenna array both to transmit a signal and to receive a signal. The above description has, for the sake of simplicity, dealt basically with the transmission of a signal, the antenna array being effective to produce an annular conical radiation lobe, or a part-annular-conical radiation lobe. When such an antenna array is used to receive a signal, all the dipoles will receive the signal and the signal will be transmitted through the leads 7 to the phasing unit 5, where the signals from the various leads 7 will be phase shifted by varying amounts before being fed to the input/output lead 3. The net result is' that for a phase shift arrangement which would give the radiation lobe ll of FIG. 2 during transmission, the label! will be a lobe of selective sensitivity to radiation coming to the antenna array.
In the specific embodiment of the invention described above, the elements of the antenna system have been described as dipoles. It will be appreciated that a variety of radiating elements, including doublets, may be used, the distinction being that a dipole is a doublet which has a length so related to the frequency at which it is used that the overall length of the doublet is a halfwavelength at that frequency.
Although it will usually be simpler to effect the change, in the rate of change in phase along the array, in a step like manner to produce in sequence a number of different annular conical, or different part-annularconical, lobes of radiation, or of selective sensitivity to radiation, the different lobes overlapping one another, the present invention includes in its scope the concept of changing the rate of change in phase along the array in a progressive manner. The effect then produced will be of the nature of a radiation lobe which has a progressively changing cone half-angle.
It will be seen that in the arrangement shown in FIG. 6 two sets of half-cones are shown, one extending forwardly of the aircraft and one extending rearwardly from the aircraft. Thischange indirection is effected by changing the sense in which the signal phases change along the length of the array. Thus, during transmission in one instance the signals on the forward elements of.the array will lag the signals on the rearward elements of the array; while in the other instance the signals on the rearward elements of the array will lag the signals on the forward elements of the array. The exact manner in which this will be done is largely a matter of design. If it is desired to make use only of devices which introduce a lagging phase shift in the phasing unit 5, this is readily achieved by the use of such devices in conjunction with each of the leads 7. When it is desired to produce a forwardly directed lobe, then these devices can be adjusted to produce zero phase lag at one end of the antenna array and a progressively increasing phase lag along the series of elements, while when it is desired to produce a rearwardly directed lobe, then these devices can be adjusted to produce zero phase lag at the other end of the antenna array, and a progressively increasing phase lag along the series of elements.
It will be appreciated that the antenna array described above has many advantages, the most important of which may be summarized as follows:
1. Such an array is capable of complete hemispherical coverage by varying a single array parameter, i.e., the cone angle. In the conventional Z-dimensional arrays, two angular parameters must be varied to allow complete hemispherical coverage.
2. The simple steering technique results in drastically simplified phase control networks.
3. The most rapid angular maneuver, in large, transport type aircraft, is that of bank or roll. If the linear array is spaced along, or parallel to the roll axis of the aircraft, no beam change or little beam change is required to maintain communication with a satellite.
4. This technique is particularly appropriate at UHF, where the angular thickness of the conical beam structure is several degrees.
With the arrangement of doublets shown in FIG. 1, a radiation pattern hole exists in that no effective radiation can be produced vertically (assuming the aircraft is flying horizontally). In the unusual case of the aircraft flying under the satellite, this could create a problem. If such conditions are anticipated, the elements used can be so-called bent-monopole" elements. These elements are commercially available.
What is claimed is:
1. An electrically steerable antenna system for use in an airborne communications system to provide communications between an aircraft and an orbiting satellite comprising:
an antenna comprising a fixed linear array of dipole elements mounted on the upper parts of the aircraft on a common axis parallel to the longitudinal axis of the aircraft;
phase shifting means connected to the array of dipole 'elements'for introducing into a signal to be communicated a predetermined phase shift between adjacent dipole elements to produce an annular lobe of maximum radiation in the form of a hollow cone with its apex at the array and its axis collinear with the axis of the array;
means for applying the signal to be communicated to the phase shifting means; and,
means for varying the apex angle of the cone of radiation to include the orbiting satellite within the lobe of maximum radiation regardless of the relative orientations of the aircraft and satellite.
2. The antenna system of claim 1 wherein the means for varying the apex angle of the cone of radiation comprises means for varying the phase shift introduced between adjacent dipole elements.
3. The antenna system of claim 2 wherein said array of dipole elements comprises at least three elements.
4. An antenna system as claimed in claim 1 wherein the number of elements in the array is nine.
5. A method of communication between an in-flight aircraft having a fixed linear dipole array antenna mounted on the upper parts of the aircraft on a common axis parallel to the logitudinal axis of the aircraft and an orbiting satellite which comprises:
radiating from the antenna the signal to be communicated as an annular lobe of maximum radiation in the form of a hollow cone with its apex at the array and its axis parallel to the longitudinal axis of the aircraft; and
adjusting the apex angle of the cone to include the orbiting satellite within the lobe of maximum radiation.
6. The method of claim 5 wherein the step of radiating the signal comprises:
applying the signal to one end of the linear array;
and,
shifting the phase of the signal between adjacent dipoles as it passes to the other end of the array.
7. The method of claim 6 wherein the step of adjusting the apex angle of the cone comprises varying the phase shift between adjacent dipoles.
* l i i

Claims (7)

1. An electrically steerable antenna system for use in an airborne communications system to provide communications between an aircraft and an orbiting satellite comprising: an antenna comprising a fixed linear array of dipole elements mounted on the upper parts of the aircraft on a common axis parallel to the longitudinal axis of the aircraft; phase shifting means connected to the array of dipole elements for introducing into a signal to be communicated a predetermined phase shift between adjacent dipole elements to produce an annular lobe of maximum radiation in the form of a hollow cone with its apex at the array and its axis collinear with the axis of the array; means for applying the signal to be communicated to the phase shifting means; and, means for varying the apex angle of the cone of radiation to include the orbiting satellite within the lobe of maximum radiation regardless of the relative orientations of the aircraft and satellite.
2. The antenna system of claim 1 wherein the means for varying the apex angle of the cone of radiation comprises means for varying the phase shift introduced between adjacent dipole elements.
3. The antenna system of claim 2 wherein said array of dipole elements comprises at least three elements.
4. An antenna system as claimed in claim 1 wherein the number of elements in the array is nine.
5. A method of communication between an in-flight aircraft having a fixed linear dipole array antenna mounted on the upper parts of the aircraft on a common axis parallel to the logitudinal axis of the aircraft and an orbiting satellite which comprises: radiating from the antenna the signal to be communicated as an annular lobe of maximum radiation in the form of a hollow cone with its apex at the array and its axis parallel to the longitudinal axis of the aircraft; and adjusting the apex angle of the cone to include the orbiting satellite within the lobe of maximum radiation.
6. The method of claim 5 wherein the step of radiating the signal comprises: applying the signal to one end of the linear array; and, shifting the phase of the signal between adjacent dipoles as it passes to the other end of the array.
7. The method of claim 6 wherein the step of adjusting the apex angle of the cone comprises varying the phase shift between adjacent dipoles.
US00199900A 1971-11-18 1971-11-18 Electrically steerable aircraft mounted antenna Expired - Lifetime US3737906A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US19990071A 1971-11-18 1971-11-18

Publications (1)

Publication Number Publication Date
US3737906A true US3737906A (en) 1973-06-05

Family

ID=22739477

Family Applications (1)

Application Number Title Priority Date Filing Date
US00199900A Expired - Lifetime US3737906A (en) 1971-11-18 1971-11-18 Electrically steerable aircraft mounted antenna

Country Status (1)

Country Link
US (1) US3737906A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3833904A (en) * 1973-02-05 1974-09-03 Hughes Aircraft Co Airborne switched array radar system
US4176266A (en) * 1976-02-02 1979-11-27 Hitachi, Ltd. Microwave heating apparatus
US5214436A (en) * 1990-05-29 1993-05-25 Hazeltine Corp. Aircraft antenna with coning and banking correction
US5453753A (en) * 1993-09-08 1995-09-26 Dorne & Margolin, Inc. Mechanically steerable modular planar patch array antenna
US6208304B1 (en) 1999-05-10 2001-03-27 Ems Technologies Canada, Ltd. Aircraft mounted dual blade antenna array
US6380906B1 (en) * 2001-04-12 2002-04-30 The United States Of America As Represented By The Secretary Of The Air Force Airborne and subterranean UHF antenna
US20060250315A1 (en) * 2005-05-04 2006-11-09 Harris Corporation Conical dipole antenna and associated methods
US20100090881A1 (en) * 2006-12-18 2010-04-15 Hoeoek Anders Fore/aft looking airborne radar
US20110057848A1 (en) * 2009-09-09 2011-03-10 Baucom Charlie E Antenna apparatus and methods of use therefor
US10355355B2 (en) * 2016-04-15 2019-07-16 Pegatron Corporation Antenna system and control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2245660A (en) * 1938-10-12 1941-06-17 Bell Telephone Labor Inc Radio system
US2464276A (en) * 1943-08-03 1949-03-15 Sperry Corp Radiant energy directivity pattern scanner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2245660A (en) * 1938-10-12 1941-06-17 Bell Telephone Labor Inc Radio system
US2464276A (en) * 1943-08-03 1949-03-15 Sperry Corp Radiant energy directivity pattern scanner

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3833904A (en) * 1973-02-05 1974-09-03 Hughes Aircraft Co Airborne switched array radar system
US4176266A (en) * 1976-02-02 1979-11-27 Hitachi, Ltd. Microwave heating apparatus
US5214436A (en) * 1990-05-29 1993-05-25 Hazeltine Corp. Aircraft antenna with coning and banking correction
US5453753A (en) * 1993-09-08 1995-09-26 Dorne & Margolin, Inc. Mechanically steerable modular planar patch array antenna
US6208304B1 (en) 1999-05-10 2001-03-27 Ems Technologies Canada, Ltd. Aircraft mounted dual blade antenna array
US6380906B1 (en) * 2001-04-12 2002-04-30 The United States Of America As Represented By The Secretary Of The Air Force Airborne and subterranean UHF antenna
US20060250315A1 (en) * 2005-05-04 2006-11-09 Harris Corporation Conical dipole antenna and associated methods
US7170461B2 (en) * 2005-05-04 2007-01-30 Harris Corporation Conical dipole antenna and associated methods
US20100090881A1 (en) * 2006-12-18 2010-04-15 Hoeoek Anders Fore/aft looking airborne radar
US8094062B2 (en) * 2006-12-18 2012-01-10 Telefonaktiebolaget L M Ericsson (Publ) Fore/aft looking airborne radar
US20110057848A1 (en) * 2009-09-09 2011-03-10 Baucom Charlie E Antenna apparatus and methods of use therefor
US8378903B2 (en) 2009-09-09 2013-02-19 L-3 Communications Integrated Systems L.P. Antenna apparatus and methods of use therefor
US10355355B2 (en) * 2016-04-15 2019-07-16 Pegatron Corporation Antenna system and control method

Similar Documents

Publication Publication Date Title
US3623114A (en) Conical reflector antenna
US3633208A (en) Shaped-beam antenna for earth coverage from a stabilized satellite
US6961025B1 (en) High-gain conformal array antenna
US5189433A (en) Slotted microstrip electronic scan antenna
US6791507B2 (en) Feed network for simultaneous generation of narrow and wide beams with a rotational-symmetric antenna
US4316192A (en) Beam forming network for butler matrix fed circular array
US6456252B1 (en) Phase-only reconfigurable multi-feed reflector antenna for shaped beams
US4123759A (en) Phased array antenna
US9244155B2 (en) Adaptive electronically steerable array (AESA) system for multi-band and multi-aperture operation and method for maintaining data links with one or more stations in different frequency bands
US3307188A (en) Steerable antenna array and method of operating the same
US10749258B1 (en) Antenna system and method for a digitally beam formed intersecting fan beam
US3487413A (en) Wide angle electronic scan luneberg antenna
US3568207A (en) Parallel-plate feed system for a circular array antenna
CN107230837B (en) Two-dimensional switching multi-beam intelligent antenna applied to unmanned aerial vehicle
US4918458A (en) Secondary radar transponder
US5257031A (en) Multibeam antenna which can provide different beam positions according to the angular sector of interest
US3737906A (en) Electrically steerable aircraft mounted antenna
EP1421650B1 (en) Conformal two dimensional electronic scan antenna with butler matrix and electronic scan array (esa) lens
US4163235A (en) Satellite system
CN110945718A (en) Conformal antenna
US6504516B1 (en) Hexagonal array antenna for limited scan spatial applications
KR101859867B1 (en) Antenna apparatus for millimeter wave and beam generating method using lens
US10473776B2 (en) Transmit-array antenna for a monopulse radar system
US3839720A (en) Corporate feed system for cylindrical antenna array
WO2018096307A1 (en) A frequency scanned array antenna