US3694110A - Immersible electric pump arrangements - Google Patents

Immersible electric pump arrangements Download PDF

Info

Publication number
US3694110A
US3694110A US210740A US3694110DA US3694110A US 3694110 A US3694110 A US 3694110A US 210740 A US210740 A US 210740A US 3694110D A US3694110D A US 3694110DA US 3694110 A US3694110 A US 3694110A
Authority
US
United States
Prior art keywords
shaft
pump
motor
casing
electric pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US210740A
Inventor
Paul Andre Guinard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3694110A publication Critical patent/US3694110A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0653Units comprising pumps and their driving means the pump being electrically driven the motor being flooded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/605Mounting; Assembling; Disassembling specially adapted for liquid pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/132Submersible electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/24Protection against failure of cooling arrangements, e.g. due to loss of cooling medium or due to interruption of the circulation of cooling medium

Definitions

  • ABSTRACT This invention relates to an electric pump assembly for use in pumping explosives or dangerous liquids in containers, the assembly comprising a motor, which has a winding submerged in the pumped liquid, wherein the wires of the winding are completely insulated by a covering which resists this liquid, and are extended without a break, at their two ends and guided through sealing means to a junction box, outside the container, in which the electric pump arrangement is suspended in known manner and in a way in which a complete seal is obtained.
  • the preceding characteristic enables the electric pump-motor to be perfectly sealed against the exterior, so that it is possible to circulate the liquid under pressure in the interior of this motor without difficulty, so as to ensure, on the one hand, cooling of the motor and, on the other, feeding of the hydrostatic bearings and a stop for the shaft of the rotor of the electric pump.
  • the electric pump arrangement forming the subjectmatter of the invention and meeting the above-stated conditions is characterized in that it comprises a motor, which had a winding submerged in the pumped liquid, and the wires of the winding, completely insulated by a covering which resists this liquid, are extended, without a break, at their two ends and guided through sealing means to a junction box, outside the container, in which the electric pump arrangement is suspended in known manner and in a way in which a complete seal is obtained.
  • the preceding characteristic enables the electric pump-motor to be perfectly sealed against the exterior, so that it is possible to circulate thev liquid under pressure in the interior of this motor without difficulty, so as to ensure, on the one hand, cooling of the motor and, on the other, feeding of the hydrostatic bearings and a stop for the shaft of the rotor of the electric pump.
  • FIG. 1 is an elevation, partly in axial section, of an installed electric pump arrangement
  • FIG. 2 shows an axial section through the electric pump arrangement
  • FIG. 3 is a partial sectional view, on an enlarged scale, of a lower hydrostatic bearing and hydrostatic stop assembly
  • FIG. 4 is a cross-section.
  • a vertical electric pump arrangement 1 is disposed in a well 2, let into a container of which there is shown only part of the upper wall 3 which contains an opening 4 for fixing the tube forming the well 2.
  • the opening 4 is blocked in a liquid-tight manner by a member 5 in the form of a bell or cap secured to the top of the container by means not illustrated, with the interposition of toroidal sealing means 6.
  • a tubular elbow 7 Welded into the cylindrical wall of the part 5 is a tubular elbow 7, the vertical portion of which is connected, by a sliding joint comprising flanges 8 and 8' and a toroidal sealing member 9, to the vertical delivery pipe 10.
  • the latter is extended at its upper end by a stirrup-shaped part 11, fixed to the bell cap 5 by means of a screw-threaded rod 12 extending through an opening in the top of this bell cap and on which is screwed a nut constituting a plug 13.
  • the lower end of the well 2 is closed by a plate 15 which constitutes a flap valve which is opened when the electric pump 1 is moved down, this downward movement being brought about by rotating the plug 13.
  • the insulated wire constituting the winding of the stator of the pump motor is extended and passes out of the motor casing at 16. It is run to an exterior terminal box 17 secured to the bell cap in a sheath which provides insulation and complete protection against the liquid in the container.
  • a micro-switch 18 secured to the interior of the bell cap 5 and actuated by a part 18 integral with the delivery piping 10-11 and arranged to prevent start-up of the motor if the electric pump 1 is not lowered sufficiently to be submerged in the liquid in the container after the base valve 15 of the well 2 has been opened.
  • the electric pump arrangement is constituted by an electric motor the interior of which is flooded by the liquid from the container.
  • the motor shaft 19 carrying the rotor 20 is mounted in the casing 21 on two bearings 22 and 22' of the hydrostatic type, lubricated by the pumped liquid.
  • the impeller 23 of centrifugal type is mounted outside casing 21 on the lower end of the shaft 19; the impeller casing 24 is secured to the lower end of the motor casing 21, the shaft 19 having a flange resting on a stop 26, which supports the weight of the rotor and the hydraulic thrust, and which will be described by reference to FIG. 4.
  • the impeller casing has an axial intake opening 27 and a diffuser 28, the liq uid being delivered under pressure into an annular passage between the motor casing 21 and a tubular part 29, the upper end of which is connected at 30 to the axial delivery pipe 10 of the pump.
  • the pumped liquid is a liquefied gas
  • adequate circulation of liquid is achieved inside the motor with the help of an inlet bore 30, whereby the annular compression passage between the parts 21 and 29 communicates, near its lower end, with the interior of the casing 21, while a leakage bore 31 establishes communication between the upper part of the casing 21 and the interior of the container or of the well 2.
  • the liquid compressed in this manner inside the motor casing may be utilized to feed the hydrostatic bearings 22 and 22' and the stop 26, but it appears more advantageous to feed them directly by the pressure built up at 25 and 25', as will be explained with reference to FIG. 3.
  • the winding 32 of the stator 33 of the motor is constituted by wire insulated by a liquid-tight coating which resists any chemical action of the pumped liquid.
  • the ends 34 and 34' of the wire comprising the winding are passed out of the casing 21 into a lateral compartment 35 through transverse orifices fitted with elastomeric seals 36 and 36', and are then inserted in a sleeve 37, resistant to mechanical damage and fixed at 38 in the wall of the compartment 35 and run to the top of the container where the wires are introduced into the outer terminal box 17 (FIGS. 1 and 3);
  • the rotating portion of the electric pump arrangement is supported by a hydrostatic stop and its shaft is mounted in bearings, likewise hydrostatic, these hydrostatic bearings and stops, in contrast to corresponding hydrodynamic systems, always providing a substantial gap between the rotating portions and the fixed portions, this making it possible to avoid any friction or any dangerous heating likely to cause local boiling of the liquefied gas.
  • the hydrostatic stop of the invention comprises a plate fixed on the shaft of the system between the motor and the pump, and, below this plate, an annular part mounted to swivel on the case so that it is not able to rotate about the shaft, the upper face of this part containing a number of cavities supplied with pumped liquid through perforations in this part and terminating in a chamber communicating with the delivery side of the pump, said cavities also communicating with the intake side of the pump for the purpose of discharging the liquid.
  • the swivel mounting of the hydrostatic stop enables the bearing .plane of the plate integral with the rotating shaft to be kept perpendicular to the axis, whereas the hydrostatic bearings ensure that the shaft is perfectly centered, so that the combination of the hydrostatic stop and bearings makes it possible to obtain the required operating conditions of the pumping arrangement.
  • the hydrostatic stopis constituted by a part 68, solidly connected to and rotating with the shaft of the electric pump arrangement, the lower face of this part forming a planar annular disc 69 perpendicular to the axis of the shaft 19.
  • the part 68 bears by its lower planar face 68 on a part 26 which is held against rotation and forms a stop, this latter part having a spherical lower surface and being mounted on a spherical bearing portion 58 of a part 70 solidly connected to the body 21.
  • the part forming a stop 26 contains in its upper planar face a number of recesses or cavities 64 (FIG 4) which are uniformly spaced from eachother and are each bounded by two concentric arcs of a circle, whereas the spherical bearing portion contains a chamber 62 in the form of an annular throat with which the recesses or cavities 64 communicate through perforations 62.
  • the annular chamber 62 communicates, through a radial passage 62 in which is fitted a removable replaceable nozzle 60, with the chamber 25 communicating with the delivery side of the pump, the impeller 23 of which is overhung at the lower end of the shaft 19.
  • annular gap 71 for the return of the pumped fluid which then flows, as indicated by the arrow 65, through the hole 66 in the pump impeller 23 towards the intake side 67 of the pump.
  • the gap between the stop 26 and the planar lower face 69 of the plate 68 increases, the liquid flows through the passages 71 and the hole 66, and the pressure of the liquid diminishes in this gap as the latter increases, until the pressure of the liquid is balanced by the weight of the rotating unit and the increasing intake force exerted by the liquid on the impeller of the pump.
  • the stop becomes stabilized at a predetermined amount of play between the upper face of the stop 32 and the lower face 69 of the plate 68.
  • the intake force also varies and the play of the stop also tends to vary, but a variation in pressure then occurs in this gap and this tends to re-establish the initial extent of the gap.
  • the hydrostatic bearings 22 and 22' are preferably likewise fed from the chamber 25 with pressurized pumped liquid through similar means, not illustrated.
  • the upper bearing 22 may in particular be fed with pressurized liquid from the delivery chamber 25 through a hole 59, the liquid being returned to the container by the nozzle 31.
  • the pump arrangement described thus contributes to the provision of an installation for stocking and pumping dangerous liquids by means of a submerged electric pump, which installation is particularly safe.
  • An immersible electric pump arrangement intended particularly for use in containers accommodating explosive or dangerous liquids, especially liquefied gas fuels, ammonia or the like, comprising a casing; a vertical shaft; an electric motor in the casing having its winding submerged in the pumped liquid and having a rotormounted on the upper part of this shaft and a pump having its impeller secured to the lower part of this shaft; a hydrostatic stop disposed between the motor and the pump to support said shaft carrying the rotor of the motor and the impeller of the pump, said stop comprising a plate fixed on said shaft and having a planar annular lower face perpendicular to this shaft; a chamber formed in the casing and communicating with the delivery side of the pump; a part rigidly connected to the casing and disposed in the said chamber, said part having its upper portion formed as a concave spherical bearing; a further part constituting a swivel, held against rotation around the shaft and having a spherical lower portion resting on said bearing portion and
  • An electric pump arrangement comprising two hydrostatic bearings disposed in the casing, the one above and the other below the rotor of the motor, and means for injecting into these bearings liquid pumped from said chamber communicating with the delivery side of the pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

This invention relates to an electric pump assembly for use in pumping explosives or dangerous liquids in containers, the assembly comprising a motor, which has a winding submerged in the pumped liquid, wherein the wires of the winding are completely insulated by a covering which resists this liquid, and are extended without a break, at their two ends and guided through sealing means to a junction box, outside the container, in which the electric pump arrangement is suspended in known manner and in a way in which a complete seal is obtained. The preceding characteristic enables the electric pump-motor to be perfectly sealed against the exterior, so that it is possible to circulate the liquid under pressure in the interior of this motor without difficulty, so as to ensure, on the one hand, cooling of the motor and, on the other, feeding of the hydrostatic bearings and a stop for the shaft of the rotor of the electric pump.

Description

' United States Patent 1 3,694,110 Guinard Sept. 26, 1972 IMMERSIBLE ELECTRIC PUMP 3,494,291 2/1970 Carter, Jr. ..417/424 ARRANGEMENTS Inventor: Paul Andre Guinard, 7 rue Pozzie di Borgo, 92 Saint Cloud, France Filed: Dec. 22, 1971 Appl. No.: 210,740
Related US. Application Data Continuation-in-part of Ser. No. 10,258, Feb. 10, 1972.
Foreign Application Priority Data Feb. 21, 1969 France; ..69044l3 US. Cl. ..417/424, 415/111, 308/9 Int. Cl.....F04b 17/00, F04b 35/04, FOld 11/00, FOld 25/16, Fl6c 7/00, F16c 35/00 Field of Search ..417/424, 423; 415/110, 111; 308/9 References Cited UNITED STATES PATENTS 6/1959 Cobb ..415/111 Primary Examiner-Robert M. Walker Attorney-Robert E. Burns et al.
[5 7] ABSTRACT This invention relates to an electric pump assembly for use in pumping explosives or dangerous liquids in containers, the assembly comprising a motor, which has a winding submerged in the pumped liquid, wherein the wires of the winding are completely insulated by a covering which resists this liquid, and are extended without a break, at their two ends and guided through sealing means to a junction box, outside the container, in which the electric pump arrangement is suspended in known manner and in a way in which a complete seal is obtained. The preceding characteristic enables the electric pump-motor to be perfectly sealed against the exterior, so that it is possible to circulate the liquid under pressure in the interior of this motor without difficulty, so as to ensure, on the one hand, cooling of the motor and, on the other, feeding of the hydrostatic bearings and a stop for the shaft of the rotor of the electric pump.
3 Claims, 4 Drawing Figures PATENTEDsms 1912 3,694, 1 10 Inventor A Home y PATENTEDSEPEBIJTZ 3.694110 sum 2 OF 3 I nvenlor Allorne y PNENTEDSEPZS m2 SHEET 3 OF 3 FiG.3
1 IMMERSIBLE ELECTRIC PUMP ARRANGEMENTS FIELD OF THE INVENTION This application is a continuation-in-part of my application Ser. No. 10,258, filed Feb. 10, 1970, wherein the invention relates to an immersible electric pump arrangement.
BACKGROUND OF THE INVENTION There is a requirement for pumps particularly adapted for use in emptying large basins and containers accommodating explosive or dangerous liquids, in particular combustible liquefied gases, liquid ammonia or certain chemical products the handling of which calls for certain precautions. More particularly, powered pump arrangements are required which offer great safety in operation, both as regards mechanical and electrical components, thus excluding, in particular, all risk of heating up likely to cause fires; furthermore, such pump arrangements should be extremely well sealed against the exterior, thus enabling any inward leakage of dangerous liquid from the container to be prevented.
SUMMARY OF THE INVENTION The electric pump arrangement forming the subjectmatter of the invention and meeting the above-stated conditions is characterized in that it comprises a motor, which had a winding submerged in the pumped liquid, and the wires of the winding, completely insulated by a covering which resists this liquid, are extended, without a break, at their two ends and guided through sealing means to a junction box, outside the container, in which the electric pump arrangement is suspended in known manner and in a way in which a complete seal is obtained. The preceding characteristic enables the electric pump-motor to be perfectly sealed against the exterior, so that it is possible to circulate thev liquid under pressure in the interior of this motor without difficulty, so as to ensure, on the one hand, cooling of the motor and, on the other, feeding of the hydrostatic bearings and a stop for the shaft of the rotor of the electric pump.
BRIEF DESCRIPTION OF THE DRAWINGS.
For a better understanding of the invention, reference will now be made to the accompanying drawings, by way of example. In the drawings:
FIG. 1 is an elevation, partly in axial section, of an installed electric pump arrangement,
' FIG. 2 shows an axial section through the electric pump arrangement, 1
FIG. 3 is a partial sectional view, on an enlarged scale, of a lower hydrostatic bearing and hydrostatic stop assembly, and
FIG. 4 is a cross-section.
DESCRIPTION OF SPECIFIC EMBODIMENTS As shown in FIG. 1, a vertical electric pump arrangement 1 is disposed in a well 2, let into a container of which there is shown only part of the upper wall 3 which contains an opening 4 for fixing the tube forming the well 2.
The opening 4 is blocked in a liquid-tight manner by a member 5 in the form of a bell or cap secured to the top of the container by means not illustrated, with the interposition of toroidal sealing means 6. Welded into the cylindrical wall of the part 5 is a tubular elbow 7, the vertical portion of which is connected, by a sliding joint comprising flanges 8 and 8' and a toroidal sealing member 9, to the vertical delivery pipe 10. The latter is extended at its upper end by a stirrup-shaped part 11, fixed to the bell cap 5 by means of a screw-threaded rod 12 extending through an opening in the top of this bell cap and on which is screwed a nut constituting a plug 13. Plug 13, by means of sealing ring 14, seals this opening in a liquid-tight manner.
The lower end of the well 2 is closed by a plate 15 which constitutes a flap valve which is opened when the electric pump 1 is moved down, this downward movement being brought about by rotating the plug 13.
The insulated wire constituting the winding of the stator of the pump motor is extended and passes out of the motor casing at 16. It is run to an exterior terminal box 17 secured to the bell cap in a sheath which provides insulation and complete protection against the liquid in the container. Connected to the wire 16 is a micro-switch 18, secured to the interior of the bell cap 5 and actuated by a part 18 integral with the delivery piping 10-11 and arranged to prevent start-up of the motor if the electric pump 1 is not lowered sufficiently to be submerged in the liquid in the container after the base valve 15 of the well 2 has been opened.
As shown in FIG. 2, the electric pump arrangement is constituted by an electric motor the interior of which is flooded by the liquid from the container. The motor shaft 19 carrying the rotor 20 is mounted in the casing 21 on two bearings 22 and 22' of the hydrostatic type, lubricated by the pumped liquid. The impeller 23 of centrifugal type is mounted outside casing 21 on the lower end of the shaft 19; the impeller casing 24 is secured to the lower end of the motor casing 21, the shaft 19 having a flange resting on a stop 26, which supports the weight of the rotor and the hydraulic thrust, and which will be described by reference to FIG. 4.
The impeller casing has an axial intake opening 27 and a diffuser 28, the liq uid being delivered under pressure into an annular passage between the motor casing 21 and a tubular part 29, the upper end of which is connected at 30 to the axial delivery pipe 10 of the pump.
In the case where the pumped liquid is a liquefied gas, it is necessary to prevent it from vaporizing inside the motor under the effect of heat generated by the latter. For this purpose, adequate circulation of liquid is achieved inside the motor with the help of an inlet bore 30, whereby the annular compression passage between the parts 21 and 29 communicates, near its lower end, with the interior of the casing 21, while a leakage bore 31 establishes communication between the upper part of the casing 21 and the interior of the container or of the well 2. The liquid compressed in this manner inside the motor casing may be utilized to feed the hydrostatic bearings 22 and 22' and the stop 26, but it appears more advantageous to feed them directly by the pressure built up at 25 and 25', as will be explained with reference to FIG. 3.
The winding 32 of the stator 33 of the motor is constituted by wire insulated by a liquid-tight coating which resists any chemical action of the pumped liquid. The ends 34 and 34' of the wire comprising the winding are passed out of the casing 21 into a lateral compartment 35 through transverse orifices fitted with elastomeric seals 36 and 36', and are then inserted in a sleeve 37, resistant to mechanical damage and fixed at 38 in the wall of the compartment 35 and run to the top of the container where the wires are introduced into the outer terminal box 17 (FIGS. 1 and 3);
As indicated above, it is very important to avoid, in the interior of the container of the pumping arrangement, any source of heat likely to cause vaporization of the pumped liquefied gas. For this purpose the rotating portion of the electric pump arrangement is supported by a hydrostatic stop and its shaft is mounted in bearings, likewise hydrostatic, these hydrostatic bearings and stops, in contrast to corresponding hydrodynamic systems, always providing a substantial gap between the rotating portions and the fixed portions, this making it possible to avoid any friction or any dangerous heating likely to cause local boiling of the liquefied gas.
This is the more important since the moving portion of the electric pump arrangement may be subjected to very considerable and variable axial thrust resulting on the one hand from its weight and on the other from the intake forces which vary with the delivery of the pump, particularly in the case of electric pumps used for unloading from the holds of vessels carrying liquefied gases and where, on the one hand, the delivery of the pumps varies considerably and, on the other, they are subjected to cavitational stress. The hydrostatic stop of the invention comprises a plate fixed on the shaft of the system between the motor and the pump, and, below this plate, an annular part mounted to swivel on the case so that it is not able to rotate about the shaft, the upper face of this part containing a number of cavities supplied with pumped liquid through perforations in this part and terminating in a chamber communicating with the delivery side of the pump, said cavities also communicating with the intake side of the pump for the purpose of discharging the liquid.
The swivel mounting of the hydrostatic stop enables the bearing .plane of the plate integral with the rotating shaft to be kept perpendicular to the axis, whereas the hydrostatic bearings ensure that the shaft is perfectly centered, so that the combination of the hydrostatic stop and bearings makes it possible to obtain the required operating conditions of the pumping arrangement.
As illustrated in F IGS. 3 and 4, the hydrostatic stopis constituted by a part 68, solidly connected to and rotating with the shaft of the electric pump arrangement, the lower face of this part forming a planar annular disc 69 perpendicular to the axis of the shaft 19. In the at rest position, that is to say in the absence of pressurized pumped liquid, the part 68 bears by its lower planar face 68 on a part 26 which is held against rotation and forms a stop, this latter part having a spherical lower surface and being mounted on a spherical bearing portion 58 of a part 70 solidly connected to the body 21. The part forming a stop 26 contains in its upper planar face a number of recesses or cavities 64 (FIG 4) which are uniformly spaced from eachother and are each bounded by two concentric arcs of a circle, whereas the spherical bearing portion contains a chamber 62 in the form of an annular throat with which the recesses or cavities 64 communicate through perforations 62. The annular chamber 62 communicates, through a radial passage 62 in which is fitted a removable replaceable nozzle 60, with the chamber 25 communicating with the delivery side of the pump, the impeller 23 of which is overhung at the lower end of the shaft 19.
Between the swivel stop 26 and the shaft 19 is an annular gap 71 for the return of the pumped fluid which then flows, as indicated by the arrow 65, through the hole 66 in the pump impeller 23 towards the intake side 67 of the pump.
When the system is operating, the pressurized liquid injected through the nozzle 60 and the passage 61 into the chamber 62 and into the cavities 64 in the stop 26, exerts upon the plate 69 68 an upward axial thrust and lifts the rotating unit of the pump and motor. As the gap between the stop 26 and the planar lower face 69 of the plate 68 increases, the liquid flows through the passages 71 and the hole 66, and the pressure of the liquid diminishes in this gap as the latter increases, until the pressure of the liquid is balanced by the weight of the rotating unit and the increasing intake force exerted by the liquid on the impeller of the pump. When this balance is established, the stop becomes stabilized at a predetermined amount of play between the upper face of the stop 32 and the lower face 69 of the plate 68. In the case where the delivery of the pump varies, the intake force also varies and the play of the stop also tends to vary, but a variation in pressure then occurs in this gap and this tends to re-establish the initial extent of the gap.
The hydrostatic bearings 22 and 22' are preferably likewise fed from the chamber 25 with pressurized pumped liquid through similar means, not illustrated. The upper bearing 22 may in particular be fed with pressurized liquid from the delivery chamber 25 through a hole 59, the liquid being returned to the container by the nozzle 31.
The employment of hydrostatic bearings and stops enables use to be made of clearances 10 to times greater than that in conventional bearings, so that excellent cooling of these bearings is achieved, as well as lubrication, by circulation of the pumped liquid. It will be seen that in the case of a container of liquefied gas, in the installation that has been described the sealing elements are fitted in the low-pressure part, at the top of the container, where there is a gas volume the level of the liquefied gas, whereas in-the high-pressure part, that is, on the delivery side of the pump, the interior of the well contains only permanent welded joints. The low-pressure seals are easily achieved with the help of pressure joints of appropriate material.
The pump arrangement described thus contributes to the provision of an installation for stocking and pumping dangerous liquids by means of a submerged electric pump, which installation is particularly safe.
lclaim:
1. An immersible electric pump arrangement intended particularly for use in containers accommodating explosive or dangerous liquids, especially liquefied gas fuels, ammonia or the like, comprising a casing; a vertical shaft; an electric motor in the casing having its winding submerged in the pumped liquid and having a rotormounted on the upper part of this shaft and a pump having its impeller secured to the lower part of this shaft; a hydrostatic stop disposed between the motor and the pump to support said shaft carrying the rotor of the motor and the impeller of the pump, said stop comprising a plate fixed on said shaft and having a planar annular lower face perpendicular to this shaft; a chamber formed in the casing and communicating with the delivery side of the pump; a part rigidly connected to the casing and disposed in the said chamber, said part having its upper portion formed as a concave spherical bearing; a further part constituting a swivel, held against rotation around the shaft and having a spherical lower portion resting on said bearing portion and a planar annular face presented to the plate rigidly connected to the shaft; a series of recesses uniformly distributed over the planar upper face of the swivel; perforations in the swivel and in the part which supports it for enabling said recesses to communicate with said chamber communicating with the delivery side of the pump to inject the pumped fluid between the upper face of the swivel and the lower face of the plate rigidly connected to the shaft; and an annular gap formed between the swivel and the shaft for the return of the liquid to the intake side of the pump.
2. An electric pump arrangement according to claim 1, in which said part rigidly connected to the casing and comprising said concave spherical bearing portion has at said bearing portion an annular throat, a radial passage being formed to enable this annular throat to communicate with the chamber communicating with the delivery side of the pump, a removable replaceable nozzle fitting at the inlet to this passage, and perforations formed through the part constituting the swivel at the centers of the recesses in its upper face to enable these recesses to communicate with the annular throat formed in the spherical bearing portion.
3. An electric pump arrangement according to claim 2, comprising two hydrostatic bearings disposed in the casing, the one above and the other below the rotor of the motor, and means for injecting into these bearings liquid pumped from said chamber communicating with the delivery side of the pump.

Claims (3)

1. An immersible electric pump arrangement intended particularly for use in containers accommodating explosive or dangerous liquids, especially liquefied gas fuels, ammonia or the like, comprising a casing; a vertical shaft; an electric motor in the casing having its winding submerged in the pumped liquid and having a rotor mounted on the upper part of this shaft and a pump having its impeller secured to the lower part of this shaft; a hydrostatic stop disposed between the motor and the pump to support said shaft carrying the rotor of the motor and the impeller of the pump, said stop comprising a plate fixed on said shaft and having a planar annular lower face perpendicular to this shaft; a chamber formed in the casing and communicating with the delivery side of the pump; a part rigidly connected to the casing and disposed in the said chamber, said part having its upper portion formed as a concave spherical bearing; a further part constituting a swivel, held against rotation around the shaft and having a spherical lower portion resting on said bearing portion and a planar annular face presented to the plate rigidly connected to the shaft; a series of recesses uniformly distributed over the planar upper face of the swivel; perforations in the swivel and in the part which supports it for enabling said recesses to communicate with said chamber communicating with the delivery side of the pump to inject the pumped fluid between the upper face of the swivel and the lower face of the plate rigidly connected to the shaft; and an annular gap formed between the swivel and the shaft for the return of the liquid to the intake side of the pump.
2. An electric pump arrangement according to claim 1, in which said part rigidly connected to the casing and comprising said concave spherical bearing portion has at said bearing portion an annular throat, a radial passage being formed to enable this annular throat to communicate with the chamber communicating with the delivery side of the pump, a removable replaceable nozzle fitting at the inlet to this passage, and perforations formed through the part constituting the swivel at the centers of the recesses in its upper face to enable these recesses to communicate with the annular throat formed in the spherical bearing portion.
3. An electric pump arrangement according to claim 2, comprising two hydrostatic bearings disposed in the casing, the one above and the other below the rotor of the motor, and means for injecting into these bearings liquid pumped from said chamber communicating with the delivery side of the pump.
US210740A 1969-02-21 1971-12-22 Immersible electric pump arrangements Expired - Lifetime US3694110A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR6904413A FR2032189A5 (en) 1969-02-21 1969-02-21

Publications (1)

Publication Number Publication Date
US3694110A true US3694110A (en) 1972-09-26

Family

ID=9029422

Family Applications (2)

Application Number Title Priority Date Filing Date
US10258A Expired - Lifetime US3671152A (en) 1969-02-21 1970-02-10 Electric pump assembly for use in pumping explosive or dangerous liquids
US210740A Expired - Lifetime US3694110A (en) 1969-02-21 1971-12-22 Immersible electric pump arrangements

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10258A Expired - Lifetime US3671152A (en) 1969-02-21 1970-02-10 Electric pump assembly for use in pumping explosive or dangerous liquids

Country Status (4)

Country Link
US (2) US3671152A (en)
DE (1) DE2006681C3 (en)
FR (1) FR2032189A5 (en)
GB (1) GB1292384A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850550A (en) * 1971-08-05 1974-11-26 Hydr O Matic Pump Co Centrifugal pump and motor
US3877845A (en) * 1973-06-28 1975-04-15 Acf Ind Inc Electric in-tank fuel pump
US4545741A (en) * 1982-05-07 1985-10-08 Hitachi, Ltd. Vertical motor pump
US4725198A (en) * 1985-07-09 1988-02-16 James Howden & Company Limited Gas circulator
US4932848A (en) * 1987-10-26 1990-06-12 Kvaerner-Eureka A/S Pump unit
US5674057A (en) * 1995-03-03 1997-10-07 Westinghouse Electric Corporation Submersible canned motor mixer pump
US5820271A (en) * 1997-01-29 1998-10-13 Hackett, Jr.; William F. Thrust bearing assembly
US6227819B1 (en) 1999-03-29 2001-05-08 Walbro Corporation Fuel pumping assembly
US6231318B1 (en) 1999-03-29 2001-05-15 Walbro Corporation In-take fuel pump reservoir
US6698916B2 (en) * 2001-06-19 2004-03-02 Toyo Denki Industrial Co., Ltd. Underwater agitation pump
US20050019184A1 (en) * 2003-07-03 2005-01-27 Penrod Geisinger Submerged motor and pump assembly
US20080080988A1 (en) * 2006-09-28 2008-04-03 Snecma Pump with electric motor, immersed in the fluid to be pumped
US20080267763A1 (en) * 2007-04-30 2008-10-30 Snecma Rotary machine including a passive axial balancing system
CN101694168A (en) * 2008-06-17 2010-04-14 斯奈克玛公司 Turbomachine with long lasting position-holding system
US20100329889A1 (en) * 2009-06-30 2010-12-30 Crane Pumps And Systems Switch and float assembly for a pump
US20110064592A1 (en) * 2008-04-10 2011-03-17 Axel Jaeschke Underwater Delivery Unit
US20140105765A1 (en) * 2011-05-31 2014-04-17 Fmc Kongsberg Subsea As Subsea compressor directly driven by a permanent magnet motor with stator and rotor submerged in liquid
FR3047776A1 (en) * 2016-02-15 2017-08-18 Liebherr-Aerospace Toulouse Sas TURBOMACHINE AND METHOD OF MOUNTING
CH714176A1 (en) * 2017-09-19 2019-03-29 Fives Cryomec Ag Centrifugal pump for cryogenic fluids.

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260334A (en) * 1976-02-11 1981-04-07 Kelley Contract Dewatering Company Ground dewatering system
FR2481854A1 (en) * 1980-04-30 1981-11-06 Popescu Marin Unsealed submersible electric pump motor - uses double varnishing of individual rotor and stator laminations and plastics coated tinned copper wire for coils
GB2135731A (en) * 1983-02-17 1984-09-05 Graziella Freschi Submersible pumps
DE3834668A1 (en) * 1988-10-12 1990-04-19 Klein Schanzlin & Becker Ag PRESSURE-RESISTANT ENCLOSED TUBE MOTOR
US5799834A (en) * 1996-10-21 1998-09-01 Marley Pump Telescoping column pipe assembly for fuel dispensing pumping systems
US5853113A (en) * 1996-10-21 1998-12-29 Marley Pump Telescoping column pipe assembly for fuel dispensing pumping systems
CN108386369A (en) * 2016-12-22 2018-08-10 李峰 A kind of immersible pump suitable for decompression method exploitation combustible ice

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2888878A (en) * 1958-06-16 1959-06-02 William G Cobb Neutronic reactor fuel pump
US3494291A (en) * 1967-10-13 1970-02-10 Air Reduction Bearing assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2888878A (en) * 1958-06-16 1959-06-02 William G Cobb Neutronic reactor fuel pump
US3494291A (en) * 1967-10-13 1970-02-10 Air Reduction Bearing assembly

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850550A (en) * 1971-08-05 1974-11-26 Hydr O Matic Pump Co Centrifugal pump and motor
US3877845A (en) * 1973-06-28 1975-04-15 Acf Ind Inc Electric in-tank fuel pump
US4545741A (en) * 1982-05-07 1985-10-08 Hitachi, Ltd. Vertical motor pump
US4725198A (en) * 1985-07-09 1988-02-16 James Howden & Company Limited Gas circulator
US4932848A (en) * 1987-10-26 1990-06-12 Kvaerner-Eureka A/S Pump unit
US5674057A (en) * 1995-03-03 1997-10-07 Westinghouse Electric Corporation Submersible canned motor mixer pump
US5820271A (en) * 1997-01-29 1998-10-13 Hackett, Jr.; William F. Thrust bearing assembly
US6227819B1 (en) 1999-03-29 2001-05-08 Walbro Corporation Fuel pumping assembly
US6231318B1 (en) 1999-03-29 2001-05-15 Walbro Corporation In-take fuel pump reservoir
US6698916B2 (en) * 2001-06-19 2004-03-02 Toyo Denki Industrial Co., Ltd. Underwater agitation pump
US7513755B2 (en) * 2003-07-03 2009-04-07 Vaporless Manufacturing, Inc. Submerged motor and pump assembly
US8079829B2 (en) * 2003-07-03 2011-12-20 Vaporless Manufacturing, Inc. Submerged DC brushless motor and pump
US20090202366A1 (en) * 2003-07-03 2009-08-13 Vaporless Manufacturing, Inc. Submerged dc brushless motor and pump
US20050019184A1 (en) * 2003-07-03 2005-01-27 Penrod Geisinger Submerged motor and pump assembly
US20080080988A1 (en) * 2006-09-28 2008-04-03 Snecma Pump with electric motor, immersed in the fluid to be pumped
US20080267763A1 (en) * 2007-04-30 2008-10-30 Snecma Rotary machine including a passive axial balancing system
JP2008278743A (en) * 2007-04-30 2008-11-13 Snecma Rotating machine including passive axial balancing system
US20110064592A1 (en) * 2008-04-10 2011-03-17 Axel Jaeschke Underwater Delivery Unit
US9103342B2 (en) * 2008-04-10 2015-08-11 Joh. Heinr. Bornemann Gmbh Underwater delivery unit
CN101694168B (en) * 2008-06-17 2014-05-07 斯奈克玛公司 Turbomachine with long lasting position-holding system
CN101694168A (en) * 2008-06-17 2010-04-14 斯奈克玛公司 Turbomachine with long lasting position-holding system
US20100329889A1 (en) * 2009-06-30 2010-12-30 Crane Pumps And Systems Switch and float assembly for a pump
US8167578B2 (en) * 2009-06-30 2012-05-01 Crane Pumps & Systems, Inc. Switch and float assembly for a pump
US20140105765A1 (en) * 2011-05-31 2014-04-17 Fmc Kongsberg Subsea As Subsea compressor directly driven by a permanent magnet motor with stator and rotor submerged in liquid
US10794386B2 (en) * 2011-05-31 2020-10-06 Fmc Kongsberg Subsea As Subsea compressor directly driven by a permanent magnet motor with stator and rotor submerged in liquid
FR3047776A1 (en) * 2016-02-15 2017-08-18 Liebherr-Aerospace Toulouse Sas TURBOMACHINE AND METHOD OF MOUNTING
WO2017140979A1 (en) * 2016-02-15 2017-08-24 Liebherr-Aerospace Toulouse Sas Turbine engine and assembly method thereof
CH714176A1 (en) * 2017-09-19 2019-03-29 Fives Cryomec Ag Centrifugal pump for cryogenic fluids.
US10954952B2 (en) 2017-09-19 2021-03-23 Fives Cryomec Ag Centrifugal pump for cryogenic pumped media

Also Published As

Publication number Publication date
FR2032189A5 (en) 1970-11-20
DE2006681B2 (en) 1975-02-06
DE2006681C3 (en) 1975-09-18
US3671152A (en) 1972-06-20
GB1292384A (en) 1972-10-11
DE2006681A1 (en) 1970-09-24

Similar Documents

Publication Publication Date Title
US3694110A (en) Immersible electric pump arrangements
US2319730A (en) Pump
US3764236A (en) Modular pump
US6129529A (en) Liquid petroleum gas submersible electric motor driven pump and drive coupling therefor
US2913988A (en) Motor driven pumps
US5336064A (en) Electric motor driven pump
US2301063A (en) Pumping mechanism
US3841520A (en) Flame arresting vent valve
US2674194A (en) Combined protecting and coupling unit for liquid-filled submergible electric motors
US3280750A (en) Motor driven pump
US3716309A (en) Submersible motor and pump unit
CA2075131A1 (en) Pump including secondary containment with alarm system
CA2077520A1 (en) Inclined pressure boost pump
US2807395A (en) Electric fuel pump mounting
CN105604952B (en) Vertical centrifugal oil pump
US3635599A (en) Flame-arresting vent valve
US5431546A (en) Apparatus for intermittent transfer of fluid having vapor trap seal and vapor escape means
US2911919A (en) Pumping system
US3339491A (en) Vertically mounted rotary pumps
US3048118A (en) Pump
US2368529A (en) Pump
US2725824A (en) Explosion-proof submergible electric motor and pump assembly
JPH09324791A (en) Submerged motor pump
US2843048A (en) Liquid pumping apparatus
GB1373599A (en) Electrically operated liquid feed pump