US3715180A - Electronic programmer unit for burner control - Google Patents

Electronic programmer unit for burner control Download PDF

Info

Publication number
US3715180A
US3715180A US113407A US3715180DA US3715180A US 3715180 A US3715180 A US 3715180A US 113407 A US113407 A US 113407A US 3715180D A US3715180D A US 3715180DA US 3715180 A US3715180 A US 3715180A
Authority
US
United States
Prior art keywords
voltage
lockout
burner
logic
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US113407A
Inventor
E Cordell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell Normalair Garrett Holdings Ltd
Honeywell Normalair Garrett Ltd
Original Assignee
Normalair Garrett Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Normalair Garrett Ltd filed Critical Normalair Garrett Ltd
Application granted granted Critical
Publication of US3715180A publication Critical patent/US3715180A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/20Systems for controlling combustion with a time programme acting through electrical means, e.g. using time-delay relays
    • F23N5/203Systems for controlling combustion with a time programme acting through electrical means, e.g. using time-delay relays using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/07Programme control other than numerical control, i.e. in sequence controllers or logic controllers where the programme is defined in the fixed connection of electrical elements, e.g. potentiometers, counters, transistors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N2005/181Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using detectors sensitive to rate of flow of air
    • F23N2005/182Air flow switch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/20Opto-coupler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/22Timing network
    • F23N2223/28Timing network with more than one timing element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/02Measuring filling height in burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/04Prepurge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/12Burner simulation or checking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/22Pilot burners
    • F23N2227/24Pilot burners the pilot burner not burning continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/28Ignition circuits
    • F23N2227/30Ignition circuits for pilot burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/36Spark ignition, e.g. by means of a high voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/20Warning devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2239/00Fuels
    • F23N2239/04Gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/20Systems for controlling combustion with a time programme acting through electrical means, e.g. using time-delay relays

Definitions

  • This invention relates to electronic programme timer means and more particularly, although not exclusively, to programme timers for use with gas-fired heating installations.
  • an electronic programme timer means comprising a linear voltage ramp generator, a matching impedance voltage follower circuit and voltage comparators, wherein the follower circuit maintains substantially uniform linearity with the voltage gradient produced by the generator, the voltage comparators being sequentially actuated by an output signal of the follower circuit.
  • I provide an electronic programme timer means for a fuel burner having electrically actuated ignition means, fuel valve means, pilot valve means, burner motor means and alarm means, said programme timer comprising:
  • temperature sensing means for switching said timer means when pre-set temperatures are attained after initiation of said timer means by said operating control means
  • FIG. 1 shows the power supplies, voltage regulator, flame monitor and voltage ramp reset circuit
  • FIG. 2 shows the safety cutout circuits
  • FIG. 3 shows the retentive memory, lockout and warning circuits
  • FIG. 4, S and 6 show the voltage ramp generator, voltage follower, comparator and gating circuits for a program timer of a gas-fired heating installation.
  • the function of the fuel burner control equipment is to automatically ignite the burner at the beginning of a heating period, monitor its correct operation, and shut down the burner at the end of the heating period, or as the result of abnormal operation.
  • the heating period is initiated by the decrease in temperature, of an enclosure to be heated, closing of contacts in a thermostat or similar control which switches on the burner motor, thereby providing a forced draught through the burner combustion chamber.
  • This forced draught initially purges the chamber of old gas and the period of operation is known as the pre-purge period.
  • a pilot flame is ignited by energizing a spark transformer to produce an ignition spark across spark electrodes and to open the pilot valve.
  • the ignition spark is turned off and the main fuel valve is opened.
  • the pilot flame is extinguished, leaving the burner in the normal running condition.
  • a flame monitor is provided to shut down the burner in case of failure of the pilot or main flame, or both, in order to prevent an accumulation of unburnt fuel in the combustion chamber.
  • a lookout device and warning signal are provided. The lock-out device prohibits the normal starting operation until a reset switch or pushbutton, in the vicinity of the burner, is operated.
  • OPERATION OF FLAME MONITOR Transformer 101 (FIG. I) has a primary winding 102 and two secondary windings 103 and 104, one terminal of the primary winding being connected to 105 which is the line side of an AC power supply, while the other terminal is connected to 106, which is the neutral side of the power supply.
  • Secondary winding 103 is connected across input terminals 107 and 108 of a rectifier bridge 109 which changes the alternating voltage to a rectified voltage with positive at terminal 110 and negative at 111.
  • the output terminal 110 of the bridge is connected to the terminal 112 of a lock-out reset push-button 113, and the negative return 111 is connected to the earth side 114 of the AC power supply.
  • Capacitor 115 is connected across the output of the rectifier bridge 109 to reduce the AC ripple on the output at I 10.
  • the unregulated output at 110 and called Vu is connected through the normally closed contacts 112 and 116 of the lock-out reset push-button 113 to a voltage regulator circuit 117.
  • the voltage regulator circuit 117 consists of resistor 118 and Zener diode 119 connected between terminal 116 and earth 114, the voltage developed across 119 providing the reference voltage for the regulator.
  • Transistor 120 and resistor 121 form the output stage of the regulator generating a regulated power supply from point 122 for use in various semiconductor circuits throughout the equipment. This regulated voltage will be called Vs.
  • Secondary winding 104 of transformer 101 provides an AC voltage for energizing a flame monitor circuit 123.
  • a flame monitor circuit 123 When no flame is present there is only a small potential difference between the gate 124 and drain 125 of the field effect transistor 126.
  • 126 conducts, causing a drop in potential across resistor 127, which is connected between Vs and the source 128 of 126, so the source 128 of 126 is, therefore, maintained at approximately earth potential.
  • the potential at the source 128 of 126 can, therefore, assume two values, approximately Vs and approximately earth, representing flame present and flame absent respectively.
  • a binary 1 is represented by approximately Vs and a binary by approximately earth.
  • the signal FD is applied to a logic inverter 132 whose output is, therefore, 0 when the flame is present, and 1" when the flame is absent. This is the inverse of signal FD and is denoted FT).
  • Zener diode 133, capacitors 134 and 137, and resistors 135, 136 and 138, are components for the basic settings of the flame monitoring circuit 123.
  • the line side 105 of the AC voltage supply is connected to one terminal of a thermostat 139 (FIG. 2), and when the thermostat closes, the AC voltage supply is applied across a potential divider comprising resistors 140 and 141. The resulting potential across resistor 141 is applied to a neon indicator 143 through a resistor 142. Neon indicator 143 forms part of a neonphoto-resistor unit 144. When the neon 143 illuminates the photo-resistor 145, the resistance value of 145 is reduced to a low value. When the neon 143 is extinguished and the photo-resistor 145 is not illuminated, the resistance is increased to a high value.
  • the resistive value of photo-resistor 145 monitors the position of the thermostat.
  • This system isolates the AC voltage supply from the logic circuitry and allows low voltages to be used throughout the latter with a corresponding increase in life and reliability.
  • the photoresistor of 144 forms a potential divider between earth and Vs with resistor 146 (FIG. 3).
  • 145 When 139 is open and 143 extinguished, 145 has a high resistive value and only a small potential difference is developed across 146, i.e. the output of the potential divider is approximately earth (0).
  • the input to logic inverter 147 (FIG. 3) is a 1" when 139 is open and a 0" when 139 is closed.
  • the output of 147 is denoted LS1 and is a 0 when 139 is open and a 1" when 139 is closed.
  • the output of 147 is applied to one input terminal 148 of NAND gate 149 via diode 150.
  • the output of 147 rises from approximately earth potential to approximately Vs and capacitor 151 is quickly charged to approximately Vs via 150.
  • a logic l is applied to 148 of 149 which was previously at logic 0" with the output terminal 152 at logic 1", i.e. approximately Vs. In this condition there is no potential across relay 153 (FIG. 4) and contacts 154 (FIG. 2) would be open.
  • the input at 148 of 149 goes to logic I, the
  • output of 149 is then dependent on the logic value of LO, a signal applied to the second input 155 of 149.
  • Logic signal ITO is derived from the output of an inverter 156 (FIG; 3) which monitors the position of retentive memory contacts 157 (FIG. 3).
  • 157 may be in one of two states, set 158 or reset 159. Under normal conditions 157 will be at 159 and the voltage drop across 305 gives a logic which will be applied to the input of 156 making LO equal 1. Under abnormal conditions a logic 0 (approximately earth) is applied to the set coil 160 of 157 via resistor 304, and this changes 157 to the set condition, breaking contact 159 and making contact 158, thus removing the logic -0 from 1 5 6 and applying logic I i.e. L.O. becomes 1 and LO becomes 0.
  • a lock-out alarm lamp 161 is illuminated via a resistor 162. 157 can then only be reset by operating a lock-out reset push-button 113 (FIG. 1), which applies potential Vu across a reset coil 164 via contact 163 (FIG. 1) and a resistor 165 (FIG. 3).
  • the logic signal LS1 is alsgapplied to inverter 174 (FIG. 5) to produce signal LS1'which is applied to one terminal of a resistor 175, the other terminal being commoned with terminals of two other resistors 176 and 177.
  • the potential developed across resistor 178, connected between the common terminals of resistors 175, 176 and 177, and earth, depends on the potential applied to the other terminals of 175, 176 and 177. If these potentials are all approximately earth, then only a small potential is developed across 178, i.e., across the base emitter junction of a transistor 179. 179 does not, therefore conduct from collector to emitter, and permits a capacitor 180 to charge up through the emitter collector circuit of a transistor 181.
  • the rate of charge of 180 is a constant determined by thevalue of a resistor 182 and the capacitor 180.
  • the aiming potential of the voltage ramp generated across 180 is determined by a potential divider network 183, 184, connected to the base of 181.
  • the voltage ramp generated across 180 is applied to a voltage follower circuit formed by transistors 185, 186, and output resistor 187.
  • the voltage follower offers a very high input impedance to the voltage ramp generator output, and at the same time offers a very low output impedance to a level detector or voltage comparator circuit formed by an input resistor 188, logic inverters 189 and 190, and a feedback resistor 191.
  • the voltage across 187 rises linearly and in step with the voltage across 180.
  • the output T2 of 190 is held at logic 0 and the voltage at the input to 189 rises linearly in a scaled-down version of the voltage across 187.
  • the voltage at the input to l 8 9 reaches the switching potential of 189, its output T2 switches to logic 0, and the output T2 of 190 switches to logic 1. Due to 191 this switching is regenerative and T2 reaches logic 1 very quickly.
  • the voltage ramp level at which the level detector switches is determined by the potential divider 191 and 188. The time interval between the start of the voltage ramp and the switching of T2 from logic 0 to logic l forms the pre-purge period of the burner.
  • the output of 174, LS1 is logic 1".
  • the input terminal of 175 is approximately Vs and there is a large enough potential across 178 to allow the base emitter diode of 179 to conduct, and the collector-emitter cir-- cuit of 179 to conduct, resulting in 180 discharging through a resistor 192 and the collector-emitter circuit of 179. This effectively prevents generation of the volt-' age ramp.
  • LS1 When 139 closes and LS1 is set to logic 1", LS1 becomes logic O",-causing 179 to become non-conducting and permits the voltage ramp to be generated.
  • the pre-purge period starts when LS1 is set to logic 1 provided that the input ends of 176 and 177 are also at approximately earth potential Under normal conditions LO equals logic 0, and the input end of 176 is at approximately earth potential. Should a lockout condition occur LO equals logic l the input end of 176 becomes approximately Vs, 179 conducts and the voltage ramp is reset to zero voltage. Also under normal conditions the potential at the input end of 177 is at approximately earth potential, as this is connected build-up of Vs at the input to 193.
  • Vs When AC power is initially applied to the unit, Vs is established quickly from the output of 117. However, the potential at the input to 193 will be established slowly, since 195 has to charge up through 194, and until the potential across 195 reaches the switching potential of 193 the output of the latter will be approximately Vs. The input potential of 177 will, therefore, be approximately Vs and the voltage ramp generator will be reset. After a short time the potential across 195 reaches the switching potential of 193 and the output of 193 switches to approximately earth, removing the initial reset condition from the voltage ramp generator.
  • the switching of LS1 from logic 0 to logic 1 initiates the voltage ramp.
  • the pre-purge period is timed to last for from 35 to 40 seconds.
  • One feature of the fuel burner control equipment is the checking of the air pressure in the combustion chamber to establish that the burner motor is in fact producing a forced draught.
  • an air pressure switch 197 (FIG. 2) in the combustion chamber will operate a short time after the burner motor has been switched on.
  • This switch is connected in a resistor divider network comprising 198, 199, 200, and neon-photo-resistor network 201, similar to that of 139.
  • This operates in the same manner as the system for the thermostat 139, so that when the air pressure switch 197 is open, only a small potential exists across resistor 202 (FIG. 4), and when 197 is closed, a large potential exists across 202.
  • logic signal K1 no air pressure is l and when 197 is closed, KFis equal to O.
  • Signal'AF is applied to one of the inputs 203 of NAND gate 205.
  • the other input 204' is connected to one terminal of a capacitor 207.
  • LS1 When LS1 is equal to logic 0 the voltage at this terminal is approximately earth, and hence the output of 205 at 206 is at logic 1" irrespective of the signal on the input of 205 at 203.
  • 207 FIG. 4
  • the potential on input 204 or 205 will, therefore, increase slowly to the switching potential of 205, the time taken being primarily dependent on the CR time constant provided by 207 and 209. This time constant is chosen so that 197-( FIG. 2) will close, i.e. A P equals logic 0, before the input at 204 of 205 (FIG. 4), reaches switching potential when the equipment is operating correctly.
  • a further feature of the fuel burner control equipment is the checking of the voltage ramp generator timing system. Under normal conditions the output T2 of the lever detector (FIG. will change from logic 0 to logic l a certain time after LS1 has changed from logic 0 to logic 1. Signal LS1 is fed through resistors 217 and 218 (FIG. 4) to one terminal of a capacitor 219 which commences charging at a rate determined by the CR time constant formed by 217, 218 and 219. A field effect transistor 220 forms a voltage follower with a high input impedance so that there is negligible load current drawn from 219.
  • the voltage across a resistor 221 follows that across 219 and is applied to a logic inverter 222. Thus, until the voltage across 221 has risen to the switching potential of 222 the output of the latter remains at logic 1".
  • the time constant is chosen so that the time taken for 222 to be switched is slightly shorter than the time taken for T2 to be switched to logic 1
  • the output of 222 is applied to one input 223 of a NAND gate 224, and T2 is applied to the second input at 225, giving a normal output from 224 of logic 1. If the voltage ramp generator is faulty and rising too quickly, the pre-purge period will be too short, and it is desirable, therefore, to cause a lock-out.
  • T2 switches too soon and 225 of 224 will go to logic 1 before the input at 223 has switched to logic 0".
  • the result of both inputs being at logic 1 is to switch the output of 224 to logic 0".
  • ramp generation input 223 of 224 will switch to logic 0 before input 225, thus maintaining a logic l at the input to 210.
  • T2 changes from logic 0 to logic 1".
  • T2 is applied to NAND gates 226 and 227 (FIG. 6) at inputs 228 and 229 respectively.
  • time signals T3 and T5 are changed from logic 0 to logic 1"
  • the other inputs, at 230 and 231 respectively will be at logic 1.
  • Relay contacts 234 and 235 (FIG.
  • T2 changes to logic 1.
  • T2 is applied to a timing network (FIG.- 6) comprising resistors 249, 250, 254, diode 251, capacitor 252, transistor 253 and inverters 255, 256, and causes 252 to charge up at a rate determined by the circuit constants.
  • 253 and 254 form a high input impedance voltage follower, and the potential across 254 follows that across 252.
  • the potential across 254 After a time interval, in this case approximately 14 seconds, the potential across 254 reaches the switching level of 255 and the output of 255 changes from logic l to logic 0. This signal is applied to inverter 256, whose output simultaneously goes from logic 0 to logic 1.
  • the signal output of 256, T4 is applied to one of the inputs, 257 of NAND gate 258, the other input at 259 being connected to the output of 226, which is the gate controlling ignition.
  • the ignition should be off and the output of 226 should be at logic 1" when the input 257, T4, is switched to logic 1.
  • the output of 258 will normally go to logic 0 when T4 goes to logic 1", and a relay coil 260 is energized via a resistor 261.
  • Energization of 260 makes contacts 262 (FIG. 2) which switches, via a resistor 263, a bi-directional thyristor 264 to on,” thereby applying power to a fuel valve 289.
  • Application of the output of 226 to 259 of 258 ensures that main fuel cannot be switched on before the ignition spark has been removed.
  • the timing signal T5 is generated from T4 by its application to a timing network comprising resistors 265, 266, diode 267, capacitor 268 and inverters 269, 270 (FIG. 6).
  • This circuit provides a delay of approximately 4 seconds between signal T4 going to logic 1"and signal T5 going to logic I After T5 has gone to logic 1 only the burner motor and main fuel valve are left on, and the starting sequence is complete.
  • the other input at 284 is connected to the output of 226 (FIG. 6) through a timing network comprising resistors 285, 286, diode 287 and capacitor 288. This has the effect of delaying the change of the output of 227 from logic 0" to logic l without delaying its change from logic I to logic 0". If the output of 227 changes from logic 1" to logic 0", 288 discharges quickly through 287, 285 and the output circuit of 227, and hence the potential on 284 of 283 quickly falls to logic 0. If the output of 227 changes from logic 0" to logic l 288 charges slowly through 285 and 286, hence 283 (FIG. 4) input 284 does not reach switching potential so quickly.
  • a neon-photo-resistor combination 290 (FIG. 2) comprising neon 291, resistor 292 and photo-resistor 293.
  • the circuitry used for checking main valve circuit failure is similar to that used for checking pilot valve circuit failure.
  • Resistor 294 (FIG. 3) forms a potential divider across Vs and earth with 293, to give an output FV which operates in a manner identical to signal output PV.
  • NAND gate 295 with signal output FV at 296 has a similar function to 283, and the transfer of the output of 258 to input 297 of 295 is delayed in a similar way through a network comprising resistors 298, 299, diode 300 and capacitor 301. As with the pilot valve, main valve circuit checking is performed prior to main gas valve operation.
  • BURNER SHUT-DOWN ITS 1 to go to logic l at the input end of 175, which in turn resets the timing ramp generator, thus causing all timing signals T2, T3, T4 and T5 to go to logic 0.
  • 153 remains energized for a period of approximately 8 seconds (post-purge period), due to the delay network 302, 151, between the output LS1 and NAND gate 149, which controls 153 via resistor 303. This post-purge period helps to cleanse the combustion chamber at shut-down.
  • MODULATION SYSTEM For a modulating system an additional signal from T2 (FIG. 5) and a signal T5 (FIG. 6) are used to operate two relays, each of which controls a set of changeover contacts, the two sets of contacts controlling a modulating valve in the burner. This modulating valve controls the air and gas inputs to the burner. Two additional interlocks, similar to the air pressure checking system, would be incorporated to self-check the modulating valveat both high and low limits.
  • An electronic programmer unit for a fuel burner for heating an enclosure comprising:
  • flame monitor means for monitoring flame detection within said fuel burner and having flame detected" and no flame detected outputs
  • control circuit means including switching control means for controlling switching of alarm means, burner motor means, ignition means for igniting fuel in the burner, pilot valve means'for supplying pilot fuel in the burner and fuel valve means for supplying the main fuel to the burner,
  • rectifier means connected to said second transformer means for supplying direct current voltage to said voltage regulator means
  • control circuit means including voltage ramp generating means comprising voltage generator means, voltage follower means for producing a uniformly linear output voltage in accordance with the voltage gradient produced by said voltage generator means and voltage comparator means for producing an output when said ramp voltage reaches a predetermined value,
  • operating relay means for controlling switching of said switch control means for said burner motor means, said ignition means, said pilot valve means and said fuel valve means
  • first timing circuit means connected between the output of said voltage comparator means and said first plurality of gating means for controlling the time and sequence of operation of said operating relay means
  • lockout means for shutting down the burner
  • timing circuit means each comprise a capacitiveresistive diode network and a transistor amplifier.
  • said lockout means comprises a retentive memory electrically operated bistable means having set and reset operating coils, lockout indication means, inverter means, lockout signal means for producing a lockout signal, a lockout requirement operating changeover means for energizing said set operating coil to supply a ground return means for said lockout indication means and to remove a ground return means from said lockout signal means for changing a no lockout signal to a lockout signal through said inverter means and reset switch means for energizing said reset operating coil to remove said ground return means from said lockout indicating means'and for operating said changeover means to convert said lockout signal'to a no lockout signal through said inverter means.
  • said switching control means comprise bi-directional thyristors, the gate of said hidirectional thyristors being energized through contacts of relay means energized by outputs of said programmer.
  • said signal feedback means include a combination of neon lamp and photo-resistor, each named signal feedback means having neon lamp operatively connected to switching means external to said programmer, and a photoresistor operatively connected to gating means within said programmer, the output of said gating means being operatively connected to said lockout means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Abstract

An electronic programme timer means of solid state construction, for a fuel burner, said programme timer means comprising a control switch for initiating operation, a plurality of sequencing relays, flame sensing means connected to voltage comparators, voltage ramp generator, voltage follower and level detectors with output connected to said comparators for controlling said sequencing relays, feedback means to said comparators to ensure correct switching, temperature sensing means for switching said timer means and pressure sensing means for checking operation of blower purging means.

Description

Unite States Patent Cordell 1 Feb. 6, 1973 1 ELECTRONIC PROGRAMMER UNIT "3482;922 1271969 Blackett .f. .j ..43I/26 FOR BURN CONT OL 3,574,495 4/1971 Landis 3,574,496 4/1971 Hewitt ..431/25 [75] Inventor: Edward Geoffrey Cordell, Somerset, 3,610,789 /1971 Jones ..431/
England Primary Examiner--Carroll B. Dority, Jr. [73] Assignee. Normalalr-Garrett (Holdmgs) Attorney Larson Taylor and Hinds Limited, Somerset, England 22 Filed: Feb. 8, 1971 BSTRACT 2 APPL 13 07 An electronic programme timer means of solid state construction, for a fuel burner, said programme timer means comprising a control switch for initiating operal Foreign pp Priorlly Data tion, a plurality of sequencing relays, flame sensing Feb. 9, 1970 Great Britain ..6,079/7O means connected to voltage Voltage ramp generator, voltage follower and level detectors with output connected to said comparators for con- [52] US. Cl. ..431/2S, 431/31, 431/16, ironing said Sequencing relays feedback means to Said 431/ comparators to ensure correct switching, temperature [51] lllLCl sensing means for Switching Said timer means and [58] Field of Search ..43l/24, 25, 26 pressure Sensing means for Checking operation of blower purging means. [56] References Cited 9 Claims, 6 Drawing Figures UNITED STATES PATENTS 3,445,173 5/1969 Malavasiet al ..431/25 A127 28F :2 FD 16 5 Unite States Patet 1 {111 3,715,180
Cordell [451 Feb. 6, 1913 PATENTED 5|975 3.715.180 SHEET 10F 6 FIG.1.
PATENTED 5 I975 SHEET 2 BF 6 (0(1) \l (DUI bu.)
PATENTEDFEB 6|975 3.715180 sum 30F e PATENTED FEB 6 I975 SHEET R [If 6 FIGA.
FATENTEDFEB 6 ma 3,715; 180 sum 6 or 6 lb DID- FIG.6.
ELECTRONIC PROGRAMMER UNIT FOR BURNER CONTROL This invention relates to electronic programme timer means and more particularly, although not exclusively, to programme timers for use with gas-fired heating installations.
Known installations using mechanically operated controls have necessitated frequent servicing, resulting in high cost maintenance, and in general such components have a comparatively short trouble-free life.
It is an object of the invention to provide an electronic programme timer means without mechanically actuated moving parts, being of solid state construction having simple circuitry and providing a long life without need of attention.
It is a further object of the invention to provide electronic safety circuits in conjunction with comparators which will self-test the various circuits of the timer and will shut down the complete system should any in dividual section malfunction.
According to the invention I provide an electronic programme timer means comprising a linear voltage ramp generator, a matching impedance voltage follower circuit and voltage comparators, wherein the follower circuit maintains substantially uniform linearity with the voltage gradient produced by the generator, the voltage comparators being sequentially actuated by an output signal of the follower circuit.
In another aspect of the invention I provide an electronic programme timer means for a fuel burner having electrically actuated ignition means, fuel valve means, pilot valve means, burner motor means and alarm means, said programme timer comprising:
a. An operating control switch for initiating operation of the timer upon requirement, an electronic timer of solid state construction and a plurality of sequencing relays controlled thereby, c. flame sensing means with output connected to voltage comparators indicative of flame presence and flame absence, timer means comprising a voltage ramp generator, voltage follower and voltage level detectors with outputs fed to voltage comparators for operation of sequencing relays for switching circuits in sequence,
e. feedback to said voltage comparators from said switched circuits to ensure that said switching circuits will only switch provided the fuel burner system is operating correctly and will reset said timer means on completion of an operating cycle, or, should malfunctioning occur, shut down the fuel burner system and reset said timer means,
f. temperature sensing means for switching said timer means when pre-set temperatures are attained after initiation of said timer means by said operating control means,
g. pressure sensing means for checking operation of blower means to ensure correct purging opera tions.
In order that the invention shall be readily understood I now describe a preferred embodiment for a gas-fired heating system, which is by way of example only, with reference to the accompanying drawings in which:
FIG. 1 shows the power supplies, voltage regulator, flame monitor and voltage ramp reset circuit,
FIG. 2 shows the safety cutout circuits,
FIG. 3 shows the retentive memory, lockout and warning circuits, and
FIG. 4, S and 6 show the voltage ramp generator, voltage follower, comparator and gating circuits for a program timer of a gas-fired heating installation.
INTRODUCTION The function of the fuel burner control equipment is to automatically ignite the burner at the beginning of a heating period, monitor its correct operation, and shut down the burner at the end of the heating period, or as the result of abnormal operation.
On a typical burner the heating period is initiated by the decrease in temperature, of an enclosure to be heated, closing of contacts in a thermostat or similar control which switches on the burner motor, thereby providing a forced draught through the burner combustion chamber. This forced draught initially purges the chamber of old gas and the period of operation is known as the pre-purge period. After this period, a pilot flame is ignited by energizing a spark transformer to produce an ignition spark across spark electrodes and to open the pilot valve. After a period during which the pilot flame is established, the ignition spark is turned off and the main fuel valve is opened. After a further period, during which the main flame is established, the pilot flame is extinguished, leaving the burner in the normal running condition.
When the air, within the enclosure to be heated, reaches a predetermined temperature, the contacts of the thermostat open, thereby shutting down the burner.
Due to explosion hazards, a flame monitor is provided to shut down the burner in case of failure of the pilot or main flame, or both, in order to prevent an accumulation of unburnt fuel in the combustion chamber. In order to distinguish this type of shut-down from a normal shut-down, a lookout device and warning signal are provided. The lock-out device prohibits the normal starting operation until a reset switch or pushbutton, in the vicinity of the burner, is operated.
CIRCUIT DESCRIPTION The circuit is described with reference to FIGS.'1, 2, 3, 4, 5 and 6. The reference numerals l 13 show interconnections between the parts of the circuit diagram shown in FIGS. 1 6.
OPERATION OF FLAME MONITOR Transformer 101 (FIG. I) has a primary winding 102 and two secondary windings 103 and 104, one terminal of the primary winding being connected to 105 which is the line side of an AC power supply, while the other terminal is connected to 106, which is the neutral side of the power supply. Secondary winding 103 is connected across input terminals 107 and 108 of a rectifier bridge 109 which changes the alternating voltage to a rectified voltage with positive at terminal 110 and negative at 111. The output terminal 110 of the bridge is connected to the terminal 112 of a lock-out reset push-button 113, and the negative return 111 is connected to the earth side 114 of the AC power supply. Capacitor 115 is connected across the output of the rectifier bridge 109 to reduce the AC ripple on the output at I 10.
The unregulated output at 110 and called Vu, is connected through the normally closed contacts 112 and 116 of the lock-out reset push-button 113 to a voltage regulator circuit 117. The voltage regulator circuit 117 consists of resistor 118 and Zener diode 119 connected between terminal 116 and earth 114, the voltage developed across 119 providing the reference voltage for the regulator. Transistor 120 and resistor 121 form the output stage of the regulator generating a regulated power supply from point 122 for use in various semiconductor circuits throughout the equipment. This regulated voltage will be called Vs.
Secondary winding 104 of transformer 101 provides an AC voltage for energizing a flame monitor circuit 123. When no flame is present there is only a small potential difference between the gate 124 and drain 125 of the field effect transistor 126. Thus 126 conducts, causing a drop in potential across resistor 127, which is connected between Vs and the source 128 of 126, so the source 128 of 126 is, therefore, maintained at approximately earth potential.
When a flame is present, since a flame has the property of conducting an electrical current readily to ground, a difference of potential is developed across resistor 129, which makes 124 of 126 negative with respect to 125. This effect is also produced when light from a flame 130 impinges on a photocell 131. Thus 126 does not conduct and only a small potential is developed across 127, so the source 128 of 126 is, therefore, maintained at approximately Vs.
The potential at the source 128 of 126 can, therefore, assume two values, approximately Vs and approximately earth, representing flame present and flame absent respectively. Throughout the logic circuitry, a binary 1 is represented by approximately Vs and a binary by approximately earth. Thus the binary signal, flame detected, existing at 128 FD, is a I when the flame is present and a 0 when the flame is absent. The signal FD is applied to a logic inverter 132 whose output is, therefore, 0 when the flame is present, and 1" when the flame is absent. This is the inverse of signal FD and is denoted FT).
Zener diode 133, capacitors 134 and 137, and resistors 135, 136 and 138, are components for the basic settings of the flame monitoring circuit 123.
OPERATION OF BURNER CONTROL EQUIPMENT STARTING The line side 105 of the AC voltage supply is connected to one terminal of a thermostat 139 (FIG. 2), and when the thermostat closes, the AC voltage supply is applied across a potential divider comprising resistors 140 and 141. The resulting potential across resistor 141 is applied to a neon indicator 143 through a resistor 142. Neon indicator 143 forms part of a neonphoto-resistor unit 144. When the neon 143 illuminates the photo-resistor 145, the resistance value of 145 is reduced to a low value. When the neon 143 is extinguished and the photo-resistor 145 is not illuminated, the resistance is increased to a high value. Hence the resistive value of photo-resistor 145 monitors the position of the thermostat. This system isolates the AC voltage supply from the logic circuitry and allows low voltages to be used throughout the latter with a corresponding increase in life and reliability. The photoresistor of 144 forms a potential divider between earth and Vs with resistor 146 (FIG. 3). When 139 is open and 143 extinguished, 145 has a high resistive value and only a small potential difference is developed across 146, i.e. the output of the potential divider is approximately earth (0). Thus the input to logic inverter 147 (FIG. 3) is a 1" when 139 is open and a 0" when 139 is closed. The output of 147 is denoted LS1 and is a 0 when 139 is open and a 1" when 139 is closed.
The output of 147 is applied to one input terminal 148 of NAND gate 149 via diode 150. When 139 closes, the output of 147 rises from approximately earth potential to approximately Vs and capacitor 151 is quickly charged to approximately Vs via 150. Thus, practically, as soon as 139 closes, a logic l is applied to 148 of 149 which was previously at logic 0" with the output terminal 152 at logic 1", i.e. approximately Vs. In this condition there is no potential across relay 153 (FIG. 4) and contacts 154 (FIG. 2) would be open. When the input at 148 of 149 goes to logic I, the
output of 149 is then dependent on the logic value of LO, a signal applied to the second input 155 of 149.
Logic signal ITO is derived from the output of an inverter 156 (FIG; 3) which monitors the position of retentive memory contacts 157 (FIG. 3). 157 may be in one of two states, set 158 or reset 159. Under normal conditions 157 will be at 159 and the voltage drop across 305 gives a logic which will be applied to the input of 156 making LO equal 1. Under abnormal conditions a logic 0 (approximately earth) is applied to the set coil 160 of 157 via resistor 304, and this changes 157 to the set condition, breaking contact 159 and making contact 158, thus removing the logic -0 from 1 5 6 and applying logic I i.e. L.O. becomes 1 and LO becomes 0. At the same time a lock-out alarm lamp 161 is illuminated via a resistor 162. 157 can then only be reset by operating a lock-out reset push-button 113 (FIG. 1), which applies potential Vu across a reset coil 164 via contact 163 (FIG. 1) and a resistor 165 (FIG. 3).
Assuming that conditions are normal and that L O is equal to 1", the closing of 139 immediately applies a logic I to 148 of 149, resulting in the output of 149 changing from logic l to logic 0. This results in the application of potential Vs across 153 (FIG. 4), causing contacts 154 (FIG. 2) to close. Logic signal F) is also applied to the base of a transistor 166 via biassing network resistc s 167 and 168 (FIG. 3). Under normal conditions L0 is approximately Vs and this results in a current flow through the base emitter junction of 166. The transistor, therefore, conducts current from collector to emitter, causing potential Vu to be applied across the coil 169. Thus under normal conditions 169 is energized and contacts 170 (FIG. 2) are in the energized state. The line side of the AC voltage at 105 (FIG. 1) is, therefore, applied to one side of contact 154 (FIG. 2) via the energized side of contacts 170. Hence, when 139 closes, contact 154 closes and applies the line side of the AC voltage from 105 to the gate of a bidirectional thyristor 171 via a resistor 172. This provides a low conductance path for AC current across the mainelectrodes of 171, resulting in energization of a burner motor 173. If abnormal conditions occur 166 does not conduct, 169 becomes de-energized, and a warning 306 operates via contacts 170.
The logic signal LS1 is alsgapplied to inverter 174 (FIG. 5) to produce signal LS1'which is applied to one terminal of a resistor 175, the other terminal being commoned with terminals of two other resistors 176 and 177. The potential developed across resistor 178, connected between the common terminals of resistors 175, 176 and 177, and earth, depends on the potential applied to the other terminals of 175, 176 and 177. If these potentials are all approximately earth, then only a small potential is developed across 178, i.e., across the base emitter junction of a transistor 179. 179 does not, therefore conduct from collector to emitter, and permits a capacitor 180 to charge up through the emitter collector circuit of a transistor 181. The rate of charge of 180 is a constant determined by thevalue of a resistor 182 and the capacitor 180. The aiming potential of the voltage ramp generated across 180 is determined by a potential divider network 183, 184, connected to the base of 181. The voltage ramp generated across 180 is applied to a voltage follower circuit formed by transistors 185, 186, and output resistor 187.The voltage follower offers a very high input impedance to the voltage ramp generator output, and at the same time offers a very low output impedance to a level detector or voltage comparator circuit formed by an input resistor 188, logic inverters 189 and 190, and a feedback resistor 191. The voltage across 187 rises linearly and in step with the voltage across 180. Initially the output T2 of 190 is held at logic 0 and the voltage at the input to 189 rises linearly in a scaled-down version of the voltage across 187. When the voltage at the input to l 8 9 reaches the switching potential of 189, its output T2 switches to logic 0, and the output T2 of 190 switches to logic 1. Due to 191 this switching is regenerative and T2 reaches logic 1 very quickly. The voltage ramp level at which the level detector switches is determined by the potential divider 191 and 188. The time interval between the start of the voltage ramp and the switching of T2 from logic 0 to logic l forms the pre-purge period of the burner.
Before 139 clogs and LS1 is set to logic 1, the output of 174, LS1 is logic 1". Hence the input terminal of 175 is approximately Vs and there is a large enough potential across 178 to allow the base emitter diode of 179 to conduct, and the collector-emitter cir-- cuit of 179 to conduct, resulting in 180 discharging through a resistor 192 and the collector-emitter circuit of 179. This effectively prevents generation of the volt-' age ramp.
When 139 closes and LS1 is set to logic 1", LS1 becomes logic O",-causing 179 to become non-conducting and permits the voltage ramp to be generated. Hence the pre-purge period starts when LS1 is set to logic 1 provided that the input ends of 176 and 177 are also at approximately earth potential Under normal conditions LO equals logic 0, and the input end of 176 is at approximately earth potential. Should a lockout condition occur LO equals logic l the input end of 176 becomes approximately Vs, 179 conducts and the voltage ramp is reset to zero voltage. Also under normal conditions the potential at the input end of 177 is at approximately earth potential, as this is connected build-up of Vs at the input to 193. When AC power is initially applied to the unit, Vs is established quickly from the output of 117. However, the potential at the input to 193 will be established slowly, since 195 has to charge up through 194, and until the potential across 195 reaches the switching potential of 193 the output of the latter will be approximately Vs. The input potential of 177 will, therefore, be approximately Vs and the voltage ramp generator will be reset. After a short time the potential across 195 reaches the switching potential of 193 and the output of 193 switches to approximately earth, removing the initial reset condition from the voltage ramp generator.
Under normal operating conditions, therefore, the switching of LS1 from logic 0 to logic 1 initiates the voltage ramp. The pre-purge period is timed to last for from 35 to 40 seconds.
OPERATION OF AIR PRESSURE CHECKING SYSTEM One feature of the fuel burner control equipment is the checking of the air pressure in the combustion chamber to establish that the burner motor is in fact producing a forced draught. Under normal conditions an air pressure switch 197 (FIG. 2) in the combustion chamber will operate a short time after the burner motor has been switched on. This switch is connected in a resistor divider network comprising 198, 199, 200, and neon-photo-resistor network 201, similar to that of 139. This operates in the same manner as the system for the thermostat 139, so that when the air pressure switch 197 is open, only a small potential exists across resistor 202 (FIG. 4), and when 197 is closed, a large potential exists across 202. Thus, when 197 is open, logic signal K1 no air pressure, is l and when 197 is closed, KFis equal to O.
Signal'AF is applied to one of the inputs 203 of NAND gate 205. The other input 204'is connected to one terminal of a capacitor 207. When LS1 is equal to logic 0 the voltage at this terminal is approximately earth, and hence the output of 205 at 206 is at logic 1" irrespective of the signal on the input of 205 at 203. When 139 (FIG. 2) closes and LS1 is changed to logic 1", 207 (FIG. 4) starts to charge up to potential Vs through resistors 208 and 209. The potential on input 204 or 205 will, therefore, increase slowly to the switching potential of 205, the time taken being primarily dependent on the CR time constant provided by 207 and 209. This time constant is chosen so that 197-( FIG. 2) will close, i.e. A P equals logic 0, before the input at 204 of 205 (FIG. 4), reaches switching potential when the equipment is operating correctly.
This means that under normal operating conditions the output at 206 of 205 will always be logic 1. Atime constant is chosen which permits about 5 seconds for 197 (FIG. 2) to close.
If an abnormal condition occurs and 197 does not close after 173 has been operated for 5 seconds, the
to input 213 ofNAND gate 214. Since input 215 of2l4 is also at logic 1", due to LS1 equalling logic l the output of 214 at 216 will be switched to logic This results in potential Vs being applied across 160 of 157 (FIG. 3). In the set condition the equipment goes to the lock-out state, as previously explained. Hence, failure of 197 to operate within a given time after operation of 173 results in a lock-out.
OPERATION OF VOLTAGE RAMP GENERATOR CHECKING SYSTEM A further feature of the fuel burner control equipment is the checking of the voltage ramp generator timing system. Under normal conditions the output T2 of the lever detector (FIG. will change from logic 0 to logic l a certain time after LS1 has changed from logic 0 to logic 1. Signal LS1 is fed through resistors 217 and 218 (FIG. 4) to one terminal of a capacitor 219 which commences charging at a rate determined by the CR time constant formed by 217, 218 and 219. A field effect transistor 220 forms a voltage follower with a high input impedance so that there is negligible load current drawn from 219. The voltage across a resistor 221 follows that across 219 and is applied to a logic inverter 222. Thus, until the voltage across 221 has risen to the switching potential of 222 the output of the latter remains at logic 1". The time constant is chosen so that the time taken for 222 to be switched is slightly shorter than the time taken for T2 to be switched to logic 1 The output of 222 is applied to one input 223 of a NAND gate 224, and T2 is applied to the second input at 225, giving a normal output from 224 of logic 1. If the voltage ramp generator is faulty and rising too quickly, the pre-purge period will be too short, and it is desirable, therefore, to cause a lock-out. In this case T2 switches too soon and 225 of 224 will go to logic 1 before the input at 223 has switched to logic 0". The result of both inputs being at logic 1 is to switch the output of 224 to logic 0". This pulls the input to 210 to logic 0, resulting in a lock-out condition, as previously described. Under correct voltage, ramp generation input 223 of 224 will switch to logic 0 before input 225, thus maintaining a logic l at the input to 210.
OPERATION OF PILOT IGNITION At the end of the pre-purge period T2 changes from logic 0 to logic 1". T2 is applied to NAND gates 226 and 227 (FIG. 6) at inputs 228 and 229 respectively. Until time signals T3 and T5 are changed from logic 0 to logic 1", the other inputs, at 230 and 231 respectively, will be at logic 1. Hence, when T2 changes to logic 1, the outputs of 226 and 227 change to logic 0, and relay coils 232 and 233 are energized via resistors 240 and 241. Relay contacts 234 and 235 (FIG. 2) switch on, via resistors 242 and 243, bi-directional thyristors 236 and 237, which apply power to the ignition transformer 238 and a pilot valve 239. The ignition spark stays on until signal T3 goes to logic I (T3 goes to logic 0 and returns the output of 226 to logic l T3 is generated by a network comprising resistors 244, 245, diode 246, capacitor 247 and inverter 248 (FIG. 5). When T2 goes to logic l 247 charges up through 244 and 245, until its voltage had reached the switching level. The time constant is chosen so that this takes approximately 4 seconds. Hence the ignition spark is switched on for approximately 4 seconds, and under normal conditions the pilot flame should be burning.
IGNITION OF MAIN FLAME At the end of the pre-purge period T2 changes to logic 1. T2 is applied to a timing network (FIG.- 6) comprising resistors 249, 250, 254, diode 251, capacitor 252, transistor 253 and inverters 255, 256, and causes 252 to charge up at a rate determined by the circuit constants. 253 and 254 form a high input impedance voltage follower, and the potential across 254 follows that across 252. After a time interval, in this case approximately 14 seconds, the potential across 254 reaches the switching level of 255 and the output of 255 changes from logic l to logic 0. This signal is applied to inverter 256, whose output simultaneously goes from logic 0 to logic 1. The signal output of 256, T4, is applied to one of the inputs, 257 of NAND gate 258, the other input at 259 being connected to the output of 226, which is the gate controlling ignition. Under normal conditions the ignition should be off and the output of 226 should be at logic 1" when the input 257, T4, is switched to logic 1. Hence the output of 258 will normally go to logic 0 when T4 goes to logic 1", and a relay coil 260 is energized via a resistor 261. Energization of 260 makes contacts 262 (FIG. 2) which switches, via a resistor 263, a bi-directional thyristor 264 to on," thereby applying power to a fuel valve 289. Application of the output of 226 to 259 of 258 ensures that main fuel cannot be switched on before the ignition spark has been removed.
At this stage the main fuel valve is open and the pilot flame is burning, and, under normal conditions, the main flame is ignited. The pilot flame remains on for a further 4 seconds befor e being cut off by timing signal T5 going to logic l T5 going to logic 0, and causing the output of 227 to go to logic 1, thereby switching off 233 (FIG. 6) and 237 (FIG. 2), removing power from 239.
The timing signal T5 is generated from T4 by its application to a timing network comprising resistors 265, 266, diode 267, capacitor 268 and inverters 269, 270 (FIG. 6). This circuit provides a delay of approximately 4 seconds between signal T4 going to logic 1"and signal T5 going to logic I After T5 has gone to logic 1 only the burner motor and main fuel valve are left on, and the starting sequence is complete.
CHECKING ABSENCE OF FLAME DURING PRE- PURGE PERIOD The absence of flame during the pre-purge period is checked by application of signal FD (FIG. 1) to input 271 of NA N D gate 272 (FIG. 4) and the inverse of T2, i.e. signal T2 (FIG. 5) to the input 273 of 272 (FIG. 4). Normalluhere will be no flame during the pre-purge period (T2), i.e. FD equals logic 0. Hence the output of 272 should normally be logic l If flame does appear during this period, signal FD equal to logic 1 together with signalTi equalling logic l will pull the output of 272, and hence the input to 210, to logic 0. As previously described, this results in a lock-out.
CHECKING PRESENCE OF FLAME AFTER IGNITION The presence of flame after ignition is checked by application of signal FF (FIG. 1) to input 274 of NAND gate 275 (FIG. 4) and timing signal T3 to the other input at 276 via inverter 277 which inverts signal fi. Normally there will be flame after ignition, period T3, i.e. FD equals logic I and F13 equals logic Hence the output of 275 should normally be logic l If the flame is extinguished during this period, F equals logic 1, together with T3 equalling logic l will pull the output of 275, and hence the input of 210 to logic 0. As has previously been described, this results in a lock-out.
CHECKING PILOT VALVE CIRCUIT FAILURE Correct working ofthe pilot valve circuit is checked by using a neon-photo-resistor combination, 281, comprising resistor 278, neon 279 and photo-resistor 280 (FIG. 2). When 237 is switched off, 239 is inoperative and 279 has full mains voltage applied across it. It is, therefore illuminated, and the resistive value of 280 is low. 280, together wit resistor 281 (FIG. 3) forms a potential divider across Vs and earth, whose output PV is equal to logic 0 when 279 is illuminated, and equal to logic 1" when 279 is extinguished. The signal PV is applied to one input 282 of NAND gate 283 (FIG. 4). The other input at 284 is connected to the output of 226 (FIG. 6) through a timing network comprising resistors 285, 286, diode 287 and capacitor 288. This has the effect of delaying the change of the output of 227 from logic 0" to logic l without delaying its change from logic I to logic 0". If the output of 227 changes from logic 1" to logic 0", 288 discharges quickly through 287, 285 and the output circuit of 227, and hence the potential on 284 of 283 quickly falls to logic 0. If the output of 227 changes from logic 0" to logic l 288 charges slowly through 285 and 286, hence 283 (FIG. 4) input 284 does not reach switching potential so quickly.
Under normal conditions, prior to the pilot valve being opened, signal PV is equal to logic 0" and the output of 283 is equal to logic I If the pilot valve circuit goes "open circuit," the neon 279 will lose its main voltage supply, become extinguished, and signal PV will become equal to logic I Since, prior to operation of 239, the output of 227 is equal to logic 1" and the two inputs to 283 are both equal'to logic "1, the output of 283 is equal to logic 0 and the input to210 is also equal to logic 0" which, as previously described, results in a lock-out. Should the bidirectional thyristor 237 become short circuited" during this period, 279 would again be extinguished and lock-out would occur.
When 239 is operated the output of 227 is to logic 0" and input 284 of 283 also immediately goes to logic 0. The output of 283, therefore, remains at logic 1" and the change of PV to logic l has no effeet.
When 239 is de-energized the output of 227 goes to logic 1", but input 284 of 283 does not immediately change to logic I, thus allowing time for 233, 235 and 237 to become inoperative. When the input 284 of 283 changes to logic l the pilot valve circuit is again monitored, as previously described.
CHECKING MAIN VALVE CIRCUIT FAILURE Correct operation of the main valve circuit is checked by using a neon-photo-resistor combination 290 (FIG. 2) comprising neon 291, resistor 292 and photo-resistor 293. The circuitry used for checking main valve circuit failure is similar to that used for checking pilot valve circuit failure. Resistor 294 (FIG. 3) forms a potential divider across Vs and earth with 293, to give an output FV which operates in a manner identical to signal output PV. NAND gate 295 with signal output FV at 296 has a similar function to 283, and the transfer of the output of 258 to input 297 of 295 is delayed in a similar way through a network comprising resistors 298, 299, diode 300 and capacitor 301. As with the pilot valve, main valve circuit checking is performed prior to main gas valve operation.
BURNER SHUT-DOWN ITS 1 to go to logic l at the input end of 175, which in turn resets the timing ramp generator, thus causing all timing signals T2, T3, T4 and T5 to go to logic 0. As a result 289 is closed, since 262 opens by de-energization of 260. However, 153 remains energized for a period of approximately 8 seconds (post-purge period), due to the delay network 302, 151, between the output LS1 and NAND gate 149, which controls 153 via resistor 303. This post-purge period helps to cleanse the combustion chamber at shut-down.
Various changes and additions may be made to the system as described without deviating from the invention, some of which will now be described.
PERMANENT PILOT To obtain a system with a permanent pilot it would be necessary to remove signal T5 from input 231 of 227.
PERMANENT PILOT PLUS I-II/LO FUNCTION To obtain this system signal T5 is removed from input 231 of 227, a high limit stat would be fitted in lieu of thermostat 139, and a low temperature control would be fitted between the bi-directional thyristor 264 and fuel valve 289.
INTERMITTENT PILOT PLUS I'll/LO To obtain intermittent pilot plus Hl/LO it would be necessary to fit a second fuel valve operated from relay contacts co n t olled by 'a relay switched from a parallel output of T5. A low temperature control would be fitted between said relaycontacts and fuel valve and the thermostat 139 would be replaced by a high limit stat.
MODULATION SYSTEM For a modulating system an additional signal from T2 (FIG. 5) and a signal T5 (FIG. 6) are used to operate two relays, each of which controls a set of changeover contacts, the two sets of contacts controlling a modulating valve in the burner. This modulating valve controls the air and gas inputs to the burner. Two additional interlocks, similar to the air pressure checking system, would be incorporated to self-check the modulating valveat both high and low limits.
I claim as my invention:
1. An electronic programmer unit for a fuel burner for heating an enclosure, said programmer unit comprising:
flame monitor means for monitoring flame detection within said fuel burner and having flame detected" and no flame detected outputs,
first transformer means for supplying electrical power to said flame monitor means, control circuit means including switching control means for controlling switching of alarm means, burner motor means, ignition means for igniting fuel in the burner, pilot valve means'for supplying pilot fuel in the burner and fuel valve means for supplying the main fuel to the burner,
voltage regulator means connected to said control circuit means,
second transformer means,
rectifier means connected to said second transformer means for supplying direct current voltage to said voltage regulator means,
said control circuit means including voltage ramp generating means comprising voltage generator means, voltage follower means for producing a uniformly linear output voltage in accordance with the voltage gradient produced by said voltage generator means and voltage comparator means for producing an output when said ramp voltage reaches a predetermined value,
operating relay means for controlling switching of said switch control means for said burner motor means, said ignition means, said pilot valve means and said fuel valve means,
a first plurality of gating means for controlling operation of said relay means,
first timing circuit means connected between the output of said voltage comparator means and said first plurality of gating means for controlling the time and sequence of operation of said operating relay means,
lockout means for shutting down the burner,
a second plurality of gating means for controlling actuation of said lockout means,
feedback means for connecting said second plurality of gating means to temperature sensor means for sensing the temperature of the enclosure to be heated, air pressure sensing means for sensing burner motor operation during purging, said flame monitor means, said ignition means, said pilot valve means and said fuel valve means,
second timing circuit means connected between the outputof said voltage comparator and said second plurality of gating means,
tegrated circuit inverters with resistive feedback.
. A programmer unit as claimed in claim 1, wherein said gating means comprise integrated circuit digital logic gates.
6. A programmer unit as claimed in claim 1, wherein said timing circuit means each comprise a capacitiveresistive diode network and a transistor amplifier.
7. An electronic programmer unit as claimed in claim 1, wherein said lockout means comprises a retentive memory electrically operated bistable means having set and reset operating coils, lockout indication means, inverter means, lockout signal means for producing a lockout signal, a lockout requirement operating changeover means for energizing said set operating coil to supply a ground return means for said lockout indication means and to remove a ground return means from said lockout signal means for changing a no lockout signal to a lockout signal through said inverter means and reset switch means for energizing said reset operating coil to remove said ground return means from said lockout indicating means'and for operating said changeover means to convert said lockout signal'to a no lockout signal through said inverter means.
8. An electronic programmer unit as claimed in claim 1, wherein said switching control means comprise bi-directional thyristors, the gate of said hidirectional thyristors being energized through contacts of relay means energized by outputs of said programmer.
9. An electronic programmer unit as claimed in claim 1, wherein said signal feedback means include a combination of neon lamp and photo-resistor, each named signal feedback means having neon lamp operatively connected to switching means external to said programmer, and a photoresistor operatively connected to gating means within said programmer, the output of said gating means being operatively connected to said lockout means.

Claims (9)

1. An electronic programmer unit for a fuel burner for heating an enclosure, said programmer unit comprising: flame monitor means for monitoring flame detection within said fuel burner and having ''''flame detected'''' and ''''no flame detected'''' outputs, first transformer means for supplying electrical power to said flame monitor means, control circuit means including switching control means for controlling switching of alarm means, burner motor means, ignition means for igniting fuel in the burner, pilot valve means for supplying pilot fuel in the burner and fuel valve means for supplying the main fuel to the burner, voltage regulator means connected to said control circuit means, second transformer means, rectifier means connected to said second transformer means for supplying direct current voltage to said voltage regulator means, said control circuit means including voltage ramp generating means comprising voltage generator means, voltage follower means for producing a uniformly linear output voltage in accordance with the voltage gradient produced by said voltage generator means and voltage comparator means for producing an output when said ramp voltage reaches a predetermined value, operating relay means for controlling switching of said switch control means for said burner motor means, said ignition means, said pilot valve means and said fuel valve means, a first plurality of gating means for controlling operation of said relay means, first timing circuit means connected between the output of said voltage comparator means and said first plurality of gating means for controlling the time and sequence of operation of said operating relay means, lockout means for shutting down the burner, a second plurality of gating means for controlling actuation of said lockout means, feedback means for connecting said second plurality of gating means to temperature sensor means for sensing the temperature of the enclosure to be heated, air pressure sensing means for sensing burner motor operation during purging, said flame monitor means, said ignition means, said pilot valve means and said fuel valve means, second timing circuit means connected between the output of said voltage comparator and said second plurality of gating means, and lockout reset switching means for resetting the programmer unit after lockout.
1. An electronic programmer unit for a fuel burner for heating an enclosure, said programmer unit comprising: flame monitor means for monitoring flame detection within said fuel burner and having ''''flame detected'''' and ''''no flame detected'''' outputs, first transformer means for supplying electrical power to said flame monitor means, control circuit means including switching control means for controlling switching of alarm means, burner motor means, ignition means for igniting fuel in the burner, pilot valve means for supplying pilot fuel in the burner and fuel valve means for supplying the main fuel to the burner, voltage regulator means connected to said control circuit means, second transformer means, rectifier means connected to said second transformer means for supplying direct current voltage to said voltage regulator means, said control circuit means including voltage ramp generating means comprising voltage generator means, voltage follower means for producing a uniformly linear output voltage in accordance with the voltage gradient produced by said voltage generator means and voltage comparator means for producing an output when said ramp voltage reaches a predetermined value, operating relay means for controlling switching of said switch control means for said burner motor means, said ignition means, said pilot valve means and said fuel valve means, a first plurality of gating means for controlling operation of said relay means, first timing circuit means connected between the output of said voltage comparator means and said first plurality of gating means for controlling the time and sequence of operation of said operating relay means, lockout means for shutting down the burner, a second plurality of gating means for controlling actuation of said lockout means, feedback means for connecting said second plurality of gating means to temperature sensor means for sensing the temperature of the enclosure to be heated, air pressure sensing means for sensing burner motor operation during purging, said flame monitor means, said ignition means, said pilot valve means and said fuel valve means, second timing circuit means connected between the output of said voltage comparator and said second plurality of gating means, and lockout reset switching means for resetting the programmer unit after lockout.
2. A programmer unit as claimed in claim 1, wherein said signal feedback means include a combination of neon lamp and photo-resistor.
3. A programmer unit as claimed in claim 1, wherein said voltage ramp generating means includes a capacitor charging circuit, including a capacitor, a constant current source, and associated resistive network, for charging said capacitor.
4. A programmer unit as claimed in claim 1, wherein said voltage comparator means comprises a pair of integrated circuit inverters with resistive feedback.
5. A programmer unit as claimed in claim 1, wherein said gating means comprise integrated circuit digital logic gates.
6. A programmer unit as claimed in claim 1, wherein said timing circuit means each comprise a capacitive-resistive diode network and a transistor amplifier.
7. An electronic programmer unit as claimed in claim 1, wherein said lockout means comprises a retentive memory electrically operated bistable means having set and reset operating coils, lockout indication means, inverter means, lockout signal means for producing a lockout signal, a lockout requirement operating changeover means for energizing said set operating coil to supply a ground return means for said lockout indication means and to remove a ground return means from said lockout signal means for changing a no lockout signal to a lockout signal through said inverter means and reset switch means for energizing said reset operating coil to remove said ground return means from said lockout indicating means and for operating said changeover means to convert said lockout signal to a no lockout signal through said inverter means.
8. An electronic programmer unit as claimed in claim 1, wherein said switching control means comprise bi-directional thyristors, the gate of said bi-directional thyristors being energized through contacts of relay means energized by outputs of said programmer.
US113407A 1970-02-09 1971-02-08 Electronic programmer unit for burner control Expired - Lifetime US3715180A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB607970 1970-02-09

Publications (1)

Publication Number Publication Date
US3715180A true US3715180A (en) 1973-02-06

Family

ID=9808000

Family Applications (1)

Application Number Title Priority Date Filing Date
US113407A Expired - Lifetime US3715180A (en) 1970-02-09 1971-02-08 Electronic programmer unit for burner control

Country Status (2)

Country Link
US (1) US3715180A (en)
DE (1) DE2104913A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849056A (en) * 1972-11-02 1974-11-19 Combustion Eng Computer based plant protection system
FR2311255A1 (en) * 1975-05-15 1976-12-10 Forney International BURNER CONTROL SYSTEM
US3999933A (en) * 1974-03-15 1976-12-28 Forney Engineering Company Burner control system
US4102630A (en) * 1976-11-23 1978-07-25 Sundstrand Corporation Burner control system
FR2381246A1 (en) * 1977-02-16 1978-09-15 Electronics Corp America BURNER CONTROL DEVICE
US4192641A (en) * 1977-01-10 1980-03-11 Hitachi, Ltd. Combustion control apparatus
FR2448106A1 (en) * 1979-02-05 1980-08-29 Electronics Corp America BURNER CONTROL APPARATUS
US4257759A (en) * 1979-03-15 1981-03-24 Honeywell Inc. Fuel burner primary control means
EP0071173A2 (en) * 1981-07-27 1983-02-09 Honeywell Inc. Fuel burner control system
US4389184A (en) * 1979-01-24 1983-06-21 Hitachi, Ltd. Combustion control apparatus
US4459099A (en) * 1981-09-28 1984-07-10 Allied Corporation Fuel and ignition control
US4518345A (en) * 1983-02-28 1985-05-21 Emerson Electric Co. Direct ignition gas burner control system
US20160231023A1 (en) * 2015-02-05 2016-08-11 Lennox Industries Inc. Method of and system for flame sensing and diagnostic

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3445173A (en) * 1967-02-23 1969-05-20 Ranco Inc Burner control apparatus
US3482922A (en) * 1968-05-23 1969-12-09 Honeywell Inc Solid-state control system
US3574496A (en) * 1969-07-11 1971-04-13 Honeywell Inc Direct spark igniter combustion safeguard apparatus
US3574495A (en) * 1969-12-11 1971-04-13 Honeywell Inc Burner control system
US3610789A (en) * 1969-09-30 1971-10-05 Eaton Yale & Towne Flame rod safety control system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3445173A (en) * 1967-02-23 1969-05-20 Ranco Inc Burner control apparatus
US3482922A (en) * 1968-05-23 1969-12-09 Honeywell Inc Solid-state control system
US3574496A (en) * 1969-07-11 1971-04-13 Honeywell Inc Direct spark igniter combustion safeguard apparatus
US3610789A (en) * 1969-09-30 1971-10-05 Eaton Yale & Towne Flame rod safety control system
US3574495A (en) * 1969-12-11 1971-04-13 Honeywell Inc Burner control system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849056A (en) * 1972-11-02 1974-11-19 Combustion Eng Computer based plant protection system
US3999933A (en) * 1974-03-15 1976-12-28 Forney Engineering Company Burner control system
FR2311255A1 (en) * 1975-05-15 1976-12-10 Forney International BURNER CONTROL SYSTEM
US4102630A (en) * 1976-11-23 1978-07-25 Sundstrand Corporation Burner control system
US4192641A (en) * 1977-01-10 1980-03-11 Hitachi, Ltd. Combustion control apparatus
FR2381246A1 (en) * 1977-02-16 1978-09-15 Electronics Corp America BURNER CONTROL DEVICE
US4389184A (en) * 1979-01-24 1983-06-21 Hitachi, Ltd. Combustion control apparatus
FR2448106A1 (en) * 1979-02-05 1980-08-29 Electronics Corp America BURNER CONTROL APPARATUS
US4257759A (en) * 1979-03-15 1981-03-24 Honeywell Inc. Fuel burner primary control means
EP0071173A2 (en) * 1981-07-27 1983-02-09 Honeywell Inc. Fuel burner control system
EP0071173A3 (en) * 1981-07-27 1984-05-16 Honeywell Inc. Fuel burner control system
US4459099A (en) * 1981-09-28 1984-07-10 Allied Corporation Fuel and ignition control
US4518345A (en) * 1983-02-28 1985-05-21 Emerson Electric Co. Direct ignition gas burner control system
US20160231023A1 (en) * 2015-02-05 2016-08-11 Lennox Industries Inc. Method of and system for flame sensing and diagnostic
US9803889B2 (en) * 2015-02-05 2017-10-31 Lennox Industries Inc. Method of and system for flame sensing and diagnostic
US9964334B2 (en) * 2015-02-05 2018-05-08 Lennox Industries Inc. Method of and system for flame sensing and diagnostic
US20180245819A1 (en) * 2015-02-05 2018-08-30 Lennox Industries Inc. Method of and system for flame sensing and diagnostic
US10145584B2 (en) * 2015-02-05 2018-12-04 Lennox Industries Inc. Method of and system for flame sensing and diagnostic

Also Published As

Publication number Publication date
DE2104913A1 (en) 1971-10-28

Similar Documents

Publication Publication Date Title
US3715180A (en) Electronic programmer unit for burner control
US2313943A (en) Control apparatus
US2243071A (en) Furnace control system
US4073611A (en) Control system for gas burning apparatus
US3447880A (en) Control system for fluid fuel burners
US2989117A (en) Combustion control apparatus
US4319873A (en) Flame detection and proof control device
US3938937A (en) Fuel ignition control arrangement
US4535380A (en) Ignition system
EP0010767B1 (en) Burner control system
US3445172A (en) Fail-safe system
US3395968A (en) Burner control apparatus
US3955910A (en) Self-checking automatic pilot fuel ignition system
CA1083248A (en) Burner control system with primary safety switch
US3734676A (en) Electrically energizable control system for a fuel burner
US2775291A (en) Electrical control apparatus, including two condition responsive means
US2825012A (en) Flame detector
US3672811A (en) Burner control system using a radiation operated relay means
US2537293A (en) Burner safety control apparatus
US3423158A (en) Combustion control circuit
US2662591A (en) Burner control apparatus
US4406612A (en) Oil burner primary control for interrupted ignition system
US2981324A (en) Burner control apparatus
US4384845A (en) Fail safe digital fuel ignition system
US3049169A (en) Safety combustion control system