US3668086A - Electrochemical generation of soluble nickel(o) catalysts - Google Patents

Electrochemical generation of soluble nickel(o) catalysts Download PDF

Info

Publication number
US3668086A
US3668086A US59018A US3668086DA US3668086A US 3668086 A US3668086 A US 3668086A US 59018 A US59018 A US 59018A US 3668086D A US3668086D A US 3668086DA US 3668086 A US3668086 A US 3668086A
Authority
US
United States
Prior art keywords
nickel
reduction
catalysts
electrolyte
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US59018A
Inventor
William B Hughes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phillips Petroleum Co
Original Assignee
Phillips Petroleum Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phillips Petroleum Co filed Critical Phillips Petroleum Co
Application granted granted Critical
Publication of US3668086A publication Critical patent/US3668086A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/42Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons homo- or co-oligomerisation with ring formation, not being a Diels-Alder conversion
    • C07C2/44Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons homo- or co-oligomerisation with ring formation, not being a Diels-Alder conversion of conjugated dienes only
    • C07C2/46Catalytic processes
    • C07C2/465Catalytic processes with hydrides or organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/24Phosphines

Definitions

  • This invention further relates to a method for the synthesis of soluble nickel(O) catalyst.
  • the electrochemical reduction method of my invention has a number of advantages. It can eliminate catalyst purification as well as the use of highly reactive, difficult to handle chemical reducing agents, for example, organoaluminum compounds.
  • the nickel(ll)-ligand complexes reduced by the method of my invention comprise a group which are readily soluble in organic solvents, for example, nickel(ll) chloride-tertiary phosphine complexes.
  • the phosphine complexes can be formed either before or after charging the reactants to the electrolytic cell. Prior preparation of the complex is accomplished by direct combination of the nickel(ll) salt with the phosphine. Alternatively, thecomplex may be formed from the combination of the nickel(ll) salt with the phosphine, said combination being made within the electrolytic cell prior to the reduction.
  • Certain of the nickel salts will form a complex with certain of
  • the use of an added electrolyte in the method of my invention is optional.
  • Several electrolytes may be used with a choice of supporting electrolytes representing a noncritical element of the method of my invention.
  • Runs 2 and 7 of TABLE I the presence of an added electrolyte appears to have little effect on the catalytic activity of the resulting nickel(O) catalyst prepared ky the method of my invention.
  • concentrations normally range from to l molar.
  • Tetraalkylammonium halides or nitrates or perchlorates can be employed as added elecligands of the type specified above may be added beyond that complexed by the nickel atom in the initial nickel complex in quantities ranging up to 10 moles of ligand per mole of nickel complex. The individual reductions are carried out,
  • trolytes for example, tetrabutylammonium perchlorate,v
  • Polar organic compounds that are nonreducible and nonreactive under conditions met in this system are applicable as solvents, for example, acetonitrile, sulfolane, propionitrile, N,N-dimethylformamide, 1,2-dimethoxyethane and dioxane.
  • Acetonitrile and N,N-dimethylformamide are the solvents preferred for the method of my invention since high current densities can be achieved in these solvents.
  • the voltage must be sufficient to cause reduction of the nickel species but must be less than the reduction potential of the solvent.
  • voltages applicable for reductions in acetonitrile can be as low as l.7 and as high as 2.5 with 2.0volts being preferred.
  • ln LZ-dimethoxyethane the voltage can be as high as 3.6.
  • Current is passed through theelectrolytic cell until the desired reduction is achieved.
  • the initial current can varyfrom l0 to 500m. As the reduction proceeds the current decreases and approaches a value of zero as the reduction approaches-completion. in general practice the reduction will be continued until the current decreases to 5 mA or less.
  • the electrolysis product mixture (now containing the reduced nickel species) was transferred to a Fisher-Porter aerosol compatability bottle and the bottle sealed.
  • Butadiene l 1.9 gram, 0.22 mol was added at room temperature affording a total pressure of 25 psig at 25 C.
  • the reduction mixture was stirred and heated under conditions shown in the table.
  • the product mixture was cooled to room temperature and analyzed.
  • the polymer content of the product mixture was determined as being the material which would not distill into a Dry lee-cooled receiver at I00 C./0.075 mm.
  • the volatile portion of the product mixture was analyzed by gas/liquid partition chromatography (glpc).
  • the percentage conversion of butadiene to the respective products was: 4-vinylcyclohexene, 25; l,5cyclooctadiene, 36; cyclododecatrienes, 5.
  • the total percentage conversion of butadiene was about 77 percent.
  • the precent VCH includes a small amount Material nonvolatile at 100/0.075 mm.
  • i DUE L2-dimethoxyethane.
  • VCH 4-vinylcyclohexene
  • COD 1,5-cyclooctadiene
  • CDT cyclododecatrienes
  • Electrolyte n-BuiNclOi, was present in the anode compartment but no electrolyte was present in the cathode compartment wherein the nickel complex is reduced.
  • propionitrile N,N-dimethylformamide, yethane, and dioxane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

A method of generating soluble zero-valent nickel catalyst consisting of electrochemically reducing suitable nickel(II)ligand complexes wherein said electrochemical reduction can be achieved with or without the presence of an electrolyte.

Description

UNITED STATES PATENTS 3,327,015 6/1967 Spitzer ..260/683.l5
I Umted States Patent [151 Hughes [451 June 6, 1972 [s41 ELECTROCHEMICAL GENERATION 3,490,745 1/1970 Chappell et al ..2s 2/430 0 SOLUBLE NICKEL(O) CATALYSTS 3,501,332 3/1970 Buckman ..117/47 3,551,467 12/ 1970 Arakawa et a]. ..260/439 [72] Inventor: Willlam B. Hughes, Bartlesvnlle, Okla. 3,475.293 10/1969 flayncs et 31"" W204/49 x 73 Assignee: Phillips Pe'rokum Company 7 3,13 1 J34 4/l964 Micillo ....204/l 4 N [22] Filed: July 1970 Primary Examiner-John H. Mack [21] APPL No: 59,018 Assistant Examiner-Neil A. Kaplan Attorney-Young and Quigg [52] US. Cl ..204/59 R, 204/14 N, 204/48, 57 ABSTRACT 204/49, 204/112, 252/43 l 260/439 7 s 1 1 Int. Cl "Bulk 3/00 A method Qf generating Soluble zero-valem nickel catalyst 58 Field of Search ..2o4/s9, -48, 14 N, 1 12, 49; consisting of electrochemically reducing suitable nickeK 260/943, 949; 252/431 ligand complexes wherein said electrochemical reduction can be achieved with or without the presence of an electrolyte. References Cited 4 Claims, No Drawings ELECTROCHEMICAL GENERATION OF SOLUBLE I NICKEL(O) CATALYSTS This invention relates to the electrochemical reduction of nickel( ll )-ligand complexes.
This invention further relates to a method for the synthesis of soluble nickel(O) catalyst.
I have found a method for the generation of zero-valent nickel based on the electrochemical reduction of nickel(ll) complexes which, without isolation or purification, are capable of acting as homogeneous catalysts for the oligomerization of dienes. As a method of catalyst generation, the electrochemical reduction method of my invention has a number of advantages. It can eliminate catalyst purification as well as the use of highly reactive, difficult to handle chemical reducing agents, for example, organoaluminum compounds.
The nickel(ll)-ligand complexes reduced by the method of my invention comprise a group which are readily soluble in organic solvents, for example, nickel(ll) chloride-tertiary phosphine complexes. The phosphine complexes can be formed either before or after charging the reactants to the electrolytic cell. Prior preparation of the complex is accomplished by direct combination of the nickel(ll) salt with the phosphine. Alternatively, thecomplex may be formed from the combination of the nickel(ll) salt with the phosphine, said combination being made within the electrolytic cell prior to the reduction.
Certain of the nickel salts will form a complex with certain of The use of an added electrolyte in the method of my invention is optional. Several electrolytes may be used with a choice of supporting electrolytes representing a noncritical element of the method of my invention. Although some higher conversions were obtained with added electrolytes, notice must be taken of the results of Run 7 of TABLE 1 in which the nickel complex acted as its own electrolyte. Basically, and as seen by contrasting Runs 2 and 7 of TABLE I, the presence of an added electrolyte appears to have little effect on the catalytic activity of the resulting nickel(O) catalyst prepared ky the method of my invention. However, when an electrolyte is added to the method of my invention, concentrations normally range from to l molar. Tetraalkylammonium halides or nitrates or perchlorates can be employed as added elecligands of the type specified above may be added beyond that complexed by the nickel atom in the initial nickel complex in quantities ranging up to 10 moles of ligand per mole of nickel complex. The individual reductions are carried out,
5 preferably, at specified and constant voltages. However, some trolytes, for example, tetrabutylammonium perchlorate,v
tetrabutylammonium bromide, and tetrapropylammonium nitrate.
Polar organic compounds that are nonreducible and nonreactive under conditions met in this system are applicable as solvents, for example, acetonitrile, sulfolane, propionitrile, N,N-dimethylformamide, 1,2-dimethoxyethane and dioxane. Acetonitrile and N,N-dimethylformamide are the solvents preferred for the method of my invention since high current densities can be achieved in these solvents.
variation in voltage is permissible. The voltage must be sufficient to cause reduction of the nickel species but must be less than the reduction potential of the solvent. For example, voltages applicable for reductions in acetonitrile can be as low as l.7 and as high as 2.5 with 2.0volts being preferred. ln LZ-dimethoxyethane, the voltage can be as high as 3.6. Current is passed through theelectrolytic cell until the desired reduction is achieved. Depending on the cell construction, solvent employed, nature of the species to be reduced and other variables, the initial current can varyfrom l0 to 500m. As the reduction proceeds the current decreases and approaches a value of zero as the reduction approaches-completion. in general practice the reduction will be continued until the current decreases to 5 mA or less.
The reductions and subsequent reactions are carried out under an inert atmosphere. Reductions are carried out in any suitable equipment, such as two-compartment, U-shaped cell utilizing three electrodes (test, counter, and reference). The test and counter electrodes consistedof stirred mercury pools separated by fritted-glass disks. A suitable reference electrode consists of two parts: a salt bridge and a sealed glass tube containing silver and silver perchlorate (10 M solution) separated by a fritted glass disk from the slat bridge. The reduction potentials, maintained between the test and the reference electrodes during the reduction, can be referred to the silver-silver perchlorate couple. EXAMPLE 1, Run No. 2, as follows, represents a typical example run of the nine runs as disclosed in the following TABLE 1.
EXAMPLE I any adventiously present oxygen and this hydrogen was in-' cluded to properly maintain this copper in the active, reduced state. This hydrogen did not enter into the electrochemical reduction. Maintaining this atmosphere, the solution was.
transferred to the cathode compartment of the electrolysis cell and reduction was carried out at 2.0 volts. Reduction was terminated after 40 minutes by which time the current value had declined to 2 mA.
Continuing to maintain the 96% nitrogen-4% hydrogen atmosphere, the electrolysis product mixture (now containing the reduced nickel species) was transferred to a Fisher-Porter aerosol compatability bottle and the bottle sealed. Butadiene l 1.9 gram, 0.22 mol) was added at room temperature affording a total pressure of 25 psig at 25 C. The reduction mixture was stirred and heated under conditions shown in the table.
The product mixture was cooled to room temperature and analyzed. The polymer content of the product mixture was determined as being the material which would not distill into a Dry lee-cooled receiver at I00 C./0.075 mm. The volatile portion of the product mixture was analyzed by gas/liquid partition chromatography (glpc). The percentage conversion of butadiene to the respective products was: 4-vinylcyclohexene, 25; l,5cyclooctadiene, 36; cyclododecatrienes, 5. The total percentage conversion of butadiene was about 77 percent.
The following TABLE I shows 9 runs that are representative -of my invention.
TABLE I.OLIGO.\IE RIZA'IION OF BUTADIENE BY ELECTROCHEMICALLY GENERATED NICKEL CATALYSTS Butadiene reaction Percent yield of Added Percent h Run No Nickel complex 1 ligand Electrolyte Solvent 6 G. con. VCH I COD CDT Polymer 1 -'iCl:(Ph3P)z None n-Bu NClO CHaCN 17.3 54 18 29 2 2 NiC1g.D.\IE i Ph P n-BmNClO HgCN 11.9 77 25 36 5 11 3 NiClz.Dl\IE None n-BuiNCl04 CHaCN Metallic nickel 4 NiC1z.D.\IE n-BuaP n-BuiNClO CHilCN 9. 3 55 14 28 2 11 5 NlClz.DME PhaP n-BuiNCl CHaCN 12. 3 45 17 6 13 6. NlClmDME PhaP n-BuiNBr 01mm 15. 6 82 26 39 5 12 7.. NiCl:.DME P113}? None 1 CHQCN 13.6 74 26 34 5 9 8.- NiCl1.D.\IE Ph P n-BmNClOi DMF l 14. 5 64 17 32 8 7 9 NiCl DAIE k Ph P n-BmNClO; DME 13.3 61 30 2 4 l 1.0 mmole b 2.0 nunol Heated from room temperature to 130 C. in a period of 2 hours, maintained at 130 C. for an additional 3 hours; under these conditions, but in the absence of a catalyst, the product mixture is typically 3% VCl-I, a trace of COD, and 2% polymer.
1 By The precent VCH includes a small amount Material nonvolatile at 100/0.075 mm.
i DUE =L2-dimethoxyethane.
of mixed octatrienes.
glpc; VCH=4-vinylcyclohexene, COD=1,5-cyclooctadiene, and CDT=cyclododecatrienes.
i Electrolyte, n-BuiNclOi, was present in the anode compartment but no electrolyte was present in the cathode compartment wherein the nickel complex is reduced.
rnmole. l DMF=N,N-dimethyliormamide.
propionitrile, N,N-dimethylformamide, yethane, and dioxane.
3. A method according to claim I wherein the soluble zerovalent nickel catalyst is electrochemically reduced in the presence of an electrolyte selected from the group consisting of tetraalkylammonium halides and tetraalkylammonium nitrates.
4. A method according to claim I wherein the electrochemical reduction of the nickel(ll) compound occurs under a constant voltage in the range of from about l.7 to about 3.6 volts.
1 ,Z-dimethylonk F i I

Claims (3)

  1. 2. A method according to claim 1 wherein the soluble zero-valent nickel catalyst is carried by an organic solvent selected from the group consisting of acetonitrile, sulfolane, propionitrile, N,N-dimethylformamide, 1,2-dimethyloxyethane, and dioxane.
  2. 3. A method according to claim 1 wherein the soluble zero-valent nickel catalyst is electrochemically reduced in the presence of an electrolyte selected from the group consisting of tetraalkylammonium halides and tetraalkylammonium nitrates.
  3. 4. A method according to claim 1 wherein the electrochemical reduction of the nickel(II) compound occurs under a constant voltage in the range of from about -1.7 to about -3.6 volts.
US59018A 1970-07-28 1970-07-28 Electrochemical generation of soluble nickel(o) catalysts Expired - Lifetime US3668086A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US5901870A 1970-07-28 1970-07-28

Publications (1)

Publication Number Publication Date
US3668086A true US3668086A (en) 1972-06-06

Family

ID=22020292

Family Applications (1)

Application Number Title Priority Date Filing Date
US59018A Expired - Lifetime US3668086A (en) 1970-07-28 1970-07-28 Electrochemical generation of soluble nickel(o) catalysts

Country Status (3)

Country Link
US (1) US3668086A (en)
BE (1) BE770613A (en)
CA (1) CA931902A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3887441A (en) * 1971-12-29 1975-06-03 Phillips Petroleum Co Electro-chemical synthesis of organonickel compounds
US4192721A (en) * 1979-04-24 1980-03-11 Baranski Andrzej S Method for producing a smooth coherent film of a metal chalconide
US4376682A (en) * 1980-04-07 1983-03-15 Tdc Technology Development Corporation Method for producing smooth coherent metal chalconide films
US4416825A (en) * 1982-02-23 1983-11-22 E. I. Du Pont De Nemours & Co. Preparation of zerovalent nickel complexes
US4557809A (en) * 1985-04-12 1985-12-10 Borg-Warner Chemicals, Inc. Electrochemical synthesis of zerovalent transition metal organophosphorus complexes
US5876587A (en) * 1995-12-29 1999-03-02 Rhone-Poulenc Chimie Electrochemical synthesis of transition metal/phosphine catalysts
US6333435B1 (en) * 1995-05-18 2001-12-25 Merck & Co., Inc. Process of synthesizing binaphthyl derivatives

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3131134A (en) * 1961-08-03 1964-04-28 Grumman Aircraft Engineering C Electroplating from an organic electrolytic solution
US3327015A (en) * 1962-11-30 1967-06-20 Shell Oil Co Olefin dimerization by nickel compounds
US3475293A (en) * 1964-09-22 1969-10-28 Monsanto Co Electrodeposition of metals
US3490745A (en) * 1966-10-05 1970-01-20 Columbian Carbon Nickel complex catalyst compositions
US3501332A (en) * 1967-04-28 1970-03-17 Shell Oil Co Metal plating of plastics
US3551467A (en) * 1967-05-31 1970-12-29 Mitsui Petrochemical Ind Process for preparing diolefin nickel halide complexes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3131134A (en) * 1961-08-03 1964-04-28 Grumman Aircraft Engineering C Electroplating from an organic electrolytic solution
US3327015A (en) * 1962-11-30 1967-06-20 Shell Oil Co Olefin dimerization by nickel compounds
US3475293A (en) * 1964-09-22 1969-10-28 Monsanto Co Electrodeposition of metals
US3490745A (en) * 1966-10-05 1970-01-20 Columbian Carbon Nickel complex catalyst compositions
US3501332A (en) * 1967-04-28 1970-03-17 Shell Oil Co Metal plating of plastics
US3551467A (en) * 1967-05-31 1970-12-29 Mitsui Petrochemical Ind Process for preparing diolefin nickel halide complexes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3887441A (en) * 1971-12-29 1975-06-03 Phillips Petroleum Co Electro-chemical synthesis of organonickel compounds
US4192721A (en) * 1979-04-24 1980-03-11 Baranski Andrzej S Method for producing a smooth coherent film of a metal chalconide
US4376682A (en) * 1980-04-07 1983-03-15 Tdc Technology Development Corporation Method for producing smooth coherent metal chalconide films
US4416825A (en) * 1982-02-23 1983-11-22 E. I. Du Pont De Nemours & Co. Preparation of zerovalent nickel complexes
US4557809A (en) * 1985-04-12 1985-12-10 Borg-Warner Chemicals, Inc. Electrochemical synthesis of zerovalent transition metal organophosphorus complexes
US6333435B1 (en) * 1995-05-18 2001-12-25 Merck & Co., Inc. Process of synthesizing binaphthyl derivatives
US5876587A (en) * 1995-12-29 1999-03-02 Rhone-Poulenc Chimie Electrochemical synthesis of transition metal/phosphine catalysts

Also Published As

Publication number Publication date
BE770613A (en) 1972-01-28
CA931902A (en) 1973-08-14

Similar Documents

Publication Publication Date Title
Semmelhack et al. Nitroxyl-mediated electrooxidation of alcohols to aldehydes and ketones
Becker et al. The electrochemistry of square planar macrocyclic nickel complexes and the reaction of Ni (I) with alkyl bromides: Nickel tetraamine complexes
Richmond et al. Oxidation-reduction and the electrocatalytic ligand substitution of tetracobalt clusters
Isse et al. Electrochemical synthesis of cyanoacetic acid from chloroacetonitrile and carbon dioxide
US3668086A (en) Electrochemical generation of soluble nickel(o) catalysts
Vol'pin et al. Reactivity of organocobalt (IV) chelate complexes toward nucleophiles: diversity of mechanisms
Root et al. Electrochemical behavior of selected imine derivatives, reductive carboxylation, α‐amino acid synthesis
Kelly et al. Electron-transfer and ligand-addition reactions of (TTP) Mn (NO) and (TTP) Co (NO) in a nonaqueous media
Jennings et al. Carbon-carbon bond formation via organometallic electrochemistry
Leach et al. The redox properties of Nicotinamide Methohalides
Koelle Electrochemistry of transition metal π-complexes. IV. Oxidation of cyclopentadienyl diolefine and cyclobutadiene cobalt complexes
Carugo et al. Using platinum (II) as a building block to two-electron redox systems. Crystal structure and redox behavior of cis-[PtII (3-ferrocenylpyridine) 2Cl2]
Boujlel et al. Cathodic cleavage of carbon-oxygen bonds (V). direct and indirect electrochemical reduction of epoxides
Mathieu et al. Electrochemical behaviour and chemical oxidation study of the thio-and phosphido-bridge binuclear iron complexes
Puxeddu et al. Reaction of electrogenerated [Co I (salen)]–with t-butyl bromide and t-butyl chloride
El Murr et al. Redox properties of iron carbonyl complexes
Howie et al. Electrochemical studies of oxo-and sulfido-bridged binuclear molybdenum (V) complexes in aprotic media
EP0083861B1 (en) Electrode and method of producing the same
US4238301A (en) Process for selective electrochemical dimerization of conjugated dienes to form vinylcyclohexenes
El Murr et al. Electrochemistry of half-sandwich and trinuclear sandwich complexes containing phosphonate ligands
McKinney et al. The electrochemical reduction of the triphenylsulfonium ion
US4923840A (en) Electrochemical catalytic system, the process for preparation thereof and its application to the production of aldehydes
US3887441A (en) Electro-chemical synthesis of organonickel compounds
Drake et al. Redox activation of the hexanuclear ruthenium cluster [Ru 6 C (CO) 16] 2–using oxidative addition
Phelps et al. One-vs. two-electron oxidations of tetraarylethylenes in aprotic solvents