US3737686A - Shielded balanced microwave analog multiplier - Google Patents

Shielded balanced microwave analog multiplier Download PDF

Info

Publication number
US3737686A
US3737686A US00265933A US3737686DA US3737686A US 3737686 A US3737686 A US 3737686A US 00265933 A US00265933 A US 00265933A US 3737686D A US3737686D A US 3737686DA US 3737686 A US3737686 A US 3737686A
Authority
US
United States
Prior art keywords
couplers
shielded
diodes
output
balanced microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00265933A
Inventor
J Swanekamp
J Malloy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Application granted granted Critical
Publication of US3737686A publication Critical patent/US3737686A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/12Arrangements for performing computing operations, e.g. operational amplifiers
    • G06G7/16Arrangements for performing computing operations, e.g. operational amplifiers for multiplication or division
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C1/00Amplitude modulation
    • H03C1/52Modulators in which carrier or one sideband is wholly or partially suppressed
    • H03C1/54Balanced modulators, e.g. bridge type, ring type or double balanced type
    • H03C1/56Balanced modulators, e.g. bridge type, ring type or double balanced type comprising variable two-pole elements only
    • H03C1/58Balanced modulators, e.g. bridge type, ring type or double balanced type comprising variable two-pole elements only comprising diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C7/00Modulating electromagnetic waves
    • H03C7/02Modulating electromagnetic waves in transmission lines, waveguides, cavity resonators or radiation fields of antennas
    • H03C7/025Modulating electromagnetic waves in transmission lines, waveguides, cavity resonators or radiation fields of antennas using semiconductor devices
    • H03C7/027Modulating electromagnetic waves in transmission lines, waveguides, cavity resonators or radiation fields of antennas using semiconductor devices using diodes

Definitions

  • ABSTRACT A passive, four quadrant, balanced analogue multiplier for use in the microwave and RF region, including four backward-wave, 3 db quadrature couplers.
  • the couplers are interconnected whereby four output signals are supplied to four respective diodes of the mulitplier from the two input signals to be multiplied for parallel signal processing.
  • This invention relates generally to microwave signal processing apparatus and, more particularly, to a shielded, balanced microwave analogue multiplier.
  • Prior art attempts to provide signal multiplication at microwave frequencies include systems for heterodyning the signals down to a low frequency range and using a conventional ring modulator as a multiplier bridge. Heterodyning suffers from the disadvantage of not operating at the original microwave frequencies and, thus, requiring an excessive number of components, several of them active.
  • a passive multiplier operating at the original microwave frequencies, is inherently unbalanced because the coaxial inputs short out one of the four diodes in the ring modulator, causing an undesirable dc. bias in the output.
  • the device is not RF shielded beyond the coaxial inputs, thereby making possible pickup of undesired signals and causing deterioration of the signal-to-noise ratio.
  • this type of device does not provide for biasing the diodes to provide a balance adjustment and to insure operation in the desired squarelaw region of the diodes, which is required if the output is to be representative of the product of the instantaneous amplitudes of the applied microwave signals.
  • this type of device is not adaptable to planar design, that is, it has crossovers, thereby precluding certain construction techniques such as stripline, integrated RF circuitry, or the like.
  • one object of the invention is to provide an improved, passive, analogue multiplier particularly suitable for operation in the microwave frequency range.
  • Another object of the present invention is to provide a balanced, microwave, analogue signal multiplier.
  • a still further object of the present invention is to provide an analogue multiplier operable in the microwave frequency range having an improved signal-tonoise ratio.
  • Yet another object of the instant invention is to provide a microwave signal multiplier with total electromagnetic shielding.
  • Still another object of the present invention is to provide an analogue signal multiplier adaptable to miniature microwave planar construction.
  • a still further object of the present invention is to provide an analogue multiplier having a large usable frequency range.
  • Yet another object of the present invention is to provide a simpler diode biasing arrangement and better isolation in an analogue signal multiplier.
  • a shielded, balanced, analogue signal multiplier operable at the microwave frequency range utilizing four backward-wave, 3 db, quadrature couplers connected in such a way as to take two input signals and provide four output signals.
  • These four output signals from the coupler drive network are applied to four parallel diodes of the multiplier, each separately driven into their square law regions. Their output is then processed through integrating amplifiers and a differential amplifier whose output represents the product of the instantaneous amplitudes of the original input signals.
  • FIG. 1 is a schematic view of one embodiment of the analogue multiplier according to the present invention.
  • FIG. 2 is a schematic view of an alternative embodiment of the analogue multiplier according to the present invention.
  • the operation of correlation is multiplication followed by time averaging.
  • the correlation function is an even function with respect to the relative time delay between the two input signals to be correlated, with a maximum value at zero relative delay between two input signals, i.e., the correlator, when operating on two signal phasors, must perform the scalar, or dot product of the two input voltage phasors.
  • the correct correlation multiplication must produce the product of the two signal magnitudes times the cosine of the phase angle between the two input signals, i.e., E, E cos w r.
  • sinusoidal input signal E cos m is applied to input port 10 of backward wave coupler l4 and sinusoidal input signal E cos co (2 r) is applied to input" port 12 of backward wave coupler 16.
  • the isolated ports of couplers l4 and 16 are terminated in their characteristic impedances l8 and 20, respectively.
  • the input power is split equally between the two output ports of each coupler whereby a voltage of E,/ ⁇ /7(cos w t appears at coupled output port 22 and a voltage of E,/ ⁇ / 2 cos m t appears at transmitted output port 24 of coupler 12.
  • Coupled port 22 connected to input port 36,
  • transmitted port 24 connected to input port 32, coupled port 26 connected to isolated port 34, and transmitted port 27 connected to isolated port 38.
  • the output supplied is 1/ ⁇ / 2 times the input voltage with a phase shift at the transmitted output port, and a 90 phase shift at the coupled port, as was the case with couplers 12 and 16.
  • the 0 phase shift is associated with the output voltage at the coupled port and 90 associated with the transmitted port.
  • Superposition is then used to sum the voltage at the output ports 40, 42, 44 and 46 due to voltage inputs at ports 32, 34, 36 and 38.
  • Output voltages v v v and v are then processed in hot carrier diodes 48, 50, 52 and 54 respectively, each of these diodes operating in its square law (i Kv region, i.e., that the diode bias and its input signal voltage amplitude are such as to assure this operation.
  • the functional relationship of the hot carrier diodes obeys Schottky theory almost exactly and may be expressed as where i is the current through the diode, v is the voltage across the diode, I, is the diode saturation current, and a is a diode constant. With the diode forwardly biased at a voltage v, and a current 1,, a small a.c. signal voltage v, applied around this bias point produces an output signal current of I, (I, 1 (e l) behaving like an ideal square law device.
  • an adjustable d.c. bias 56, S8, 60 and 62 is provided for each diode 48, 50, 52 and 54, respectively, through resistors 64, 66, 68 and 70, respectively.
  • Reactive impedance elements such as chokes 72, 74, 76 and 78, provide d.c. return paths for diodes 48, 50, 52 and 54, respectively.
  • the outputs from diodes 48, 50, 52 and 54, operating in their square law regions, are
  • RF shunt capacitors 80, 82, 84 and 86, at each diode output 48, 50, 52 and 54, respectively, ground the RF signal component centered around frequencies in, and 2 (0,, so that e,,,, need include only the d.c. terms and quasi d.c. component centered around w 0 (in the case of a dynamic system).
  • e e e and 2 contain only d.c. and quasi LII d.c. terms remaining for further signal processing.
  • the outputs from diodes 48 and 50, e and 2 respectively, are supplied to the input of integrating amplifier 88, and the outputs of diodes 52 and 54, e and e respectively, are supplied to the input of integrating amplifier 90.
  • the multiplication process is performed identically with the four 3 db hybrid couplers and the four biased, hot carrier diodes previously illustrated and explained with respect to FIG. 1.
  • the four output voltagese e e,,;,, and e from diodes 48, 50, 52 and 54, respectively, are the same as before, but rather than supplying them to integrating and differential amplifiers, voltages e, and c are added in resistors 94 and 96, respectively, and voltages e and e are added in resistors 98 and 100, respectively.
  • These two summing voltages are then supplied as the input to summing integrating amplifier 102, whose output e is also of the form K,,E,E cos 01,1.
  • any transmission line made may be utilized to fabricate the multiplier.
  • coaxial cable, stripline, waveguide and miniature microwave planar fabrication may be utilized.
  • any desired shielding may be used.
  • the four outputs from the coupler drive network en able the four diodes of the multiplier to be each separately driven, thereby utilizing parallel signal processing which permit better isolation of the diodes and a simple, easily adjustable biasing arrangement.
  • the use of backward-wave couplers gives the coupler drive network an octave band frequency range capability, i.e., i 33.3 percent frequency range. This means that less correlators are required to cover a given broad frequency range, or a broader usable frequency range is available from each correlator.
  • a continuously variable delay at one of the inputs can generate a complete correlation function.
  • a shielded, balanced microwave analogue multiplier comprising in combination:
  • a first set of backward wave couplers having at least two ports for receiving two sinusoidal input signals
  • a second set of backward wave couplers connected to the output ports of said first set of couplers, said second set of couplers having four output ports and producing four output signals;
  • biasing means comprises a dc. bias course.
  • each of said set of couplers comprises two backwardwave 3 db quadrature couplers.
  • a differential amplifier coupled to the outputs of said integrating amplifiers.

Abstract

A passive, four quadrant, balanced analogue multiplier for use in the microwave and RF region, including four backward-wave, 3 db quadrature couplers. The couplers are interconnected whereby four output signals are supplied to four respective diodes of the mulitplier from the two input signals to be multiplied for parallel signal processing.

Description

EInited States Patent Swanekamp et al.
[ 51 ,iune5,1973
SHIELDED BALANCED MICROWAVE ANALOG MULTIPLIER [56] References Cited UNITED STATES PATENTS 3,513,398 5/1970 Bossard et al. ..325/446 3,621,400 l1/l97l Paciorek et a1 ..333/l1 X 3,634,768 1/1972 Carpenter et al ..32 l/69 X 3,681,697 8/1972 Moroney ..325/446 Primary Examiner-Joseph F. Ruggiero Attorney-R. S. Sciascia [57] ABSTRACT A passive, four quadrant, balanced analogue multiplier for use in the microwave and RF region, including four backward-wave, 3 db quadrature couplers. The couplers are interconnected whereby four output signals are supplied to four respective diodes of the mulitplier from the two input signals to be multiplied for parallel signal processing.
5 Claims, 2 Drawing Figures OUT PATENTED 73 SHEET 1 BF 2 SHIELDED BALANCED MICROWAVE ANALOG MULTIPLIER BACKGROUND OF THE INVENTION This invention relates generally to microwave signal processing apparatus and, more particularly, to a shielded, balanced microwave analogue multiplier.
In signal correlation systems, it is generally necessary to multiply two or more input signals to form an analogue signal representative of the product of the instantaneous amplitudes of the respective signals. When the input signals are in the microwave frequency range, special problems are posed and conventional audio frequency circuits are not operative.
Prior art attempts to provide signal multiplication at microwave frequencies include systems for heterodyning the signals down to a low frequency range and using a conventional ring modulator as a multiplier bridge. Heterodyning suffers from the disadvantage of not operating at the original microwave frequencies and, thus, requiring an excessive number of components, several of them active.
A passive multiplier, operating at the original microwave frequencies, is inherently unbalanced because the coaxial inputs short out one of the four diodes in the ring modulator, causing an undesirable dc. bias in the output. In addition, the device is not RF shielded beyond the coaxial inputs, thereby making possible pickup of undesired signals and causing deterioration of the signal-to-noise ratio. Also, this type of device does not provide for biasing the diodes to provide a balance adjustment and to insure operation in the desired squarelaw region of the diodes, which is required if the output is to be representative of the product of the instantaneous amplitudes of the applied microwave signals. Still furthermore, this type of device is not adaptable to planar design, that is, it has crossovers, thereby precluding certain construction techniques such as stripline, integrated RF circuitry, or the like.
Another prior art device is disclosed in US. Pat. No. 3,160,882 to John H. Malloy. This device utilized four diodes in a ring arrangement driven by a hybrid ring into which the two signals tobe multiplied were connected as inputs. The series signal processing in the diodes led to diode bias circuitry which was difficult to adjust for balanced operation. In addition, the use of the hybrid ring drive limited the frequency range over which a single correlator could be used to about 35 10. percent.
SUMMARY OF THE INVENTION Accordingly, one object of the invention is to provide an improved, passive, analogue multiplier particularly suitable for operation in the microwave frequency range.
Another object of the present invention is to provide a balanced, microwave, analogue signal multiplier.
A still further object of the present invention is to provide an analogue multiplier operable in the microwave frequency range having an improved signal-tonoise ratio.
Yet another object of the instant invention is to provide a microwave signal multiplier with total electromagnetic shielding.
Still another object of the present invention is to provide an analogue signal multiplier adaptable to miniature microwave planar construction.
A still further object of the present invention is to provide an analogue multiplier having a large usable frequency range.
Yet another object of the present invention is to provide a simpler diode biasing arrangement and better isolation in an analogue signal multiplier.
Briefly, in accordance with one embodiment of the invention, these and other objects are attained by providing a shielded, balanced, analogue signal multiplier operable at the microwave frequency range utilizing four backward-wave, 3 db, quadrature couplers connected in such a way as to take two input signals and provide four output signals. These four output signals from the coupler drive network are applied to four parallel diodes of the multiplier, each separately driven into their square law regions. Their output is then processed through integrating amplifiers and a differential amplifier whose output represents the product of the instantaneous amplitudes of the original input signals.
BRIEF DESCRIPTION OF THE DRAWINGS A more complete appreciation of the invention, and many of the attendant advantages thereof, will be readily appreciated as the same becomes better understood by reference to the following description, when considered in connection with the accompanying drawings wherein:
FIG. 1 is a schematic view of one embodiment of the analogue multiplier according to the present invention, and
FIG. 2 is a schematic view of an alternative embodiment of the analogue multiplier according to the present invention.
DESCRIPTION OF THE PREFFERED EMBODIMENT The operation of correlation is multiplication followed by time averaging. The correlation function is an even function with respect to the relative time delay between the two input signals to be correlated, with a maximum value at zero relative delay between two input signals, i.e., the correlator, when operating on two signal phasors, must perform the scalar, or dot product of the two input voltage phasors. Thus, with two sinusoidal input signals of the form E cos (0,! and E cos (n, (t r), the correct correlation multiplication must produce the product of the two signal magnitudes times the cosine of the phase angle between the two input signals, i.e., E, E cos w r.
Referring now to FIG. 1, sinusoidal input signal E cos m is applied to input port 10 of backward wave coupler l4 and sinusoidal input signal E cos co (2 r) is applied to input" port 12 of backward wave coupler 16. The isolated ports of couplers l4 and 16 are terminated in their characteristic impedances l8 and 20, respectively. The input power is split equally between the two output ports of each coupler whereby a voltage of E,/ \/7(cos w t appears at coupled output port 22 and a voltage of E,/\/ 2 cos m t appears at transmitted output port 24 of coupler 12. Similarly, a voltage of E 2 cos (m w r 90) appears at coupled output port 26 and a voltage of E lfi cos w, (t 1') appears at transmitted" output port 27 of coupler 16. These four output voltages are then coupled to the input and isolated ports 32, 34, 36, and 38 of couplers 28 and 30 in the following manner: Coupled port 22 connected to input port 36,
transmitted" port 24 connected to input port 32, coupled port 26 connected to isolated port 34, and transmitted port 27 connected to isolated port 38. For voltages connected to the input ports 32 and 36, the output supplied is 1/\/ 2 times the input voltage with a phase shift at the transmitted output port, and a 90 phase shift at the coupled port, as was the case with couplers 12 and 16. With voltages fed into the isolated ports 34 and 38, the 0 phase shift is associated with the output voltage at the coupled port and 90 associated with the transmitted port. Superposition is then used to sum the voltage at the output ports 40, 42, 44 and 46 due to voltage inputs at ports 32, 34, 36 and 38. Thus, the outputs v (E /2) cos (m t 90) (E /2) cos (ant 01 1' v (E,/2) cos (0,: (E /2) cos ((0,: (0 1' 180) v (E /2) cos (m I80") (E /2) cos (m t +wyr) v =(E /2) cos (m,t 90) (E /2) cos (w t+m 'r 90) appear at output ports 40, 42, 44 and 46, respectively.
While there are 4! (24) distinct possible ways or sets of connecting the four output voltages from ouplers 14 and 16 to the four inputs of couplers 28 and 30, there are three characteristic classes of eight output voltage sets from couplers 28 and 30. Only one of these three classes contains the 0 and 180 relative phase relationship between the two input voltage terms appearing in each of the four output voltage v,, v v and v The interconnection shown in FIG. 1 and described hereinabove is only one of these eight possible combinations and should not be construed to be the only one possible.
Output voltages v v v and v, are then processed in hot carrier diodes 48, 50, 52 and 54 respectively, each of these diodes operating in its square law (i Kv region, i.e., that the diode bias and its input signal voltage amplitude are such as to assure this operation. The functional relationship of the hot carrier diodes obeys Schottky theory almost exactly and may be expressed as where i is the current through the diode, v is the voltage across the diode, I, is the diode saturation current, and a is a diode constant. With the diode forwardly biased at a voltage v, and a current 1,, a small a.c. signal voltage v, applied around this bias point produces an output signal current of I, (I, 1 (e l) behaving like an ideal square law device.
Referring back to FIG. 1, an adjustable d.c. bias 56, S8, 60 and 62 is provided for each diode 48, 50, 52 and 54, respectively, through resistors 64, 66, 68 and 70, respectively. Reactive impedance elements, such as chokes 72, 74, 76 and 78, provide d.c. return paths for diodes 48, 50, 52 and 54, respectively. The outputs from diodes 48, 50, 52 and 54, operating in their square law regions, are
RF shunt capacitors 80, 82, 84 and 86, at each diode output 48, 50, 52 and 54, respectively, ground the RF signal component centered around frequencies in, and 2 (0,, so that e,,,, need include only the d.c. terms and quasi d.c. component centered around w= 0 (in the case of a dynamic system). As an example, consider the diode voltage v appearing at the input of diode 48 where v (12 /2) cos (ant 90) (E /2) cos (um w r v, (E /2) sin (0,: (E /Z) sin (w,t +w,'r) Substituting into the equation for e,,,,, e, Ka(E,/2) sin co t Ka(E /2) sin ((0,! al K04 (ER/8) sin (a t K0: (E2 /8) sin (ant am) Kat (E,E /4) sin (a l sin ((1),! 01 1') e Ka(E /2) sin (0 Ka(E /2) sin (cu t W) K11 (ER/l6) [1 cos 2mg] K0: (EX/l6) [l cos (2w t 210 7)] K0: (E E /8) [cos 0: 7 cos 2 0.51)].
After bypassing all (0,2 and 20),! components through shunt capacitor 80,
0! l [(E12/2) (E22/2) i z C05 1 Similarly, I
2 (X01 18) [ER/2) (E /2) E E cos (1) 7] and 03 02 and Thus, e e e and 2,, contain only d.c. and quasi LII d.c. terms remaining for further signal processing. The outputs from diodes 48 and 50, e and 2 respectively, are supplied to the input of integrating amplifier 88, and the outputs of diodes 52 and 54, e and e respectively, are supplied to the input of integrating amplifier 90. The outputs of integrating amplifiers 88 and 90 then form the inputs of differential amplifier 92 whose output is readily seen to be out K 01 02) 03 04)] e K E E cos (0 1' e K R ('r), where R (1') E E cos cu 'rthe correlation function.
In an alternative embodiment, shown in FIG. 2, the multiplication process is performed identically with the four 3 db hybrid couplers and the four biased, hot carrier diodes previously illustrated and explained with respect to FIG. 1. The four output voltagese e e,,;,, and e from diodes 48, 50, 52 and 54, respectively, are the same as before, but rather than supplying them to integrating and differential amplifiers, voltages e, and c are added in resistors 94 and 96, respectively, and voltages e and e are added in resistors 98 and 100, respectively. These two summing voltages are then supplied as the input to summing integrating amplifier 102, whose output e is also of the form K,,E,E cos 01,1.
It is to be particularly noted that the entire device,
except for the d.c. bias sources, is totally shielded from external electromagnetic radiation and stray RF signals. The ability 9f the instant invention to provide a completely shielded system is a distinct advantage over the prior art which, heretofore, has been unable to a significant increase in signal-to-noise ratio over prior art devices may be obtained.
It is readily apparent that any transmission line made may be utilized to fabricate the multiplier. Thus, coaxial cable, stripline, waveguide and miniature microwave planar fabrication may be utilized. Furthermore, any desired shielding may be used.
The four outputs from the coupler drive network en able the four diodes of the multiplier to be each separately driven, thereby utilizing parallel signal processing which permit better isolation of the diodes and a simple, easily adjustable biasing arrangement. In addition, the use of backward-wave couplers gives the coupler drive network an octave band frequency range capability, i.e., i 33.3 percent frequency range. This means that less correlators are required to cover a given broad frequency range, or a broader usable frequency range is available from each correlator. A continuously variable delay at one of the inputs can generate a complete correlation function.
Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. Thus, as an alternative to using backward wave couplers, 3 db line couplers may be used in the coupler drive network. Seven other combinations for interconnecting the couplers to implement the doubly balanced correlator concept will become obvious as other alternatives to the proposed embodiment. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.
What is claimed as new and desired to be secured by Letters Patent of the United States is:
1. A shielded, balanced microwave analogue multiplier comprising in combination:
a first set of backward wave couplers having at least two ports for receiving two sinusoidal input signals;
a second set of backward wave couplers connected to the output ports of said first set of couplers, said second set of couplers having four output ports and producing four output signals;
a unilaterally conducting device connected to each of said output ports;
means for biasing said unilaterally conducting devices whereby they operate in their square law region, and
means coupled to said unilaterally conducting device for producing an output signal proportional to the product of the instantaneous amplitudes of said two input signals.
2. A shielded, balanced microwave analogue multiplier according to claim 1 wherein said unilaterally conducting devices comprise diodes,
and wherein said biasing means comprises a dc. bias course.
3. A shielded balanced microwave analogue multiplier according to claim 2 wherein each of said set of couplers comprises two backwardwave 3 db quadrature couplers.
4. A shielded balanced microwave analogue multiplier according to claim 3 wherein said producing means comprises:
an integrating amplifier coupled to two of said diodes;
a second integrating amplifier coupled to the other two of said diodes; and
a differential amplifier coupled to the outputs of said integrating amplifiers.
5. A shielded balanced microwave analogue multiplier according to claim 3 wherein said producing means comprises:
summing resistors coupled to each of said diode outputs and a summing integrating amplifier coupled to the other terminal of said summing resistors.

Claims (5)

1. A shielded, balanced microwave analogue multiplier comprising in combination: a first set of backward wave couplers having at least two ports for receiving two sinusoidal input signals; a second set of backward wave couplers connected to the output ports of said first set of couplers, said second set of couplers having four output ports and producing four output signals; a unilaterally conducting device connected to each of said output ports; means for biasing said unilaterally conducting devices whereby they operate in their square law region, and means coupled to said unilaterally conducting device for producing an output signal proportional to the product of the instantaneous amplitudes of said two input signals.
2. A shielded, balanced microwave analogue multiplier according to claim 1 wherein said unilaterally conducting devices comprise diodes, and wherein said biasing means comprises a d.c. bias course.
3. A shielded balanced microwave analogue multiplier according to claim 2 wherein each of said set of couplers comprises two backward-wave 3 db quadrature couplers.
4. A shielded balanced microwave analogue multiplier according to claim 3 wherein said producing means comprises: an integrating amplifier coupled to two of said diodes; a second integrating amplifier coupled to the other two of said diodes; and a differential amplifier coupled to the outputs of said integrating amplifiers.
5. A shielded balanced microwave analogue multiplier according to claim 3 wherein said producing means comprises: summing resistors coupled to each of said diode outputs and a summing integrating amplifier coupled to the othEr terminal of said summing resistors.
US00265933A 1972-06-23 1972-06-23 Shielded balanced microwave analog multiplier Expired - Lifetime US3737686A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US26593372A 1972-06-23 1972-06-23

Publications (1)

Publication Number Publication Date
US3737686A true US3737686A (en) 1973-06-05

Family

ID=23012477

Family Applications (1)

Application Number Title Priority Date Filing Date
US00265933A Expired - Lifetime US3737686A (en) 1972-06-23 1972-06-23 Shielded balanced microwave analog multiplier

Country Status (1)

Country Link
US (1) US3737686A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3937944A (en) * 1972-12-15 1976-02-10 Robert Radzyner Electronic circuitry and in particular to circuitry for the cross feed cancellation of second order distortion
US4110833A (en) * 1976-11-19 1978-08-29 The United States Of America As Represented By The Secretary Of The Air Force Balanced AC correlator system
US4165497A (en) * 1977-11-11 1979-08-21 Aiken Industries Inc. Wideband RF switching matrix
US5493719A (en) * 1994-07-01 1996-02-20 The United States Of America As Represented By The Secretary Of The Air Force Integrated superconductive heterodyne receiver
US5530927A (en) * 1994-07-01 1996-06-25 The United States Of America As Represented By The Secretary Of The Air Force Doubly balanced superconductive mixer network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3513398A (en) * 1966-01-27 1970-05-19 Rca Corp Balanced mixer circuits
US3621400A (en) * 1969-04-17 1971-11-16 Anaren Microwave Inc Alternating current signal-combining apparatus
US3634768A (en) * 1969-11-07 1972-01-11 Radiation Systems Inc Wide bandwidth microwave mixer circuits
US3681697A (en) * 1969-12-31 1972-08-01 Westinghouse Electric Corp Wideband image terminated mixer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3513398A (en) * 1966-01-27 1970-05-19 Rca Corp Balanced mixer circuits
US3621400A (en) * 1969-04-17 1971-11-16 Anaren Microwave Inc Alternating current signal-combining apparatus
US3634768A (en) * 1969-11-07 1972-01-11 Radiation Systems Inc Wide bandwidth microwave mixer circuits
US3681697A (en) * 1969-12-31 1972-08-01 Westinghouse Electric Corp Wideband image terminated mixer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3937944A (en) * 1972-12-15 1976-02-10 Robert Radzyner Electronic circuitry and in particular to circuitry for the cross feed cancellation of second order distortion
US4110833A (en) * 1976-11-19 1978-08-29 The United States Of America As Represented By The Secretary Of The Air Force Balanced AC correlator system
US4165497A (en) * 1977-11-11 1979-08-21 Aiken Industries Inc. Wideband RF switching matrix
US5493719A (en) * 1994-07-01 1996-02-20 The United States Of America As Represented By The Secretary Of The Air Force Integrated superconductive heterodyne receiver
US5530927A (en) * 1994-07-01 1996-06-25 The United States Of America As Represented By The Secretary Of The Air Force Doubly balanced superconductive mixer network

Similar Documents

Publication Publication Date Title
US10879950B2 (en) Same-aperture any-frequency simultaneous transmit and receive communication system
US3825843A (en) Selective distortion compensation circuit
US5661485A (en) Homodyne receiver apparatus and method
US5450044A (en) Quadrature amplitude modulator including a digital amplitude modulator as a component thereof
US5528196A (en) Linear RF amplifier having reduced intermodulation distortion
US4178557A (en) Linear amplification with nonlinear devices
US3927379A (en) Linear amplification using nonlinear devices and inverse sine phase modulation
CN101854183B (en) Ultra-short wave electromagnetic interference cancelling device
EP0277636B1 (en) Nonlinear signal generating circuit and nonlinear compensating device using the same
GB1246686A (en) Improvements in or relating to signal transmission circuits
US20150207537A1 (en) Same-Aperture Any-Frequency Simultaneous Transit And Receive Communication System
US6850575B1 (en) Single side band modulator
US3737686A (en) Shielded balanced microwave analog multiplier
US6539202B1 (en) Interference canceling device
US3886452A (en) Linear electromagnetic systems
US4263617A (en) System for the transmission of a composite television signal
EP3069161B1 (en) Methods and apparatus for signal sideband receiver/transceiver for phased array radar antenna
US3575660A (en) Electronic image rejection apparatus
EP3324540A1 (en) Apparatus and method for varying amplitude and phase of signals along multiple parallel signal paths
US6124742A (en) Wide bandwidth frequency multiplier
US4394629A (en) Hybrid power divider/combiner circuit
Gallo Basics of RF electronics
US3714661A (en) Method and apparatus for coupling multiple power sources to single radiating antenna
US7323950B2 (en) Balanced hybrid coupler network
US4006353A (en) Signal multiplier devices