US3704745A - Method of making sound large generally cylindrical ingots - Google Patents

Method of making sound large generally cylindrical ingots Download PDF

Info

Publication number
US3704745A
US3704745A US167335A US3704745DA US3704745A US 3704745 A US3704745 A US 3704745A US 167335 A US167335 A US 167335A US 3704745D A US3704745D A US 3704745DA US 3704745 A US3704745 A US 3704745A
Authority
US
United States
Prior art keywords
cooling
section
steam
mold
sections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US167335A
Inventor
Leonard M Saunders
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United States Steel Corp
Original Assignee
United States Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United States Steel Corp filed Critical United States Steel Corp
Application granted granted Critical
Publication of US3704745A publication Critical patent/US3704745A/en
Assigned to USX CORPORATION, A CORP. OF DE reassignment USX CORPORATION, A CORP. OF DE MERGER (SEE DOCUMENT FOR DETAILS). Assignors: UNITED STATES STEEL CORPORATION (MERGED INTO)
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould

Definitions

  • ABSTRACT [21] Filed: July 29, 1971 [57] ABSTRACT [21] Appl. No.: 167,335 A large generally cylindrical ingot mold is provided with four sections of tubing around its outer surface Related Apphcatlon Data except for some distance from its top. A valve con- [62] i i i of s 13,259, F b 20, 1970, trolled water feed and a valve controlled steam feed 3,633,656. are provided to each of the sections. The intermediate cooling sections have a greater cooling effect per [52] US. Cl. ..l64/126 square foot of mold surface than the top and bottom [5i] Int. Cl.
  • This invention relates to a method of making ingots and more particularly to making large steel generally cylindrical ingots such as are used for forging rotors.
  • Such ingots may weigh as much as 360 tons.
  • This requires the use of molds having an inside diameter as great as 134 inches, an outside diameter of approximately 180 inches, and a height of approximately 13 feet.
  • Prior to my invention it was difficult to make ingots without a substantial amount of axial porosity or pipe. In many instances the porosity was such that a relatively large percentage of the ingot had to be discarded and in some instances the entire ingot had to be discarded. Voids approximately as large as the size of a football sometimes occurred.
  • the mold is usually provided with a refractory lined hot top.
  • exothermic material has been used as part of the hot top and as a covering over the top of the molten steel.
  • An electric arc has also been used to provide heat to the top of a non-hottopped ingot. While all of these methods reduce the extent of the pipe, they do not insure that the ingot will be satisfactory and in many the pipe is still too large so as to limit the usable amount of the ingot and in some instances the entire ingot may have to be discarded. Most of the methods discussed above also may introduce undesirable non-metallic inclusions such as aluminates into the body of the ingot.
  • Large generally cylindrical molds as covered by my invention include molds having a cylindrical cross section or one approaching a cylindrical cross section such as six or eight sided molds.
  • the invention has utility on sizes as small as in. in diameter, but is most useful in making ingots of in. in diameter and larger.
  • FIG. 1 is a schematic view of an ingot mold with my invention incorporated therein;
  • FIG. 2 is an enlarged vertical sectional view showing the arrangement of the cooling tubing in the lower cooling section
  • FIG. 3 is a view, similar to FIG. 2, but showing the tubing arrangement in the top cooling section.
  • reference numeral 2 indicates a standard big-end-up ingot mold. While the mold is shown as having smooth outer and inner surfaces, it will be understood that in most cases at least inner opening 4 of the mold will be corrugated.
  • the outside diameter is 14 feet, 9 /2 inches and has a side wall 6, 18 inches thick at the top tapering to 24 inches at the bottom. Trunnions 7 are provided, two diametrically opposed at the top and two diametrically opposed at the bottom.
  • the mold 2 rests on a stool 8.
  • the height of this particular mold is 12 feet, 11 inches.
  • a hot top 9 rests on top of the mold 2.
  • the parts so far described are conventional.
  • tubing l0, l2, l4 and 16 are wrapped around the'mold.
  • the tubing used is 1 /2 inches outside diameter steel boiler tubing and preferably has a covering of heat transfer cement l7 thereon as shown in FIGS. 2 and 3 in order to increase the heat transfer to the conduit.
  • One particular type which has been successfully used is TI-IERMON T-63.
  • the lower section 10 preferably starts 4 inches from the bottom of the mold 2 and has eight spirals with a 4 inch pitch.
  • the second section 12 also has eight spirals with a 3 inch pitch.
  • the third section 14 has six spirals with a pitch 4 inches and the top section 16. has seven spirals with a pitch 6 inches terminating 29 inches from the top of the mold.
  • the sections of tubing are substantially continuous with only enough space between sections to provide for feeding and discharge connections.
  • FIG. 1 only the centerline of the tubes are shown in most part for the sake of clarity. It will be noted that the tubes are bent around the trunnions 7.
  • the bottom section 10 is alternatively fed with steam through conduit 18 or with water through conduit 20. Valve 22 in conduit 18 controls the flow of steam and valve 24 in conduit 20 controls the flow of water.
  • a discharge 26 of steam or water is located at the upper end of the section.
  • steam is fed to section 12 through conduit 28 having a valve 30 therein or water is fed through conduit 32 having a valve 34 therein and discharged at 36 at the top end of the section.
  • a steel plate or insert 58 is positioned on top. of the castiron stool 8.
  • the molten steel is then poured in the usual manner.
  • steam is delivered to all four sections 10, 12, 14 and 16 by opening valves 22, 30, 40 and 50.
  • the steam has a pressure of approximately 80 psi. and travels at sonic velocity through the tubes.
  • valve 22 is closed and the valve 24 opened to deliver water to section 10. 6 /2 hours from the end of the pour valve is closed and valve 34 opened to introduce water into the second section 12.
  • valve 40 is closed and valve 44 opened to deliver water to section 14.
  • valve 50 is closed and valve 54 opened to deliver water to section 16.
  • the water volume per section is preferably about 30 gal. per min. and remains on all sections until 46 hours after cast at which time valve 24 is closed and valve 22 opened to deliver steam to section 10.
  • valve 34 is closed and valve 30 opened to deliver steam to section 12.
  • valve 44 is closed and valve 40 opened to deliver steam to section 14.
  • valve 54 is closed and valve 50 opened to deliver steam to section 16, and the hot top 9 is stripped.
  • One hundred hours after cast all the valves are closed and the ingot is stripped from the mold.
  • the pressure and velocity of the steam supplied after shutting off the water are less than that of the original steam and the pressure is preferably about 10 p.s.i.
  • the average heat transfer using the higher pressure steam is twice that when using the lower pressure steam and half that when using water.
  • lt will be seen that the water is first turned into the bottom section and then successively to the 12, 14 and 16 sections, but remains on longest to the top section and successively shorter to sections l4, l2 and 10. Also, the water is on much longer than the initial steam.
  • the above procedure results in final solidification of molten steel occurring in the hot top near its junction with the ingot mold. lt will be noted that the cooling surface to mold exterior surface ratio is L2 to l for sections 10 and 14, L6 to l for section 12 and 0.8 to l for section 16.
  • the reason for having the cooling effect of the bottom section less than the intermediate section is that a large amount of heat is lost through the stool.
  • Thereason for having the coolingeffect of the top section less is that it is desirable to keep the metal in this section molten as long as possible. For the same reason the top section is terminated below the top of the mold.
  • the method of making a largegenerally cylindrical ingot having a minimum diameter of in. without a substantial amount of axial porosity or pipe which comprises pouring molten metal into a large ingot mold having a bottom cooling tubular section closely surrounding the outside periphery of said mold adjacent the bottom thereof, a top cooling tubular section closely surrounding the outside periphery of said mold starting a short distance from the top thereof, and at least one intermediate cooling tubular section closely surrounding the outside periphery of said mold between the top and bottom sections; causing flow of coolant to all sections no later than about 20 minutes after finish of the pour; then after a predetermined time interval of several hours increasing the rate of cooling of the bottom section; then after a second relatively short predetermined time interval increasing the rate of cooling of the intermediate section; then after a third predetermined time interval of several hours increasing the rate of cooling of the top section; then after a fourth predetermined time of substantially greater length than any of the preceding predetermined time intervals decreasing the rate of cooling of the bottom section; then after a fifth predetermined time interval

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

A large generally cylindrical ingot mold is provided with four sections of tubing around its outer surface except for some distance from its top. A valve controlled water feed and a valve controlled steam feed are provided to each of the sections. The intermediate cooling sections have a greater cooling effect per square foot of mold surface than the top and bottom sections. After molten steel is poured into the mold, steam is fed into all four sections for several hours. Then at spaced time intervals steam is turned off and water turned on successively to the bottom section, the second section, the third section and finally to the top section. This condition exists for a time period longer than the period with steam on. Then at spaced time intervals water is turned off and steam turned on successively to the bottom section, the second section, the third section, and finally to the top section. The steam is turned off prior to stripping of the mold from the ingot.

Description

United States Patent Saunders [4 1 Dec. 5, 1972 [54] METHOD OF MAKING SOUND LARGE FOREIGN PATENTS OR APPLICATIONS GENERALLY CYLINDRICAL INGOTS 453,674 6/1913 France ..l64/l28 Inventor; Leonard M Saunders, Pine 698,303 l0/l953 Great Britain.. ..l64/l26 Township, Allegheny County, Pa. [7 3] Assignee: United States Steel Corporation, jz czig f ggigf i igif Annear Pittsburgh, Pa.
[22] Filed: July 29, 1971 [57] ABSTRACT [21] Appl. No.: 167,335 A large generally cylindrical ingot mold is provided with four sections of tubing around its outer surface Related Apphcatlon Data except for some distance from its top. A valve con- [62] i i i of s 13,259, F b 20, 1970, trolled water feed and a valve controlled steam feed 3,633,656. are provided to each of the sections. The intermediate cooling sections have a greater cooling effect per [52] US. Cl. ..l64/126 square foot of mold surface than the top and bottom [5i] Int. Cl. 27/04 ections After molten teel is poured into the mold, 1- Field 0f Search 128, 343, steam is fed into all four sections for several hours. 164/127 Then at spaced time intervals steam is turned off and water turned on successively to the bottom section, [56] References Cited the second section, the third section and finally to the UNITED STATES PATENTS top section. This condition exists for a time period longer than the period with steam on. Then at spaced 807,028 l2/l905 HClOUlt ..l64/l26 time intervals water is turned ff and team turned on 1,25 1/1918 Ashd0wn.--.- successively to the bottom section, the second section, Stay et al r the ection and finally to the op ection The 3,204,301 9/1965 Flemings et al ..l64/l26 X steam is turned off prior to stripping of the mold from the ingot.
4 Claims, 3 Drawing Figures PATENTEDBEB' 5 I91 l l I l I l [NI/EN TOR. LEONARD M. SAUNDERS Attorney METHOD OF MAKING SOUND LARGE GENERALLY CYLINDRICAL INGOTS This application is a division of my co-pending application Ser. No. 13,259, filed Feb. 20, 1970, now U.S. Pat. No. 3,633,656 dated Jan. 11,1972.
This invention relates to a method of making ingots and more particularly to making large steel generally cylindrical ingots such as are used for forging rotors. Such ingots may weigh as much as 360 tons. This requires the use of molds having an inside diameter as great as 134 inches, an outside diameter of approximately 180 inches, and a height of approximately 13 feet. Prior to my invention it was difficult to make ingots without a substantial amount of axial porosity or pipe. In many instances the porosity was such that a relatively large percentage of the ingot had to be discarded and in some instances the entire ingot had to be discarded. Voids approximately as large as the size of a football sometimes occurred. To decrease the amount of axial porosity the mold is usually provided with a refractory lined hot top. Also exothermic material has been used as part of the hot top and as a covering over the top of the molten steel. An electric arc has also been used to provide heat to the top of a non-hottopped ingot. While all of these methods reduce the extent of the pipe, they do not insure that the ingot will be satisfactory and in many the pipe is still too large so as to limit the usable amount of the ingot and in some instances the entire ingot may have to be discarded. Most of the methods discussed above also may introduce undesirable non-metallic inclusions such as aluminates into the body of the ingot.
In some instances it has been proposed to use cooling means embedded in or surrounding a mold. However, to my knowledge this has not been done with molds of the large size referred to herein. The cooling characteristics and the problems involved in casting these large generally cylindrical ingots are much different than in casting the usual type of ingots in molds which have much smaller dimensions. Ashdown US. Pat. No. 1,251,951 dated Jan. 1, 1918 is illustrative of a mold having a cooling conduit cast therein. It appears that the pitch of the conduit is uniform for the usual height of mold which results in a uniform cooling effect per square foot of mold surface while I have found that this cooling effect must vary. This construction often results in cracking of the mold in use or during the casting operation which is a difficult and expensive procedure. Any problems present are intensified as the size of the mold and the wall thickness increases. British Pat. No. 698,303 dated Oct. 14, 1953, discloses a sand type mold having cooling coils in the sand. This, too, is used for making small diameter ingots of the order of 20 inches. There is danger of leakage of molten steel to the tubes which can cause explosions. The heat transfer is also poor. In addition, the purpose of the cooling of this type of casting is different than cooling large ingots. Cortes US. Pat. No. 1,836,310 dated Dec. 15, 1931, is illustrative of ingot molds having cooling coils around the outside thereof. However, the varying cooling sections have the same cooling effect per sq. ft. of mold surface which as stated above is not satisfactory. If the coolant to any one section is turned off the construction is such that the tubes of that section will act as an insulator, thus causing poor cooling characteristics.
I have made studies which show that axial porosity is a result of undesirable cooling profiles from the bottom to the top of the ingot and that desirable cooling characteristics for large size generally cylindrical molds are different than for smaller cylindrical or rectangular molds. Large generally cylindrical molds as covered by my invention include molds having a cylindrical cross section or one approaching a cylindrical cross section such as six or eight sided molds. The invention has utility on sizes as small as in. in diameter, but is most useful in making ingots of in. in diameter and larger.
It is therefore an object of my invention to provide a method of making a large generally cylindrical ingot having a greater percentage of usable metal.
This and other objects will be made apparent after referring to the following specification and attached drawings, in which:
FIG. 1 is a schematic view of an ingot mold with my invention incorporated therein;
FIG. 2 is an enlarged vertical sectional view showing the arrangement of the cooling tubing in the lower cooling section; and
FIG. 3 is a view, similar to FIG. 2, but showing the tubing arrangement in the top cooling section.
Referring more particularly to the drawings, reference numeral 2 indicates a standard big-end-up ingot mold. While the mold is shown as having smooth outer and inner surfaces, it will be understood that in most cases at least inner opening 4 of the mold will be corrugated. In one particular mold the outside diameter is 14 feet, 9 /2 inches and has a side wall 6, 18 inches thick at the top tapering to 24 inches at the bottom. Trunnions 7 are provided, two diametrically opposed at the top and two diametrically opposed at the bottom. The mold 2 rests on a stool 8. The height of this particular mold is 12 feet, 11 inches. A hot top 9 rests on top of the mold 2. The parts so far described are conventional.
According to my invention, four sections of tubing l0, l2, l4 and 16 are wrapped around the'mold. The tubing used is 1 /2 inches outside diameter steel boiler tubing and preferably has a covering of heat transfer cement l7 thereon as shown in FIGS. 2 and 3 in order to increase the heat transfer to the conduit. One particular type which has been successfully used is TI-IERMON T-63. The lower section 10 preferably starts 4 inches from the bottom of the mold 2 and has eight spirals with a 4 inch pitch. The second section 12 also has eight spirals with a 3 inch pitch. The third section 14 has six spirals with a pitch 4 inches and the top section 16. has seven spirals with a pitch 6 inches terminating 29 inches from the top of the mold. The sections of tubing are substantially continuous with only enough space between sections to provide for feeding and discharge connections. In FIG. 1, only the centerline of the tubes are shown in most part for the sake of clarity. It will be noted that the tubes are bent around the trunnions 7. The bottom section 10 is alternatively fed with steam through conduit 18 or with water through conduit 20. Valve 22 in conduit 18 controls the flow of steam and valve 24 in conduit 20 controls the flow of water. A discharge 26 of steam or water is located at the upper end of the section. In like manner steam is fed to section 12 through conduit 28 having a valve 30 therein or water is fed through conduit 32 having a valve 34 therein and discharged at 36 at the top end of the section. Steam is fed to section 14 through conduit 38 having a valve 40 therein and water is fed through conduit 42 having a valve 44 therein and discharged at 46 at the top end of the section. Steam is fed to section 16 through conduit 48 having a valve 50 therein and water is fed through conduit 52 having a valve 54 therein and discharged at 56 at the top end of the section. lt will be seen that each of the bottom and top sections and 16 cover approximately 25 percent of the mold height, that each of the intermediate sections 12 and 14 cover approximately 15 percent of the mold height, and that the top percent of the mold height is free of cooling sections. While this arrangement is preferred it may be modified so that each of sections 10 and 16-cover between approximately 20 and 30 percent of the height, each of sections 12 and 14 cover between approximately 10 and 20 percent of the height, and with between approximately 20 and percent of the top being bare. Because of the spacing or pitch of the spirals the cooling effect per sq. ft. of mold surface is greatest for section 12, next greatest for sections 10 and 14, and least for section 16. it is necessary that the average cooling effect for the combined intermediate sections 12 and 14 be greater than that of the top and bottom sections.
ln casting, a steel plate or insert 58 is positioned on top. of the castiron stool 8. The molten steel is then poured in the usual manner. Almost immediately (and at least within about 20 min.) after completion of pouring or casting of the steel, steam is delivered to all four sections 10, 12, 14 and 16 by opening valves 22, 30, 40 and 50. Preferably the steam has a pressure of approximately 80 psi. and travels at sonic velocity through the tubes. Approximately six hours after the pour, valve 22 is closed and the valve 24 opened to deliver water to section 10. 6 /2 hours from the end of the pour valve is closed and valve 34 opened to introduce water into the second section 12. Seven hours after cast, valve 40 is closed and valve 44 opened to deliver water to section 14. Twelve hours after cast, valve 50 is closed and valve 54 opened to deliver water to section 16. The water volume per section is preferably about 30 gal. per min. and remains on all sections until 46 hours after cast at which time valve 24 is closed and valve 22 opened to deliver steam to section 10. Sixty-two hours after cast valve 34 is closed and valve 30 opened to deliver steam to section 12. Eighty hours after cast, valve 44 is closed and valve 40 opened to deliver steam to section 14. Ninety-six hours after cast, valve 54 is closed and valve 50 opened to deliver steam to section 16, and the hot top 9 is stripped. One hundred hours after cast all the valves are closed and the ingot is stripped from the mold. The pressure and velocity of the steam supplied after shutting off the water are less than that of the original steam and the pressure is preferably about 10 p.s.i. Under the above conditions the average heat transfer using the higher pressure steam is twice that when using the lower pressure steam and half that when using water. lt will be seen that the water is first turned into the bottom section and then successively to the 12, 14 and 16 sections, but remains on longest to the top section and successively shorter to sections l4, l2 and 10. Also, the water is on much longer than the initial steam. The above procedure results in final solidification of molten steel occurring in the hot top near its junction with the ingot mold. lt will be noted that the cooling surface to mold exterior surface ratio is L2 to l for sections 10 and 14, L6 to l for section 12 and 0.8 to l for section 16.
While 1 have described one specific embodiment of my invention, it will be understood that the number of sections or zones may vary and that the specific sizes and arrangement of pipe may also vary. While it is preferred to use both steam and water as coolants', ether can be used alone. It is also possible to connect the sections together with only one control of flow rather than the fourcontrols shown. In other words, the tubing would be continuous. However, this would require the use of higher pressures and result in poorer control. While four sections are shown, it is possible to operate with only three sections regardless of whether the tubing is continuous or the sections separate as shown. Regardless of which arrangement is .used, it is necessary to have the cooling effect per sq. ft. of mold exterior surface in the lower section and in the top section less than the cooling effect-of the intermediate section or sections. The reason for having the cooling effect of the bottom section less than the intermediate section is that a large amount of heat is lost through the stool. Thereason for having the coolingeffect of the top section less is that it is desirable to keep the metal in this section molten as long as possible. For the same reason the top section is terminated below the top of the mold.
Other embodiments and modifications may also be made within the scope of the attached claims.
I claim:
1. The method of making a largegenerally cylindrical ingot having a minimum diameter of in. without a substantial amount of axial porosity or pipe which comprises pouring molten metal into a large ingot mold having a bottom cooling tubular section closely surrounding the outside periphery of said mold adjacent the bottom thereof, a top cooling tubular section closely surrounding the outside periphery of said mold starting a short distance from the top thereof, and at least one intermediate cooling tubular section closely surrounding the outside periphery of said mold between the top and bottom sections; causing flow of coolant to all sections no later than about 20 minutes after finish of the pour; then after a predetermined time interval of several hours increasing the rate of cooling of the bottom section; then after a second relatively short predetermined time interval increasing the rate of cooling of the intermediate section; then after a third predetermined time interval of several hours increasing the rate of cooling of the top section; then after a fourth predetermined time of substantially greater length than any of the preceding predetermined time intervals decreasing the rate of cooling of the bottom section; then after a fifth predetermined time interval of substantially greater length than the first and third predetermined time intervals decreasing the rate of cooling of the intermediate section; then after a sixth predetermined time interval of substantially greater length than the first and third predetermined time intervals, but of substantially less length than the fourth and fifth predetermined time intervals decreasing the rate of cooling of the top section; then after a seventh 3. The method of claim 1 in which the mold is mounted on a stool which is cooled only by loss of heat to the surrounding atmosphere.
4. The method of claim 3 in which both steam and water are used as the coolant, the initial cooling is by feeding steam to the sections, the increase in cooling is by stopping feed of steam and feeding water, and the decrease in cooling is by stopping feed of water and feeding steam.

Claims (4)

1. The method of making a large generally cylindrical ingot having a minimum diameter of 75 in. without a substantial amount of axial porosity or pipe which comprises pouring molten metal into a large ingot mold having a bottom cooling tubular section closely surrounding the outside periphery of said mold adjacent the bottom thereof, a top cooling tubular section closely surrounding the outside periphery of said mold starting a short distance from the top thereof, and at least one intermediate cooling tubular section closely surrounding the outside periphery of said mold between the top and bottom sections; causing flow of coolant to all sections no later than about 20 minutes after finish of the pour; then after a predetermined time interval of several hours increasing the rate of cooling of the bottom section; then after a second relatively short predetermined time interval increasing the rate of cooling of the intermediate section; then after a third predetermined time interval of several hours increasing the rate of cooling of the top section; then after a fourth predetermined time of substantially greater length than any of the preceding predetermined time intervals decreasing the rate of cooling of the bottom section; then after a fifth predetermined time interval of substantially greater length than the first and third predetermined time intervals decreasing the rate of cooling of the intermediate section; then after a sixth predetermined time interval of substantially greater length than the first and third predetermined time intervals, but of substantially less length than the fourth and fifth predetermined time intervals decreasing the rate of cooling of the top section; then after a seventh relatively short predetermined time stopping flow of coolant to all sections whereby final solidification occurs near the top of the ingot; and then removing the ingot from the mold.
2. The method oF claim 1 in which both steam and water are used as the coolant, the initial cooling is by feeding steam to the sections, the increase in cooling is by stopping feed of steam and feeding water, and the decrease in cooling is by stopping feed of water and feeding steam.
3. The method of claim 1 in which the mold is mounted on a stool which is cooled only by loss of heat to the surrounding atmosphere.
4. The method of claim 3 in which both steam and water are used as the coolant, the initial cooling is by feeding steam to the sections, the increase in cooling is by stopping feed of steam and feeding water, and the decrease in cooling is by stopping feed of water and feeding steam.
US167335A 1971-07-29 1971-07-29 Method of making sound large generally cylindrical ingots Expired - Lifetime US3704745A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16733571A 1971-07-29 1971-07-29

Publications (1)

Publication Number Publication Date
US3704745A true US3704745A (en) 1972-12-05

Family

ID=22606940

Family Applications (1)

Application Number Title Priority Date Filing Date
US167335A Expired - Lifetime US3704745A (en) 1971-07-29 1971-07-29 Method of making sound large generally cylindrical ingots

Country Status (1)

Country Link
US (1) US3704745A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4045536A (en) * 1975-07-08 1977-08-30 Ppg Industries, Inc. Method of casting bismuth, silicon and silicon alloys

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US807028A (en) * 1905-06-14 1905-12-12 Electro Metallurg Francaise Soc Process of obtaining sound ingots.
FR453674A (en) * 1913-01-27 1913-06-13 Jules Berhuy Cooling system for molds in the production of steel cutlery
US1251951A (en) * 1917-06-18 1918-01-01 W G Armstrong Whitworth And Company Ltd Casting steel ingots.
US1777657A (en) * 1929-02-11 1930-10-07 Aluminum Co Of America Method of forming ingots for working
GB698303A (en) * 1950-11-10 1953-10-14 Bochumer Ver Fuer Gussstahl Fa Process for the production of steel ingots
US3204301A (en) * 1960-10-24 1965-09-07 M C Flemings Jr Casting process and apparatus for obtaining unidirectional solidification

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US807028A (en) * 1905-06-14 1905-12-12 Electro Metallurg Francaise Soc Process of obtaining sound ingots.
FR453674A (en) * 1913-01-27 1913-06-13 Jules Berhuy Cooling system for molds in the production of steel cutlery
US1251951A (en) * 1917-06-18 1918-01-01 W G Armstrong Whitworth And Company Ltd Casting steel ingots.
US1777657A (en) * 1929-02-11 1930-10-07 Aluminum Co Of America Method of forming ingots for working
GB698303A (en) * 1950-11-10 1953-10-14 Bochumer Ver Fuer Gussstahl Fa Process for the production of steel ingots
US3204301A (en) * 1960-10-24 1965-09-07 M C Flemings Jr Casting process and apparatus for obtaining unidirectional solidification

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4045536A (en) * 1975-07-08 1977-08-30 Ppg Industries, Inc. Method of casting bismuth, silicon and silicon alloys

Similar Documents

Publication Publication Date Title
US2698467A (en) Method and apparatus for the continuous casting of metal
US5058655A (en) Method and apparatus for manufacturing of a thick-walled hollow casting of cast iron
US4072180A (en) Process and mould for casting multiple articles
US4785871A (en) Manufacturing method for hollow cast product with bottom
US3633656A (en) Apparatus for making ingots
US4195685A (en) Horizontal continuous casting apparatus
US3704745A (en) Method of making sound large generally cylindrical ingots
SU1215607A3 (en) Device for continuous casting of thin-walled cast-iron pipe
US3151200A (en) Ladle lining apparatus
US1696986A (en) Hot top for molds
US843679A (en) Mold for manufacturing rolls.
GB2159077A (en) Discharge device for intermediate vessels in continuous casting installations
US2263437A (en) Hot top
US2088763A (en) Metal pipe
US1908170A (en) Method of centrifugal molding
US3438424A (en) Method of direct casting of steel slabs and billets
US1336459A (en) Ingot-mold and method of molding
CN103611893A (en) Method and device for filling ingot mold air gap
US3697037A (en) Cluster casting apparatus for workpieces made of poured molten refractory material
US2175375A (en) Casting ladle
US2281867A (en) Centrifugal soil pipe casting machine
US638909A (en) Mold for compound ingots.
JPS6363566A (en) Nozzle for casting
US1994683A (en) Apparatus for casting ingots
JPS6349582B2 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: USX CORPORATION, A CORP. OF DE, STATELESS

Free format text: MERGER;ASSIGNOR:UNITED STATES STEEL CORPORATION (MERGED INTO);REEL/FRAME:005060/0960

Effective date: 19880112