US3664344A - Tyned cryosurgical probe - Google Patents

Tyned cryosurgical probe Download PDF

Info

Publication number
US3664344A
US3664344A US72317A US3664344DA US3664344A US 3664344 A US3664344 A US 3664344A US 72317 A US72317 A US 72317A US 3664344D A US3664344D A US 3664344DA US 3664344 A US3664344 A US 3664344A
Authority
US
United States
Prior art keywords
tynes
tissue
chamber
cryogenic fluid
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US72317A
Inventor
Michael D Bryne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brymill Corp
Original Assignee
Brymill Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brymill Corp filed Critical Brymill Corp
Application granted granted Critical
Publication of US3664344A publication Critical patent/US3664344A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques

Definitions

  • cryosurgery has recently undergone a rebirth, with new techniques for utilizing cryogenic instruments to treat various types of disorders and disfigurements.
  • An important advance has been development of the technique of applying cryogenic fluid, in substantially liquid form, directly to tissue which is to be frozen, as set forth in my prior co-pending application Ser. No. 683,351 filed on Nov. 15, 1967, now US Pat. No. 3,534,739 and entitled CRYOS URGICAL DELIVERY AND APPLICATION OF LIQUIFIED GAS COOLANT.
  • the cryogen may be confined and its point of contact closely controlled by means of chambers, as set forth in my prior copending application Ser. No. 728,536 filed on May 13, 1968 and entitled CRYOGENIC APPLICATION CHAMBERS AND METHODS.
  • closed probes in which the cryogen freely circulates may be used.
  • cryogenic temperatures are limited to the surface of the tissue which is to be frozen.
  • the surface freezes it forms ice, which aids in conducting the heat out of the tissue, so that an iceball grows into the tissue over a period of time as the cryogenic temperature is applied.
  • the iceball which can be formed through surface application generally has a configuration which is less deep than the radius of the surface area of application. Additionally, this necessarily limits the ultimate depth which can be achieved in any given case, since freezing of an extremely large surface area would be required in order to get the desired depth of a much smaller area. In cases where the surface of the tissue to be frozen is relatively dry, in contrast with wet masses, this problem is further compounded.
  • An object of the present invention is to provide a cryosurgical probe having an extremely high freezing capability; another object of the present invention is to provide a cryosurgical probe capable of freezing with a greater ratio of depth to surface area than has heretofore been obtainable.
  • a closed cryosurgical probe has tynes mounted in the application surface thereof, said tynes being adapted to be inserted into a mass of tissue to be frozen, said probe adapted to receive-liquid cryogenic fluid at a surface immediately adjacent and metallurgically bonded to said tynes.
  • the present invention can be configured in a variety of ways so as to permit utilization in a wide variety of surgical procedures.
  • the invention in accordance herewith is readily adapted to be utilized with a wide variety of cryogenic fluid delivery systems.
  • the invention provides the capability of achieving freezes with large ratios of depth to surface area in a carefully controlled manner.
  • FIG, 1 is a sectioned side elevation of a first embodiment of a cryosurgical probe in accordance with the present invention
  • FIG. 2 is a front elevation of the embodiment illustrated in FIG. 1;
  • FIG. 3 is a sectioned, side elevation illustrative of the utilization of a cryosurgical probe in accordance with the present invention in freezing tissue;
  • FIG. 4 is a partially sectioned, side elevation of a second embodiment of a cryosurgical probe in accordance with the present invention.
  • FIG. 5 is aperspective view illustrating further the embodiment ofFIG. 4.
  • a simple embodiment of a probe 8 in accordance with the present invention includes a chamber 10 formed by a cylinder 12 which is provided with threads 14 at an open, proximal end 16 thereof, andis closed by a distal end wall 18 at an application end 20 thereof.
  • Metallurgically bonded to the wall 18 are a plurality of tynes 2 2.
  • the tynes 22 are solid cylinders having conical tips to permit easily piercing tissue to be frozen, and each is provided with a portion 24 having a reduced diameter for insertion into related holes 26 formed in the wall 18, thereby to provide a maximum surface joint for maximum heat conductivity between the wall 18 and the tynes 22, as well as sturdy construction.
  • the tynes 22 be metallurgically bonded to the wall 18; this aspect is satisfied if the wall 18 and the tynes 22 are machined from a single block of starting material, and is equally satisfied if the tynes 22 are soldered, brazed or welded to the wall 18.
  • the tynes 22 may instead butt onto the outer surface of the wall 18, provided suitable metallurgical bonding is utilized.
  • the threads 14 are adapted to receive similar threads 28 at the application end of a cryogenic fluid delivery apparatus, a portion 30 of which is illustrated in FIG. 1.
  • the nature of the delivery apparatus is not significant, so long as it is capable of providing cryogenic fiuid having a boiling point below -l00 C., such as nitrogen, in substantially liquid form to the application end 20 of the probe 8, and venting the gas which results from the cryogen being boiled by the heat of the tissue to which the probe is applied.
  • a delivery system may have a coaxial arrangement with an inner tube 32 for delivering the liquid cryogen, spaced from an outer wall 3.4 so as to provide a passage 36 to permit gases to return toward the instrument.
  • a simple delivery system capable of delivering cryogenic fluid to the probe of FIG. I is illustrated in my co-pending US Pat. No. 3,534,739 referred to hereinbefore. Numerous other suitable delivery systems are known and generally available.
  • FIG. 3 Utilization of the present invention is illustrated in FIG. 3. Therein, the probe 8 is forced against substantially the central portion of tissue 38 which is to be frozen, so that the tynes 22 are firmly embedded in the tissue. Then, a flow of cryogenic fluid is provided to the chamber 10 so that the wall 18 and that portion of the tynes 22 exposed to the chamber 10 are in direct contact with the cryogenic fluid. In a preferred utilization of the present invention, nitrogen in substantially liquid form is introduced directly to the chamber 10 so that the tynes are exposed to a temperature of substantially -l96 C. (T3 20 F. In such utilization, it has been found that the tynes can be maintained at at least --l C.
  • the nitrogen is capable of maintaining the tissue at -1 80 C. so as to establish a substantial, deep iceball as illustrated by the dotted line 40.
  • the depth of the iceball has been found to be much greater with respect to the cross sectional area of surface which is frozen than is obtainable with any cryosurgical instruments or application methods known in the art heretofore.
  • One manner of utilizing the present invention is to establish an iceball as described with respect to FIG. 3 hereinbefore, and then advance the margin of freezing still deeper by means of nitrogen applied directly to the surface, after removing the probe 8 from the position shown in FIG. 3.
  • this phenomenon is not fully understood, it is believed that this process results from the fact that the gross heat removed by the tyned probe makes subsequent freezing easier; also, the ice conducts the heat to the surface. This can have the effect of advancing the iceball deeper as illustrated by the dashed lines 42.
  • the probe 8a is comprised of two cylinders 12a, 12b mounted at right angles to each other. As is also illustrated in FIG. 5, this probe may be manufactured by providing a 45 cut 44 at the application end of the cylinder 12a, providing a hole 46 through the longer side of the cylinder 12a, shaping the cylinder 12b to match the cylinder 12a (as illustrated in FIG. 5 and joining the cylinders together.
  • the probe 80 is provided with a nitrogen delivery tube 48 which is spot-welded at a point adjacent to the hole 46 so as to insure that cryogenic fluid will communicate between the chamber a provided in the cylinder 12b and the cryogenic fluid tube 48.
  • the tube 48 is adapted to be received by a suitable fluid duct 50 in a cryosurgical delivery instrument 30a, which instrument must provide cryogenic fluid to the probe 8 a and vent the gases therefrom as is described with respect to FIGS. 1 and 2 hereinbefore. Notice however that it has been found immaterial to the operation of the present invention whether the cryogenic fluid is delivered through the tube 48 and vented through the chamber 10b formed within the cylinder 12a outside of the tube 48, or whether the cryogenic fluid is delivered to the chamber 10b and the gases thereof vented through the tube 48 and thence through a venting duct 52 in the delivery apparatus 30a.
  • the present invention is readily adapted to be used with cryogenic delivery instruments 30a which have a center feed and outside return, or an outside feed and a center return, alternatively.
  • the remainder of the probe 8a is similar to that described with respect to the probe 8 of FIGS. 1 and 2 hereinbefore, and will not be described further. However, it is important that there be delivery of cryogenic fluid directly to the chamber 10a so that the tynes receive maximum heat transfer therewith, as described hereinbefore.
  • a procedure to which the embodiment of FIG. 4 is particularly well-suited relates to large lesions at the base of the tongue with no permanent damage to the large blood vessels that nurture the remainder of the tongue.
  • the necrotized area heals, the remainder of the tongue is maintained in a suitably healthy condition, since there has been no loss of blood flow thereto.
  • Alternative procedures which are available include a relatively superficial freeze utilizing surface-applied cryogens and cryogenic probes in accordance with the prior art, and also include the rather drastic procedure of a total glossectomy (in which the entire tongue is cut off at the base).
  • a significantly less disabling alternative procedure is made available by the utilization of the present invention.
  • cryosurgery the method of freezing a mass of soft, living tissue comprising the steps of:
  • a cryosurgical instrument for destroying living animal tissue by the rapid, active cooling of heat conducting tynes embedded in said tissue comprising:
  • a chamber formed of walls and having a proximal end adapted to receive a cryogenic fluid and a distal end closed by a thermally conductive metallic end wall;
  • cryogenic fluid delivery means connected to said chamber and including a reservoir adapted to receive a liquefied gas cryogenic fluid having a boiling point below l00 C., for delivering, with said cryogenic fluid in said reservoir, :1 sufiicient flow of said cryogenic fluid to said proximal end of said chamber, when said chamber is in position with said tynes inserted into the tissue, so as to solidly freeze the entire portion of the tissue included between said tynes.

Abstract

Freezing of large tissue masses to significant depths is achieved by utilizing a tyned cryosurgical probe having sharpened tynes that are embedded directly into the tissue to be frozen. Nitrogen is delivered in substantially liquid form directly to the exposed ends of the tynes or to metallic surfaces metallurgically bonded thereto. Examples of uses include starting a deep iceball with a tyned probe in accordance herewith and advancing the iceball deeper with other apparatus.

Description

United States Patent Bryne [54] TYNED CRYOSURGICAL PROBE [72] Inventor: Michael D. Bryne, Vernon, Conn.
[73] Assignee: Brymlll Corp., Vernon, Conn.
[22] Filed: Sept. 15, 1970 [21] Appl.No.: 72,317
[52] US. Cl. ..128/303.1, 62/293, 128/329, 128/400, [28/401 [51] Int. Cl ..A6lb 17/36, A6lf 7/12, F25d 3/00 [58] Field of Search ..62/293;128/303.1, 303.18, 128/329, 400, 401
[56] References Cited UNITED STATES PATENTS 2,672,032 3/1954 Towse ..128/303.1UX
[ 51 May 23, 1972 3,266,492 8/1966 Steinberg l28/303.1 3 ,272,203 9/ l 966 Chato 3,485,060 9/1969 Ziegler l 28/303.l UX
Primary Examiner-Channing L. Pace Attomey-Melvin Pearson Williams ABSTRACT Freezing of large tissue masses to significant depths is achieved by utilizing a tyned cryosurgical probe having sharpened tynes that are embedded directly into the tissue to be frozen. Nitrogen is delivered in substantially liquid form directly to the exposed ends of the tynes or to metallic surfaces metallurgically bonded thereto. Examples of uses include starting a deep iceball with a tyned probe in accordance herewith and advancing the iceball deeper with other apparatus.
2 Claims, 5 Drawing figures PATENTEDMAYZB I972 3. 664. 344
I! V $5V//////////////7////// /////////////1i/////4 FIG. 4
8a M m M w ii 45 1 ma INVENTOR MICHAEL D. BRYNE ATTORNEY TYNED CRYOSURGICAL PROBE BACKGROUND OF THE INVENTION 1. Field of Invention This invention relates to cryosurgery, and more particularly to a tyned cryosurgical probe.
2. Description of the Prior Art The field of cryosurgery has recently undergone a rebirth, with new techniques for utilizing cryogenic instruments to treat various types of disorders and disfigurements. An important advance has been development of the technique of applying cryogenic fluid, in substantially liquid form, directly to tissue which is to be frozen, as set forth in my prior co-pending application Ser. No. 683,351 filed on Nov. 15, 1967, now US Pat. No. 3,534,739 and entitled CRYOS URGICAL DELIVERY AND APPLICATION OF LIQUIFIED GAS COOLANT. In cases where uncontrolled application of cryogenic fluid may adversely affect surrounding tissue, the cryogen may be confined and its point of contact closely controlled by means of chambers, as set forth in my prior copending application Ser. No. 728,536 filed on May 13, 1968 and entitled CRYOGENIC APPLICATION CHAMBERS AND METHODS. In other cases, closed probes in which the cryogen freely circulates may be used.
In each of the above techniques, the application of cryogenic temperatures is limited to the surface of the tissue which is to be frozen. When the surface freezes, it forms ice, which aids in conducting the heat out of the tissue, so that an iceball grows into the tissue over a period of time as the cryogenic temperature is applied. Assuming a round application pattern is used, the iceball which can be formed through surface application generally has a configuration which is less deep than the radius of the surface area of application. Additionally, this necessarily limits the ultimate depth which can be achieved in any given case, since freezing of an extremely large surface area would be required in order to get the desired depth of a much smaller area. In cases where the surface of the tissue to be frozen is relatively dry, in contrast with wet masses, this problem is further compounded.
SUMMARY OF THE INVENTION An object of the present invention is to provide a cryosurgical probe having an extremely high freezing capability; another object of the present invention is to provide a cryosurgical probe capable of freezing with a greater ratio of depth to surface area than has heretofore been obtainable.
According to the present invention, a closed cryosurgical probe has tynes mounted in the application surface thereof, said tynes being adapted to be inserted into a mass of tissue to be frozen, said probe adapted to receive-liquid cryogenic fluid at a surface immediately adjacent and metallurgically bonded to said tynes.
The present invention can be configured in a variety of ways so as to permit utilization in a wide variety of surgical procedures. The invention in accordance herewith is readily adapted to be utilized with a wide variety of cryogenic fluid delivery systems. The invention provides the capability of achieving freezes with large ratios of depth to surface area in a carefully controlled manner.
Other objects, features and advantages of the present invention will become more apparent in the light of the following detailed description of preferred embodiments thereof, as illustrated in the accompanying drawing.
BRIEF DESCRIPTION OF THE DRAWING FIG, 1 is a sectioned side elevation of a first embodiment of a cryosurgical probe in accordance with the present invention;
FIG. 2 is a front elevation of the embodiment illustrated in FIG. 1;
FIG. 3 is a sectioned, side elevation illustrative of the utilization of a cryosurgical probe in accordance with the present invention in freezing tissue;
FIG. 4 is a partially sectioned, side elevation of a second embodiment of a cryosurgical probe in accordance with the present invention; and
FIG. 5 is aperspective view illustrating further the embodiment ofFIG. 4.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now to FIGS. 1 and 2, a simple embodiment of a probe 8 in accordance with the present invention includes a chamber 10 formed by a cylinder 12 which is provided with threads 14 at an open, proximal end 16 thereof, andis closed by a distal end wall 18 at an application end 20 thereof. Metallurgically bonded to the wall 18 are a plurality of tynes 2 2. In the embodiments herein, the tynes 22 are solid cylinders having conical tips to permit easily piercing tissue to be frozen, and each is provided with a portion 24 having a reduced diameter for insertion into related holes 26 formed in the wall 18, thereby to provide a maximum surface joint for maximum heat conductivity between the wall 18 and the tynes 22, as well as sturdy construction. In accordance with the invention, it is preferred that the tynes 22 be metallurgically bonded to the wall 18; this aspect is satisfied if the wall 18 and the tynes 22 are machined from a single block of starting material, and is equally satisfied if the tynes 22 are soldered, brazed or welded to the wall 18. Although utilization of the reduced portion 24 for insertion into the hole 26 is preferred, the tynes 22; may instead butt onto the outer surface of the wall 18, provided suitable metallurgical bonding is utilized.
The threads 14 are adapted to receive similar threads 28 at the application end of a cryogenic fluid delivery apparatus, a portion 30 of which is illustrated in FIG. 1. The nature of the delivery apparatus is not significant, so long as it is capable of providing cryogenic fiuid having a boiling point below -l00 C., such as nitrogen, in substantially liquid form to the application end 20 of the probe 8, and venting the gas which results from the cryogen being boiled by the heat of the tissue to which the probe is applied. As illustrated in FIG. 1, such a delivery system may have a coaxial arrangement with an inner tube 32 for delivering the liquid cryogen, spaced from an outer wall 3.4 so as to provide a passage 36 to permit gases to return toward the instrument. A simple delivery system capable of delivering cryogenic fluid to the probe of FIG. I is illustrated in my co-pending US Pat. No. 3,534,739 referred to hereinbefore. Numerous other suitable delivery systems are known and generally available.
Utilization of the present invention is illustrated in FIG. 3. Therein, the probe 8 is forced against substantially the central portion of tissue 38 which is to be frozen, so that the tynes 22 are firmly embedded in the tissue. Then, a flow of cryogenic fluid is provided to the chamber 10 so that the wall 18 and that portion of the tynes 22 exposed to the chamber 10 are in direct contact with the cryogenic fluid. In a preferred utilization of the present invention, nitrogen in substantially liquid form is introduced directly to the chamber 10 so that the tynes are exposed to a temperature of substantially -l96 C. (T3 20 F. In such utilization, it has been found that the tynes can be maintained at at least --l C. without regard to the character of the tissue in which it is embedded: even with tissue having a lot of warm blood flowing therethrough, the nitrogen is capable of maintaining the tissue at -1 80 C. so as to establish a substantial, deep iceball as illustrated by the dotted line 40. The depth of the iceball has been found to be much greater with respect to the cross sectional area of surface which is frozen than is obtainable with any cryosurgical instruments or application methods known in the art heretofore.
One manner of utilizing the present invention is to establish an iceball as described with respect to FIG. 3 hereinbefore, and then advance the margin of freezing still deeper by means of nitrogen applied directly to the surface, after removing the probe 8 from the position shown in FIG. 3. Although this phenomenon is not fully understood, it is believed that this process results from the fact that the gross heat removed by the tyned probe makes subsequent freezing easier; also, the ice conducts the heat to the surface. This can have the effect of advancing the iceball deeper as illustrated by the dashed lines 42.
Another embodiment of a probe in accordance with the present invention is illustrated in FIG. 4. Therein, the probe 8a is comprised of two cylinders 12a, 12b mounted at right angles to each other. As is also illustrated in FIG. 5, this probe may be manufactured by providing a 45 cut 44 at the application end of the cylinder 12a, providing a hole 46 through the longer side of the cylinder 12a, shaping the cylinder 12b to match the cylinder 12a (as illustrated in FIG. 5 and joining the cylinders together. In a preferred form as illustrated in FIG. 4, the probe 80 is provided with a nitrogen delivery tube 48 which is spot-welded at a point adjacent to the hole 46 so as to insure that cryogenic fluid will communicate between the chamber a provided in the cylinder 12b and the cryogenic fluid tube 48. The tube 48 is adapted to be received by a suitable fluid duct 50 in a cryosurgical delivery instrument 30a, which instrument must provide cryogenic fluid to the probe 8 a and vent the gases therefrom as is described with respect to FIGS. 1 and 2 hereinbefore. Notice however that it has been found immaterial to the operation of the present invention whether the cryogenic fluid is delivered through the tube 48 and vented through the chamber 10b formed within the cylinder 12a outside of the tube 48, or whether the cryogenic fluid is delivered to the chamber 10b and the gases thereof vented through the tube 48 and thence through a venting duct 52 in the delivery apparatus 30a. Thus, the present invention is readily adapted to be used with cryogenic delivery instruments 30a which have a center feed and outside return, or an outside feed and a center return, alternatively. The remainder of the probe 8a is similar to that described with respect to the probe 8 of FIGS. 1 and 2 hereinbefore, and will not be described further. However, it is important that there be delivery of cryogenic fluid directly to the chamber 10a so that the tynes receive maximum heat transfer therewith, as described hereinbefore.
A procedure to which the embodiment of FIG. 4 is particularly well-suited relates to large lesions at the base of the tongue with no permanent damage to the large blood vessels that nurture the remainder of the tongue. Thus, while the necrotized area heals, the remainder of the tongue is maintained in a suitably healthy condition, since there has been no loss of blood flow thereto. Alternative procedures which are available include a relatively superficial freeze utilizing surface-applied cryogens and cryogenic probes in accordance with the prior art, and also include the rather drastic procedure of a total glossectomy (in which the entire tongue is cut off at the base). Thus, a significantly less disabling alternative procedure is made available by the utilization of the present invention.
Other procedures for which the present invention is wellsuited, include the removal of any large or especially thick lesions, or any carcinomas of a significant size. Thus, although the direct application of liquid cryogen to the surface of a le' sion provides the greatest cooling ability at the surface, the present invention provides an ability to achieve greater depth and therefore finds application in a variety of procedures.
Although the invention has been shown and described with respect to preferred embodiments thereof, it should be understood by those skilled in the art that the foregoing and various other changes and omissions in the form and detail thereof may be made therein without departing from the spirit and the scope of the invention.
Having thus described particular embodiments of my invention, that which I claim as new and desire to secure by Letters Patent of the United States is:
1. In cryosurgery, the method of freezing a mass of soft, living tissue comprising the steps of:
inserting into a mass of soft, living tissue to be frozen a plurality of closel spaced sharp metal tynes which are metallurgically onded to the outside surface of a metallic wall of a chamber; and
thereafter directing a sufficient flow of liquefied gas cryogenic fluid having a boiling point below l00 C. to the inner surface of the metallic wall of said chamber to which said tynes are metallurgically bonded to solidly freeze the entire portion of said mass included between said tynes.
2. A cryosurgical instrument for destroying living animal tissue by the rapid, active cooling of heat conducting tynes embedded in said tissue, comprising:
a chamber formed of walls and having a proximal end adapted to receive a cryogenic fluid and a distal end closed by a thermally conductive metallic end wall;
a plurality of closely spaced sharp metal tynes adapted to be inserted into living animal tissue which is to be destroyed, said tynes being metallurgically bonded to said end wall of said chamber and oriented outwardly therefrom; and
cryogenic fluid delivery means connected to said chamber and including a reservoir adapted to receive a liquefied gas cryogenic fluid having a boiling point below l00 C., for delivering, with said cryogenic fluid in said reservoir, :1 sufiicient flow of said cryogenic fluid to said proximal end of said chamber, when said chamber is in position with said tynes inserted into the tissue, so as to solidly freeze the entire portion of the tissue included between said tynes.

Claims (2)

1. In cryosurgery, the method of freezing a mass of soft, living tissue comprising the steps of: inserting into a mass of soft, living tissue to be frozen a plurality of closely spaced sharp metal tynes which are metallurgically bonded to the outside surface of a metallic wall of a chamber; and thereafter directing a sufficient flow of liquefied gas cryogenic fluid having a boiling point below -100* C. to the inner surface of the metallic wall of said chamber to which said tynes are metallurgically bonded to solidly freeze the entire portion of said mass included between said tynes.
2. A cryosurgical instrument for destroying living animal tissue by the rapid, active cooling of heat conducting tynes embedded in said tissue, comprising: a chamber formed of walls and having a proximal end adapted to receive a cryogenic fluid and a distal end closed by a thermally conductive metallic end wall; a plurality of closely spaced sharp metal tynes adapted to be inserted into living animal tissue which is to be destroyed, said tynes being metallurgically bonded to said end wall of said chamber and oriented outwardly therefrom; and cryogenic fluid delivery means connected to said chamber and including a reservoir adapted to receive a liquefied gas cryogenic fluid having a boiling point below -100* C., for delivering, with said cryogenic fluid in said reservoir, a sufficient flow of said cryogenic fluid to said proximal end of said chamber, when said chamber is in position with said tynes inserted into the tissue, so as to solidly freeze the entire portion of the tissue included between said tynes.
US72317A 1970-09-15 1970-09-15 Tyned cryosurgical probe Expired - Lifetime US3664344A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US7231770A 1970-09-15 1970-09-15

Publications (1)

Publication Number Publication Date
US3664344A true US3664344A (en) 1972-05-23

Family

ID=22106839

Family Applications (1)

Application Number Title Priority Date Filing Date
US72317A Expired - Lifetime US3664344A (en) 1970-09-15 1970-09-15 Tyned cryosurgical probe

Country Status (1)

Country Link
US (1) US3664344A (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2345771A1 (en) * 1972-09-12 1974-03-21 Frigitronics Of Conn Inc CRYOSURGICAL INSTRUMENT
US3911924A (en) * 1973-04-19 1975-10-14 Draegerwerk Ag Cryoprobe
US3929136A (en) * 1973-12-08 1975-12-30 Dornier System Gmbh Apparatus for low-temperature surgery
US4190100A (en) * 1978-03-24 1980-02-26 International Telephone And Telegraph Corporation Internal heat exchanger for meat
US4211231A (en) * 1978-05-15 1980-07-08 Cryomedics, Inc. Cryosurgical instrument
US5281213A (en) * 1992-04-16 1994-01-25 Implemed, Inc. Catheter for ice mapping and ablation
US5281215A (en) * 1992-04-16 1994-01-25 Implemed, Inc. Cryogenic catheter
US5423807A (en) * 1992-04-16 1995-06-13 Implemed, Inc. Cryogenic mapping and ablation catheter
US20040049177A1 (en) * 2000-10-24 2004-03-11 Roni Zvuloni Multiple cryoprobe apparatus and method
US20050224085A1 (en) * 2000-10-24 2005-10-13 Roni Zvuloni Apparatus and method for compressing a gas, and cryosurgery system and method utilizing same
US20050251124A1 (en) * 2001-05-21 2005-11-10 Galil Medical Ltd. Apparatus and method for cryosurgery within a body cavity
US20060278093A1 (en) * 2004-01-13 2006-12-14 Eytan Biderman Feeding formula appliance
US20070088247A1 (en) * 2000-10-24 2007-04-19 Galil Medical Ltd. Apparatus and method for thermal ablation of uterine fibroids
US20070129714A1 (en) * 2005-05-20 2007-06-07 Echo Healthcare Llc Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (FAT)
US20080045934A1 (en) * 2000-10-24 2008-02-21 Galil Medical Ltd. Device and method for coordinated insertion of a plurality of cryoprobes
US20080051774A1 (en) * 2001-05-21 2008-02-28 Galil Medical Ltd. Device and method for coordinated insertion of a plurality of cryoprobes
US20080051776A1 (en) * 2001-05-21 2008-02-28 Galil Medical Ltd. Thin uninsulated cryoprobe and insulating probe introducer
US20080114346A1 (en) * 2006-09-18 2008-05-15 Arbel Medical Ltd. Cryosurgical Instrument
US20080140061A1 (en) * 2006-09-08 2008-06-12 Arbel Medical Ltd. Method And Device For Combined Treatment
US20080154254A1 (en) * 2006-12-21 2008-06-26 Myoscience, Inc. Dermal and Transdermal Cryogenic Microprobe Systems and Methods
US20080183164A1 (en) * 2005-05-20 2008-07-31 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US20080200910A1 (en) * 2007-02-16 2008-08-21 Myoscience, Inc. Replaceable and/or Easily Removable Needle Systems for Dermal and Transdermal Cryogenic Remodeling
US20080208181A1 (en) * 2007-01-19 2008-08-28 Arbel Medical Ltd. Thermally Insulated Needles For Dermatological Applications
US20090248001A1 (en) * 2007-11-14 2009-10-01 Myoscience, Inc. Pain management using cryogenic remodeling
US20090292279A1 (en) * 2006-01-26 2009-11-26 Galil Medical Ltd. Device and Method for Coordinated Insertion of a Plurality of Cryoprobes
US20100162730A1 (en) * 2007-06-14 2010-07-01 Arbel Medical Ltd. Siphon for delivery of liquid cryogen from dewar flask
US20100274236A1 (en) * 2009-04-23 2010-10-28 Krimsky William S Apparatuses and methods for applying a cryogenic effect to tissue and cutting tissue
US20100305439A1 (en) * 2009-05-27 2010-12-02 Eyal Shai Device and Method for Three-Dimensional Guidance and Three-Dimensional Monitoring of Cryoablation
US7938822B1 (en) 2010-05-12 2011-05-10 Icecure Medical Ltd. Heating and cooling of cryosurgical instrument using a single cryogen
US7967815B1 (en) 2010-03-25 2011-06-28 Icecure Medical Ltd. Cryosurgical instrument with enhanced heat transfer
US7967814B2 (en) 2009-02-05 2011-06-28 Icecure Medical Ltd. Cryoprobe with vibrating mechanism
US8080005B1 (en) 2010-06-10 2011-12-20 Icecure Medical Ltd. Closed loop cryosurgical pressure and flow regulated system
US20110313411A1 (en) * 2008-08-07 2011-12-22 The General Hospital Corporation Method and apparatus for dermatological hypopigmentation
US8083733B2 (en) 2008-04-16 2011-12-27 Icecure Medical Ltd. Cryosurgical instrument with enhanced heat exchange
US8162812B2 (en) 2009-03-12 2012-04-24 Icecure Medical Ltd. Combined cryotherapy and brachytherapy device and method
US20120265186A1 (en) * 2009-05-20 2012-10-18 Keith Burger Steerable curvable ablation catheter for vertebroplasty
US20140066914A1 (en) * 2003-04-10 2014-03-06 Boston Scientific Scimed, Inc. Cryotreatment devices and methods of forming conduction blocks
US9017318B2 (en) 2012-01-20 2015-04-28 Myoscience, Inc. Cryogenic probe system and method
US9066712B2 (en) 2008-12-22 2015-06-30 Myoscience, Inc. Integrated cryosurgical system with refrigerant and electrical power source
US9155584B2 (en) 2012-01-13 2015-10-13 Myoscience, Inc. Cryogenic probe filtration system
US9241753B2 (en) 2012-01-13 2016-01-26 Myoscience, Inc. Skin protection for subdermal cryogenic remodeling for cosmetic and other treatments
US9295512B2 (en) 2013-03-15 2016-03-29 Myoscience, Inc. Methods and devices for pain management
US9314290B2 (en) 2012-01-13 2016-04-19 Myoscience, Inc. Cryogenic needle with freeze zone regulation
US9610112B2 (en) 2013-03-15 2017-04-04 Myoscience, Inc. Cryogenic enhancement of joint function, alleviation of joint stiffness and/or alleviation of pain associated with osteoarthritis
US9668800B2 (en) 2013-03-15 2017-06-06 Myoscience, Inc. Methods and systems for treatment of spasticity
US9855166B2 (en) 2011-11-16 2018-01-02 The General Hospital Corporation Method and apparatus for cryogenic treatment of skin tissue
US9974684B2 (en) 2011-11-16 2018-05-22 The General Hospital Corporation Method and apparatus for cryogenic treatment of skin tissue
US10130409B2 (en) 2013-11-05 2018-11-20 Myoscience, Inc. Secure cryosurgical treatment system
US10463380B2 (en) 2016-12-09 2019-11-05 Dfine, Inc. Medical devices for treating hard tissues and related methods
US10478241B2 (en) 2016-10-27 2019-11-19 Merit Medical Systems, Inc. Articulating osteotome with cement delivery channel
US10624652B2 (en) 2010-04-29 2020-04-21 Dfine, Inc. System for use in treatment of vertebral fractures
US10660656B2 (en) 2017-01-06 2020-05-26 Dfine, Inc. Osteotome with a distal portion for simultaneous advancement and articulation
US10765467B2 (en) 2015-09-04 2020-09-08 R2 Technologies, Inc. Medical systems, methods, and devices for hypopigmentation cooling treatments
US10888366B2 (en) 2013-03-15 2021-01-12 Pacira Cryotech, Inc. Cryogenic blunt dissection methods and devices
US11013547B2 (en) 2017-06-30 2021-05-25 R2 Technologies, Inc. Dermatological cryospray devices having linear array of nozzles and methods of use
US11026744B2 (en) 2016-11-28 2021-06-08 Dfine, Inc. Tumor ablation devices and related methods
US11134998B2 (en) 2017-11-15 2021-10-05 Pacira Cryotech, Inc. Integrated cold therapy and electrical stimulation systems for locating and treating nerves and associated methods
US11197681B2 (en) 2009-05-20 2021-12-14 Merit Medical Systems, Inc. Steerable curvable vertebroplasty drill
US11266524B2 (en) 2016-06-03 2022-03-08 R2 Technologies, Inc. Medical methods and systems for skin treatment
US11311327B2 (en) 2016-05-13 2022-04-26 Pacira Cryotech, Inc. Methods and systems for locating and treating nerves with cold therapy
US11510723B2 (en) 2018-11-08 2022-11-29 Dfine, Inc. Tumor ablation device and related systems and methods
US11633224B2 (en) 2020-02-10 2023-04-25 Icecure Medical Ltd. Cryogen pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2672032A (en) * 1951-10-19 1954-03-16 Towse Robert Albert Edward Carcass freezing device
US3266492A (en) * 1963-09-06 1966-08-16 Samuel B Steinberg Cryosurgery probe device
US3272203A (en) * 1963-04-29 1966-09-13 John C Chato Surgical probe
US3485060A (en) * 1968-05-16 1969-12-23 Beech Aircraft Corp Livestock branding apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2672032A (en) * 1951-10-19 1954-03-16 Towse Robert Albert Edward Carcass freezing device
US3272203A (en) * 1963-04-29 1966-09-13 John C Chato Surgical probe
US3266492A (en) * 1963-09-06 1966-08-16 Samuel B Steinberg Cryosurgery probe device
US3485060A (en) * 1968-05-16 1969-12-23 Beech Aircraft Corp Livestock branding apparatus

Cited By (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2345771A1 (en) * 1972-09-12 1974-03-21 Frigitronics Of Conn Inc CRYOSURGICAL INSTRUMENT
US3911924A (en) * 1973-04-19 1975-10-14 Draegerwerk Ag Cryoprobe
US3929136A (en) * 1973-12-08 1975-12-30 Dornier System Gmbh Apparatus for low-temperature surgery
US4190100A (en) * 1978-03-24 1980-02-26 International Telephone And Telegraph Corporation Internal heat exchanger for meat
US4211231A (en) * 1978-05-15 1980-07-08 Cryomedics, Inc. Cryosurgical instrument
US5281213A (en) * 1992-04-16 1994-01-25 Implemed, Inc. Catheter for ice mapping and ablation
US5281215A (en) * 1992-04-16 1994-01-25 Implemed, Inc. Cryogenic catheter
US5423807A (en) * 1992-04-16 1995-06-13 Implemed, Inc. Cryogenic mapping and ablation catheter
US7150743B2 (en) * 2000-10-24 2006-12-19 Galil Medical Ltd. Multiple cryoprobe apparatus and method
US20040049177A1 (en) * 2000-10-24 2004-03-11 Roni Zvuloni Multiple cryoprobe apparatus and method
US7407501B2 (en) 2000-10-24 2008-08-05 Galil Medical Ltd. Apparatus and method for compressing a gas, and cryosurgery system and method utilizing same
US20050224085A1 (en) * 2000-10-24 2005-10-13 Roni Zvuloni Apparatus and method for compressing a gas, and cryosurgery system and method utilizing same
US20080300586A1 (en) * 2000-10-24 2008-12-04 Galil Medical Ltd. Apparatus and method for compressing a gas, and cryosurgery system and method utilizing same
US20070088247A1 (en) * 2000-10-24 2007-04-19 Galil Medical Ltd. Apparatus and method for thermal ablation of uterine fibroids
US8066697B2 (en) * 2000-10-24 2011-11-29 Galil Medical Ltd. Multiple cryoprobe delivery apparatus
US20070167938A1 (en) * 2000-10-24 2007-07-19 Galil Medical Ltd. Multiple cryoprobe delivery apparatus
US20080045934A1 (en) * 2000-10-24 2008-02-21 Galil Medical Ltd. Device and method for coordinated insertion of a plurality of cryoprobes
US20080051774A1 (en) * 2001-05-21 2008-02-28 Galil Medical Ltd. Device and method for coordinated insertion of a plurality of cryoprobes
US20080051776A1 (en) * 2001-05-21 2008-02-28 Galil Medical Ltd. Thin uninsulated cryoprobe and insulating probe introducer
US20050251124A1 (en) * 2001-05-21 2005-11-10 Galil Medical Ltd. Apparatus and method for cryosurgery within a body cavity
US9033967B2 (en) * 2003-04-10 2015-05-19 Boston Scientific Scimed, Inc. Cryotreatment devices and methods of forming conduction blocks
US20140066914A1 (en) * 2003-04-10 2014-03-06 Boston Scientific Scimed, Inc. Cryotreatment devices and methods of forming conduction blocks
US9339322B2 (en) 2003-04-10 2016-05-17 Boston Scientific Scimed Inc. Cryotreatment devices and methods of forming conduction blocks
US9750556B2 (en) 2003-04-10 2017-09-05 Boston Scientific Scimed, Inc. Cryotreatment devices and methods of forming conduction blocks
US8007847B2 (en) 2004-01-13 2011-08-30 Eytan Biderman Feeding formula appliance
US20060278093A1 (en) * 2004-01-13 2006-12-14 Eytan Biderman Feeding formula appliance
US7862558B2 (en) 2005-05-20 2011-01-04 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US11963706B2 (en) 2005-05-20 2024-04-23 Pacira Cryotech, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US20120065629A1 (en) * 2005-05-20 2012-03-15 MyoScience Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US7998137B2 (en) 2005-05-20 2011-08-16 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US7713266B2 (en) 2005-05-20 2010-05-11 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US9345526B2 (en) * 2005-05-20 2016-05-24 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US20100198207A1 (en) * 2005-05-20 2010-08-05 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US20090171334A1 (en) * 2005-05-20 2009-07-02 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US11350979B2 (en) 2005-05-20 2022-06-07 Pacira Cryotech, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US7850683B2 (en) 2005-05-20 2010-12-14 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US20080183164A1 (en) * 2005-05-20 2008-07-31 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US20070129714A1 (en) * 2005-05-20 2007-06-07 Echo Healthcare Llc Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (FAT)
US20110144631A1 (en) * 2005-05-20 2011-06-16 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US9072498B2 (en) 2005-05-20 2015-07-07 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US10363080B2 (en) 2005-05-20 2019-07-30 Pacira Cryotech, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US20090292279A1 (en) * 2006-01-26 2009-11-26 Galil Medical Ltd. Device and Method for Coordinated Insertion of a Plurality of Cryoprobes
US20080140061A1 (en) * 2006-09-08 2008-06-12 Arbel Medical Ltd. Method And Device For Combined Treatment
US20080114346A1 (en) * 2006-09-18 2008-05-15 Arbel Medical Ltd. Cryosurgical Instrument
US20080154254A1 (en) * 2006-12-21 2008-06-26 Myoscience, Inc. Dermal and Transdermal Cryogenic Microprobe Systems and Methods
US9254162B2 (en) 2006-12-21 2016-02-09 Myoscience, Inc. Dermal and transdermal cryogenic microprobe systems
US10939947B2 (en) 2006-12-21 2021-03-09 Pacira Cryotech, Inc. Dermal and transdermal cryogenic microprobe systems
US20080208181A1 (en) * 2007-01-19 2008-08-28 Arbel Medical Ltd. Thermally Insulated Needles For Dermatological Applications
US9113855B2 (en) 2007-02-16 2015-08-25 Myoscience, Inc. Replaceable and/or easily removable needle systems for dermal and transdermal cryogenic remodeling
US8409185B2 (en) 2007-02-16 2013-04-02 Myoscience, Inc. Replaceable and/or easily removable needle systems for dermal and transdermal cryogenic remodeling
US20080200910A1 (en) * 2007-02-16 2008-08-21 Myoscience, Inc. Replaceable and/or Easily Removable Needle Systems for Dermal and Transdermal Cryogenic Remodeling
US20100162730A1 (en) * 2007-06-14 2010-07-01 Arbel Medical Ltd. Siphon for delivery of liquid cryogen from dewar flask
US11672694B2 (en) 2007-11-14 2023-06-13 Pacira Cryotech, Inc. Pain management using cryogenic remodeling
US8298216B2 (en) 2007-11-14 2012-10-30 Myoscience, Inc. Pain management using cryogenic remodeling
US9907693B2 (en) 2007-11-14 2018-03-06 Myoscience, Inc. Pain management using cryogenic remodeling
US8715275B2 (en) 2007-11-14 2014-05-06 Myoscience, Inc. Pain management using cryogenic remodeling
US10869779B2 (en) 2007-11-14 2020-12-22 Pacira Cryotech, Inc. Pain management using cryogenic remodeling
US20090248001A1 (en) * 2007-11-14 2009-10-01 Myoscience, Inc. Pain management using cryogenic remodeling
US9101346B2 (en) 2007-11-14 2015-08-11 Myoscience, Inc. Pain management using cryogenic remodeling
US10864112B2 (en) 2007-11-14 2020-12-15 Pacira Cryotech, Inc. Pain management using cryogenic remodeling
US8083733B2 (en) 2008-04-16 2011-12-27 Icecure Medical Ltd. Cryosurgical instrument with enhanced heat exchange
US20110313411A1 (en) * 2008-08-07 2011-12-22 The General Hospital Corporation Method and apparatus for dermatological hypopigmentation
US10905491B2 (en) 2008-08-07 2021-02-02 The General Hospital Corporation Method and apparatus for dermatological hypopigmentation
US9801677B2 (en) * 2008-08-07 2017-10-31 The General Hospital Corporation Method and apparatus for dermatological hypopigmentation
US9522031B2 (en) 2008-08-07 2016-12-20 The General Hospital Corporation Method and apparatus for dermatological hypopigmentation
US9549773B2 (en) 2008-08-07 2017-01-24 The General Hospital Corporation Method and apparatus for dermatological hypopigmentation
US9066712B2 (en) 2008-12-22 2015-06-30 Myoscience, Inc. Integrated cryosurgical system with refrigerant and electrical power source
US7967814B2 (en) 2009-02-05 2011-06-28 Icecure Medical Ltd. Cryoprobe with vibrating mechanism
US8162812B2 (en) 2009-03-12 2012-04-24 Icecure Medical Ltd. Combined cryotherapy and brachytherapy device and method
US20100274236A1 (en) * 2009-04-23 2010-10-28 Krimsky William S Apparatuses and methods for applying a cryogenic effect to tissue and cutting tissue
US11197681B2 (en) 2009-05-20 2021-12-14 Merit Medical Systems, Inc. Steerable curvable vertebroplasty drill
US20120265186A1 (en) * 2009-05-20 2012-10-18 Keith Burger Steerable curvable ablation catheter for vertebroplasty
US20100305439A1 (en) * 2009-05-27 2010-12-02 Eyal Shai Device and Method for Three-Dimensional Guidance and Three-Dimensional Monitoring of Cryoablation
US7967815B1 (en) 2010-03-25 2011-06-28 Icecure Medical Ltd. Cryosurgical instrument with enhanced heat transfer
US10624652B2 (en) 2010-04-29 2020-04-21 Dfine, Inc. System for use in treatment of vertebral fractures
US7938822B1 (en) 2010-05-12 2011-05-10 Icecure Medical Ltd. Heating and cooling of cryosurgical instrument using a single cryogen
US8080005B1 (en) 2010-06-10 2011-12-20 Icecure Medical Ltd. Closed loop cryosurgical pressure and flow regulated system
US9974684B2 (en) 2011-11-16 2018-05-22 The General Hospital Corporation Method and apparatus for cryogenic treatment of skin tissue
US9855166B2 (en) 2011-11-16 2018-01-02 The General Hospital Corporation Method and apparatus for cryogenic treatment of skin tissue
US11197776B2 (en) 2011-11-16 2021-12-14 The General Hospital Corporation Method and apparatus for cryogenic treatment of skin tissue
US11590022B2 (en) 2011-11-16 2023-02-28 The General Hospital Corporation Method and apparatus for cryogenic treatment of skin tissue
US9155584B2 (en) 2012-01-13 2015-10-13 Myoscience, Inc. Cryogenic probe filtration system
US10188444B2 (en) 2012-01-13 2019-01-29 Myoscience, Inc. Skin protection for subdermal cryogenic remodeling for cosmetic and other treatments
US10213244B2 (en) 2012-01-13 2019-02-26 Myoscience, Inc. Cryogenic needle with freeze zone regulation
US9314290B2 (en) 2012-01-13 2016-04-19 Myoscience, Inc. Cryogenic needle with freeze zone regulation
US11857239B2 (en) 2012-01-13 2024-01-02 Pacira Cryotech, Inc. Cryogenic needle with freeze zone regulation
US9241753B2 (en) 2012-01-13 2016-01-26 Myoscience, Inc. Skin protection for subdermal cryogenic remodeling for cosmetic and other treatments
US9017318B2 (en) 2012-01-20 2015-04-28 Myoscience, Inc. Cryogenic probe system and method
US11642241B2 (en) 2013-03-15 2023-05-09 Pacira Cryotech, Inc. Cryogenic enhancement of joint function, alleviation of joint stiffness and/or alleviation of pain associated with osteoarthritis
US10596030B2 (en) 2013-03-15 2020-03-24 Pacira Cryotech, Inc. Cryogenic enhancement of joint function, alleviation of joint stiffness and/or alleviation of pain associated with osteoarthritis
US11134999B2 (en) 2013-03-15 2021-10-05 Pacira Cryotech, Inc. Methods and systems for treatment of occipital neuralgia
US9295512B2 (en) 2013-03-15 2016-03-29 Myoscience, Inc. Methods and devices for pain management
US10314739B2 (en) 2013-03-15 2019-06-11 Myoscience, Inc. Methods and devices for pain management
US10085789B2 (en) 2013-03-15 2018-10-02 Myoscience, Inc. Methods and systems for treatment of occipital neuralgia
US10888366B2 (en) 2013-03-15 2021-01-12 Pacira Cryotech, Inc. Cryogenic blunt dissection methods and devices
US10085881B2 (en) 2013-03-15 2018-10-02 Myoscience, Inc. Methods, systems, and devices for treating neuromas, fibromas, nerve entrapment, and/or pain associated therewith
US10016229B2 (en) 2013-03-15 2018-07-10 Myoscience, Inc. Methods and systems for treatment of occipital neuralgia
US11865038B2 (en) 2013-03-15 2024-01-09 Pacira Cryotech, Inc. Methods, systems, and devices for treating nerve spasticity
US11253393B2 (en) 2013-03-15 2022-02-22 Pacira Cryotech, Inc. Methods, systems, and devices for treating neuromas, fibromas, nerve entrapment, and/or pain associated therewith
US9610112B2 (en) 2013-03-15 2017-04-04 Myoscience, Inc. Cryogenic enhancement of joint function, alleviation of joint stiffness and/or alleviation of pain associated with osteoarthritis
US9668800B2 (en) 2013-03-15 2017-06-06 Myoscience, Inc. Methods and systems for treatment of spasticity
US10130409B2 (en) 2013-11-05 2018-11-20 Myoscience, Inc. Secure cryosurgical treatment system
US10864033B2 (en) 2013-11-05 2020-12-15 Pacira Cryotech, Inc. Secure cryosurgical treatment system
US11690661B2 (en) 2013-11-05 2023-07-04 Pacira Cryotech, Inc. Secure cryosurgical treatment system
US10765467B2 (en) 2015-09-04 2020-09-08 R2 Technologies, Inc. Medical systems, methods, and devices for hypopigmentation cooling treatments
US11311327B2 (en) 2016-05-13 2022-04-26 Pacira Cryotech, Inc. Methods and systems for locating and treating nerves with cold therapy
US11266524B2 (en) 2016-06-03 2022-03-08 R2 Technologies, Inc. Medical methods and systems for skin treatment
US11344350B2 (en) 2016-10-27 2022-05-31 Dfine, Inc. Articulating osteotome with cement delivery channel and method of use
US10478241B2 (en) 2016-10-27 2019-11-19 Merit Medical Systems, Inc. Articulating osteotome with cement delivery channel
US11116570B2 (en) 2016-11-28 2021-09-14 Dfine, Inc. Tumor ablation devices and related methods
US11026744B2 (en) 2016-11-28 2021-06-08 Dfine, Inc. Tumor ablation devices and related methods
US10463380B2 (en) 2016-12-09 2019-11-05 Dfine, Inc. Medical devices for treating hard tissues and related methods
US10470781B2 (en) 2016-12-09 2019-11-12 Dfine, Inc. Medical devices for treating hard tissues and related methods
US11540842B2 (en) 2016-12-09 2023-01-03 Dfine, Inc. Medical devices for treating hard tissues and related methods
US11607230B2 (en) 2017-01-06 2023-03-21 Dfine, Inc. Osteotome with a distal portion for simultaneous advancement and articulation
US10660656B2 (en) 2017-01-06 2020-05-26 Dfine, Inc. Osteotome with a distal portion for simultaneous advancement and articulation
US11786286B2 (en) 2017-06-30 2023-10-17 R2 Technologies, Inc. Dermatological cryospray devices having linear array of nozzles and methods of use
US11013547B2 (en) 2017-06-30 2021-05-25 R2 Technologies, Inc. Dermatological cryospray devices having linear array of nozzles and methods of use
US11134998B2 (en) 2017-11-15 2021-10-05 Pacira Cryotech, Inc. Integrated cold therapy and electrical stimulation systems for locating and treating nerves and associated methods
US11510723B2 (en) 2018-11-08 2022-11-29 Dfine, Inc. Tumor ablation device and related systems and methods
US11937864B2 (en) 2018-11-08 2024-03-26 Dfine, Inc. Ablation systems with parameter-based modulation and related devices and methods
US11633224B2 (en) 2020-02-10 2023-04-25 Icecure Medical Ltd. Cryogen pump

Similar Documents

Publication Publication Date Title
US3664344A (en) Tyned cryosurgical probe
US3827436A (en) Multipurpose cryosurgical probe
US4022215A (en) Cryosurgical system
US9554842B2 (en) Cryoprobe for low pressure systems
US20020029034A1 (en) Method and apparatus for rupturing targeted cells
US3662755A (en) Cryo-scalpel
EP1545363B1 (en) Cryo-surgical apparatus
US3712306A (en) Cryogenic application chamber and method
US4072152A (en) Orthopedic cryosurgical apparatus
US5899897A (en) Method and apparatus for heating during cryosurgery
US5139496A (en) Ultrasonic freeze ablation catheters and probes
US5254116A (en) Cryosurgical instrument with vent holes and method using same
US5520682A (en) Cryosurgical instrument with vent means and method using same
US6706037B2 (en) Multiple cryoprobe apparatus and method
JP3510914B2 (en) Apparatus and method for rapidly changing heating and cooling
Hewitt et al. A comparative laboratory study of liquid nitrogen and argon gas cryosurgery systems
US20050038422A1 (en) Cryo-surgical apparatus and methods
WO1998041157A1 (en) Freezing method for controlled removal of fatty tissue by liposuction
US4770171A (en) Cryogenic surgical tool
JP2013544135A (en) Refrigeration ablation apparatus with improved heat exchange area and related methods
US3651813A (en) Cryosurgical delivery and application of liquefied gas coolant
US3911924A (en) Cryoprobe
JP4795354B2 (en) Apparatus and method for cryosurgery
EP0611294A1 (en) Cryosurgical apparatus
RU154699U1 (en) Minimally Invasive Cryoprobe