US3721428A - Constant negative-pressure carburettors - Google Patents

Constant negative-pressure carburettors Download PDF

Info

Publication number
US3721428A
US3721428A US00199247A US3721428DA US3721428A US 3721428 A US3721428 A US 3721428A US 00199247 A US00199247 A US 00199247A US 3721428D A US3721428D A US 3721428DA US 3721428 A US3721428 A US 3721428A
Authority
US
United States
Prior art keywords
main
conduit
valve
valve means
main valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00199247A
Other languages
English (en)
Inventor
B Laprade
X Laprade
P Gele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3721428A publication Critical patent/US3721428A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M7/00Carburettors with means for influencing, e.g. enriching or keeping constant, fuel/air ratio of charge under varying conditions
    • F02M7/12Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves
    • F02M7/22Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves fuel flow cross-sectional area being controlled dependent on air-throttle-valve position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M23/00Apparatus for adding secondary air to fuel-air mixture
    • F02M23/02Apparatus for adding secondary air to fuel-air mixture with personal control, or with secondary-air valve controlled by main combustion-air throttle
    • F02M23/03Apparatus for adding secondary air to fuel-air mixture with personal control, or with secondary-air valve controlled by main combustion-air throttle the secondary air-valve controlled by main combustion-air throttle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • ABSTRACT Constant negative-pressure carburettor to minimize exhaust pollution of internal combustion engines comprising a main conduit having a main valve and an auxiliary conduit having a main valve actuated from the exterior and an additional valve, the proportional fuel flowing between the two valves, an additional complementary valve being provided so as to cap the main conduit and the auxiliary conduit, the valve being connected to the fuel-proportioning needle.
  • Carburettors of the aforementioned kind usually comprise a main valve for adjusting the flow rate and actuated by the accelerator pedal, and an eccentric flap or piston, the additional valve moving under the action of the negative pressure in the mixture chamber disposed between the two valve elements, thus producing a substantially constant negative pressure in the mixture chamber.
  • the additional flap or piston is then connected to a needle moving in the orifice of a jet and uncovering it to a varying extent, depending on the position of the needle and consequently of the additional element.
  • the jet and needle are disposed in a fuel-air mixture chamber and are connected to the mixture chamber by suitable passages and may also be connected to air by one or more orifices which can be opened or closed to an extent varying with the operating conditions of the engine so as to obtain a certain negative pressure in the mixture chamber which, together with the position of the needle in the jet, determines the proportion of fuel.
  • the aforementioned kind of carburettor is usually satisfactory over a wide operating range of an engine equipped therewith, but two operating conditions still cause problems with regard to air pollution by exhaust gases and engine pick-up.
  • idling and starting i.e. at low speeds and loads
  • the content of unburned fuel and carbon monoxide in the exhaust gases tends to increase because the air speed is low and the fuel atomization is incomplete.
  • Pick-ups are defective for the same reason, so that it is impossible to have low contents of carbon monoxide in the exhaust gases simultaneously with a smooth start.
  • Either the adjustment is suitable for a perfect start, in which case the carbon monoxide content during idling is excessively high, or the carbon monoxide content during idling is correct but the start is defective.
  • the invention which aims to obviate the aforementioned difficulties, relates to improvements to constant negative-pressure carburettors characterized in that the carburettor comprises a large-diameter main conduit and a small-diameter auxiliary conduit, each conduit comprising a main valve, the main valve of the auxiliary conduit being directly actuated by an external control whereas the main valve of the main conduit is indirectly actuated by a means sensitive to the negative pressure upstream of the main valve, an additional, eccentric valve being provided in the auxiliary conduit upstream of the main valve and moved into its closing position by a return element, the passage or the passages towards the fuel-air chamber terminating between the main and additional valves of the auxiliary conduit, the eccentric, additional valve connected to the fuel-proportioning needle being disposed upstream of the main and auxiliary conduits and capping them.
  • the main feature of the invention can be developed in the following ways a.
  • the return elements for the additional valve in the auxiliary conduit and for the additional valve connected to the proportioning needle are calibrated differently, so as to produce a negative pressure upstream of the main valve of the auxiliary conduit which is greater than the negative pressure upstream of the main valve of the main conduit.
  • the return element for the additional valve in the auxiliary conduit comprises manual and automatic adjusting means for varying the calibration of the return element so as to vary the idling richness, and for adapting the richness to the atmospheric pressure and ambient temperature.
  • the return element for the additional valve in the auxiliary conduit is connected to an adjusting means comprising a rod, one end of which is articulated to a lever secured to the pivot of the additional valve connected to the fuel-proportioning needle, the other end of the rod being connected to the movement of a lever secured to the pivot of the main valve in the main conduit, the movements of the aforementioned ends being connected so that when the main and additional valves move in parallel, the seat of the return element on the rod does not vary, whereas when the main valve moves in advance of the additional valve, the seat moves and so varies the calibration of the return element so as to enrich the mixture.
  • a calibrated valve is provided in the additional valve connected to the proportioning needle so as to admit air through the additional valve when the latter is completely closed.
  • the downstream passage of the main valve of the auxiliary conduit terminates in the neck of a venturi tube disposed downstream of the main valve of the main conduit.
  • the downstream passage of the main valve of the auxiliary conduit is divided into a number of channels terminating in the inlet pipe near cylinder distribution means.
  • the upstream passage of the main valve of the auxiliary conduit terminates axially in a cylindrical cavity having tangentially disposed outlet ducts, the cavity forming a housing for a centrifugal wheel having an axial inlet for fuel-air mixture coming from the auxiliary conduit and a radial outlet towards the tangential outlets of the cylindrical cavity.
  • Driving means are provided for driving the centrifugal wheel in rotation.
  • Undirectional connecting means are provided between the main valve of the auxiliary conduit and the main valve of the main conduit so as to close the main valve of the main conduit with the closure of the main valve in the auxiliary conduit, the closure of the main valve in the main conduit being more rapid than the closure of the main valve in the auxiliary conduit.
  • FIG. 1 is a view in section of a constant negativepressure carburettor according to the invention.
  • FIG. 2 shows an elevation of a constant negativepressure carburettor according to the invention, showing the means for actuating the various elements thereof,
  • FIG. 3 is a diagrammatic cross-section of a detail of another embodiment of the carburettor.
  • FIG. 4 shows a cross-section along line 33 of FIG. 3.
  • the carburettor is made up of three main elements, a central element 1 comprising the main conduit lb, the auxiliary conduit la and the constant-level tank 16; an upper element 2 formed with a passage 2a common to the main conduit lb and the auxiliary conduit la and the lid 2b of the constant-level tank lc. Finally, a bottom element 3 is provided for securing to the engine inlet pipe.
  • a main valve 4b pivotally mounted on a shaft 5b in the main conduit lb is connected by a rod 6b to a capsule 33 comprising a diaphragm (not shown) bounding two separate chambers, the outer chamber being connected by pipe 32 to the space upstream of valve 4b.
  • a main valve 4a is pivotally mounted on a shaft 5a in the auxiliary conduit 1a and is connected by a rod 60 e.g. to the accelerator pedal.
  • a unidirectional link 60 is provided between the main valve 4 a of the auxiliary conduit and the main valve 4b of the main conduit.
  • Fuel is fed to the auxiliary conduit In only through a pipe 20 having apertures 20a for improving the mixture.
  • the fuel is drawn into a mixture chamber 1d connected to the constant-level tank by a jet 19 having a calibrated orifice 19a.
  • a constant level of fuel is maintained in tank lc by a float 18 controlling a needle valve 17 disposed in a needle-valve holder 16.
  • chamber 1d can have an air inlet 22 connected to a duct whose input is controlled by means adapted to regulate the amount of air entering the mixture chamber in dependence upon the various engine operating parameters.
  • the aforementioned regulation of the air arriving through apertures 20a in connection with the movement of needle 11 and consequently of its conical head 11a in orifice 19a ofjet 19 determines the mixture of the fuel with air.
  • Needle l l is slidably mounted in sealing-tight manner in a bushing 21 fitted into the lid 2b of the constant-level tank. The fuel arrives through a connecting pipe 15 secured by a screw 14 to cover 2b.
  • valve 7 pivotally mounted on an eccentric shaft 8, the upper element of needle 11 being connected to valve 7 via a rod 10 ofa crank arm 9 and rod 8a.
  • Valve 7 is moved into its closure position by a return means, so that valve 7 opens to an extent depending on the increase in the air flow through the carburettor, thus producing a corresponding movement of needle 11 and its conical head lla into the orifice 19a of jet 19.
  • An additional valve 12 is also mounted on shaft 13, which is eccentrically mounted in the input of auxiliary member la. Valve 12 is moved into its closure position by return means. In the example shown in FIGS.
  • the auxiliary member la is prolonged by a duct 3b terminating in the neck of venturi tube 26 disposed in pipe 3a upstream of valve 4b. Consequently, the fuel-air mixture leaving tube 20 is conveyed in the stream of gas downstream of the main valves 4a and 4b and is also accelerated in the venturi tube 26. Consequently, excellent atomization is obtained under all operating conditions, thus ensuring excellent operation from idling up to full power. If an opening 22 is provided in the mixture chamber 1d, idling may still present a problem in that the additional valve 7 is in theory completely closed during idling and the idling air enters through opening 22.
  • a valve 23 is provided in an orifice 7a of the additional valve 7. Valve 23 is pressed upon its seat by a calibrated spring 24 secured to valve 7 e.g. by a rivet 25.
  • Valve 23 is shaped so as to uncover an opening of varying size depending upon its position, so that an additional air supply travels through orifice 7a such that the richness of the mixture in the carburettor is substantially constant for all idling speeds between 500 r.p.m. and 1,000 r.p.m.
  • rod 6a which is connected e.g. to the accelerator pedal of a passenger car, is directly connected to shaft 5a of main valve 4a in the auxiliary member by a lever 50, rod 6a being extended by an element 60 ending in an elongated opening 6d and mounted on a spindle 5e secured to lever 5d which is secured to shaft 5b of the main valve 4b in the main conduit.
  • valve 4b is closed by the action of valve 4a. Consequently, the main valve 4a in the auxiliary conduit is directly controlled by the car driver both when opening and closing, whereas the main valve 4b in the main member is controlled by the driver only when closing, its opening being controlled by capsule 35 in dependence on the pressure upstream of the main valve 4b in the main conduit.
  • a device for closing the main valve 4b can be provided in the main conduit so as to close valve 4b more rapidly than valve 4a by moving valve 4b through a larger angle, e.g. twice the closure angle of valve 4a.
  • the shaft 13 of the additional valve 12 for the auxiliary conduit comprises a lever 13b connected by a spring 29 to an adjusting screw 31 mounted in an element 30 having additional inlets (not shown) for adjusting the calibration of spring 29 with respect to atmospheric pressure and to the surrounding air temperature.
  • Screw 31 can be used for manually adjusting the calibration of spring 29 in order to obtain a desired richness during idling. Since the opening of the additional valve 12 with respect to the opening of the main valve 4a determines the negative pressure between the two valves, and since the negative pressure determines the flow rate of fuel through jet 19, any variation in the tension on spring 29 and consequently any variation in the opening of valve 12 can be used to influence the supply of fuel and consequently the richness of the mixture.
  • a carburettor of the aforementioned kind can be used for adjusting the richness over most of the engine utilization curve corresponding to the minimum emission of unburned fuel and carbon monoxide.
  • the engine should be supplied with a mixture appropriate for maximum power.
  • the enrichment should decrease in proportion as the engine operating conditions approach equilibrium.
  • a kinematic connection is provided between the motion of the additional valve 7 and of the main valve 4b.
  • the kinematic connection consists of a lever 8c secured to the shaft 8 of the additional valve 7, of a rod 27, one end 27a of which is articulated on lever 8c, whereas the other end of rod 27 can slide freely in an orifice in spindle 5e.
  • FIGS. 1 and 2 describe an embodiment in which the mixture produced in auxiliary conduit la is mixed with the air travelling through main conduit lb and subsequently reaches the engine inlet pipe and the cylinders.
  • the main conduit 1b may be connected to the engine inlet pipe, so that the inlet pipe is filled with air only.
  • the downstream outlet of the main valve 4a of the auxiliary conduit la is subdivided into a number of ducts connectcd by pipes to the inlet pipe inlets in the cylinder head and opening immediately upstream of the cylinder distribution means, i.e. immediately upstream of the inlet valves.
  • a cylindrical cavity 35 is formed downstream of duct 3b. Cavity 35 has tangential outlets 35a, 35b, 35c, 35d in the case, for example, of a fourcylinder engine.
  • a centrifugal wheel 32 is disposed in the axis of cavity 33 and has an axial inlet facing duct 3b and radial outlets facing the periphery of cavity 35.
  • wheel 32 can be mounted so as to rotate freely under the effect of the stream of gas flow ing through it, or can be driven in rotation e.g. by an electric motor 34.
  • the last-mentioned feature ensures that the mixture is homogenized but that the distribution to ducts 35a, 35b, 35c and 35d is uniform, and also ensures that the pulsation of the inlet pipe is reduced and does not reach the valve in the auxiliary conduit 1a.
  • a constant negative-pressure carburettor for internal combustion engines including a main conduit,, a smaller diameter auxiliary conduit, main valve means in each conduit, said main valve of said auxiliary con duit being actuated directly by external control means and said main valve of said main conduit being actuated indirectly by means sensitive to. negative pressure upstream of said latter main valve,
  • a constant negative-pressure carburettor in which the return element for said first additional valve means comprises adjusting means for varying the calibration of said return element means in order to vary the idling richness and for adjusting the richness in response to atmospheric pressure and ambient temperature.
  • a constant negative-pressure carburettor in which the return element means for said first additional valve means is connected to adjusting means including a rod, one end of which is articulated to a lever secured to said second additional valve means, the other end of said rod being connected to said main valve in said main conduit, the movements of the rod ends being such that when said second additional valve means and said main valve means move in parallel, the seat of the return element on the rod does not vary, whereas when said main valve means moves in advance in said second additional valve means, the seat moves and so varies the calibration of the return element means in order to enrich the mixture.
  • a constant negative-pressure carburettor including calibrated valve means in said second additional valve means in order to admit air through said second additional valve means when the latter is completely closed.
  • a constant negative-pressure carburettor in which the downstream passage of said auxiliary conduit terminates in the neck of venturi means positioned downstream of said main valve in said main conduit.
  • a constant negative-pressure carburettor in which the downstream passage of the main valve means in said auxiliary conduit terminates axially in a cylindrical cavity having tangential outlet ducts and including centrifugal wheel means in said cavity having an axial inlet for fuel-air mixture coming from said auxiliary conduit and a radial outlet towards the tangential outlet of said cylindrical cavity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)
US00199247A 1970-11-20 1971-11-22 Constant negative-pressure carburettors Expired - Lifetime US3721428A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7041730A FR2114238A5 (it) 1970-11-20 1970-11-20

Publications (1)

Publication Number Publication Date
US3721428A true US3721428A (en) 1973-03-20

Family

ID=9064470

Family Applications (1)

Application Number Title Priority Date Filing Date
US00199247A Expired - Lifetime US3721428A (en) 1970-11-20 1971-11-22 Constant negative-pressure carburettors

Country Status (6)

Country Link
US (1) US3721428A (it)
JP (1) JPS49132418A (it)
DE (1) DE2157533C3 (it)
FR (1) FR2114238A5 (it)
GB (1) GB1345069A (it)
IT (1) IT943672B (it)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3831909A (en) * 1972-11-03 1974-08-27 Ford Motor Co Carburetor choke altitude compensation
US3880962A (en) * 1973-04-02 1975-04-29 Colt Ind Operating Corp Method and apparatus for varying fuel flow to compensate for changes in barometric pressure and altitude
US3882206A (en) * 1973-03-21 1975-05-06 Gen Motors Corp Carburetor
US3903215A (en) * 1973-08-31 1975-09-02 Gen Motors Corp Sonic throttle carburetor
US3906910A (en) * 1973-04-23 1975-09-23 Colt Ind Operating Corp Carburetor with feedback means and system
US4000226A (en) * 1974-01-30 1976-12-28 Societe Nationale Des Petroles D'aquitaine Carburettor for an internal combustion engine
US4002704A (en) * 1973-06-29 1977-01-11 Societe Nationale Des Petroles D'aquitaine Carburetor
US4022175A (en) * 1974-01-21 1977-05-10 Les Usines Laprade Carburettor for an internal combustion engine
US4086885A (en) * 1973-12-13 1978-05-02 Nippon Soken, Inc. Carburetor for stratified internal combustion engine
US4246879A (en) * 1976-08-27 1981-01-27 Volkswagenwerk Aktiengesellschaft Fuel injection apparatus
US4298549A (en) * 1979-10-29 1981-11-03 Woodworth Carburetor Corp. Of Nevada Carburetor
US4462367A (en) * 1982-03-04 1984-07-31 Hitachi, Ltd. Fuel controller for internal combustion engine
US4528958A (en) * 1981-07-10 1985-07-16 Takumori Yoshida Intake control system of engine
US4546748A (en) * 1982-07-02 1985-10-15 Hitachi, Ltd. Fuel injection system
US4627396A (en) * 1981-03-12 1986-12-09 Yamaha Hatsudoki Kabushiki Kaisha Intake control system of engine
US20090293828A1 (en) * 2008-05-27 2009-12-03 Briggs & Stratton Corporation Engine with an automatic choke and method of operating an automatic choke for an engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3028434C2 (de) * 1980-07-26 1982-05-27 Pierburg Gmbh & Co Kg, 4040 Neuss Gleichdruckvergaser

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3831909A (en) * 1972-11-03 1974-08-27 Ford Motor Co Carburetor choke altitude compensation
US3882206A (en) * 1973-03-21 1975-05-06 Gen Motors Corp Carburetor
US3880962A (en) * 1973-04-02 1975-04-29 Colt Ind Operating Corp Method and apparatus for varying fuel flow to compensate for changes in barometric pressure and altitude
US3906910A (en) * 1973-04-23 1975-09-23 Colt Ind Operating Corp Carburetor with feedback means and system
US4002704A (en) * 1973-06-29 1977-01-11 Societe Nationale Des Petroles D'aquitaine Carburetor
US3903215A (en) * 1973-08-31 1975-09-02 Gen Motors Corp Sonic throttle carburetor
US4086885A (en) * 1973-12-13 1978-05-02 Nippon Soken, Inc. Carburetor for stratified internal combustion engine
US4022175A (en) * 1974-01-21 1977-05-10 Les Usines Laprade Carburettor for an internal combustion engine
US4000226A (en) * 1974-01-30 1976-12-28 Societe Nationale Des Petroles D'aquitaine Carburettor for an internal combustion engine
US4246879A (en) * 1976-08-27 1981-01-27 Volkswagenwerk Aktiengesellschaft Fuel injection apparatus
US4298549A (en) * 1979-10-29 1981-11-03 Woodworth Carburetor Corp. Of Nevada Carburetor
US4627396A (en) * 1981-03-12 1986-12-09 Yamaha Hatsudoki Kabushiki Kaisha Intake control system of engine
US4528958A (en) * 1981-07-10 1985-07-16 Takumori Yoshida Intake control system of engine
US4462367A (en) * 1982-03-04 1984-07-31 Hitachi, Ltd. Fuel controller for internal combustion engine
US4546748A (en) * 1982-07-02 1985-10-15 Hitachi, Ltd. Fuel injection system
US20090293828A1 (en) * 2008-05-27 2009-12-03 Briggs & Stratton Corporation Engine with an automatic choke and method of operating an automatic choke for an engine
US20090299614A1 (en) * 2008-05-27 2009-12-03 Briggs & Stratton Corporation Engine with an automatic choke and method of operating an automatic choke for an engine
US8219305B2 (en) 2008-05-27 2012-07-10 Briggs & Stratton Corporation Engine with an automatic choke and method of operating an automatic choke for an engine
US8434444B2 (en) 2008-05-27 2013-05-07 Briggs & Stratton Corporation Engine with an automatic choke and method of operating an automatic choke for an engine
US8434445B2 (en) 2008-05-27 2013-05-07 Briggs & Stratton Corporation Engine with an automatic choke and method of operating an automatic choke for an engine

Also Published As

Publication number Publication date
FR2114238A5 (it) 1972-06-30
DE2157533C3 (de) 1980-07-24
GB1345069A (it) 1974-01-30
JPS49132418A (it) 1974-12-19
DE2157533B2 (de) 1979-11-15
IT943672B (it) 1973-04-10
DE2157533A1 (de) 1972-06-08

Similar Documents

Publication Publication Date Title
US3721428A (en) Constant negative-pressure carburettors
US4387685A (en) Fluidic control system including variable venturi
US3706444A (en) Carburettor for motor vehicle
US3953548A (en) Fuel injection system
US3439658A (en) Carburetting system
US4453523A (en) Pressure balanced flow regulator for gaseous fuel engine
US3590792A (en) Apparatus for reducing hydrocarbon content of engine exhaust gases during deceleration of automobile
US2737935A (en) Crankcase ventilator
US2477481A (en) Antidetonating device
US3376027A (en) Fuel atomizing carburetors
US3996906A (en) Controlled exhaust gas fuel atomizing nozzle
US3282572A (en) Method and apparatus for supplying fuel-air mixtures to internal combustion engines
US2726073A (en) Carburetor for internal combustion engines
US2595721A (en) Carburetor
US2823906A (en) Internal combustion engine carburetor
US1611347A (en) Carburetor
US2107998A (en) Valve for carburetors
US4234522A (en) Variable diffuser for carburetors
US4022175A (en) Carburettor for an internal combustion engine
EP0124666A1 (en) Fluidic control system including variable venturi
US1590059A (en) Carburetor
US1974286A (en) Carburetor
US4290403A (en) Method and apparatus for providing optimum fuel-to-air ratio for internal combustion engine
US3779530A (en) Carburetors
US2717771A (en) Carburetor