US3663825A - Starter motors for internal combustion engines - Google Patents

Starter motors for internal combustion engines Download PDF

Info

Publication number
US3663825A
US3663825A US88365A US3663825DA US3663825A US 3663825 A US3663825 A US 3663825A US 88365 A US88365 A US 88365A US 3663825D A US3663825D A US 3663825DA US 3663825 A US3663825 A US 3663825A
Authority
US
United States
Prior art keywords
pinion
shaft
pinion assembly
region
starter motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US88365A
Inventor
Roy Price Bowcott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF International UK Ltd
Original Assignee
Lucas Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucas Industries Ltd filed Critical Lucas Industries Ltd
Application granted granted Critical
Publication of US3663825A publication Critical patent/US3663825A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/04Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears
    • F02N15/06Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00

Definitions

  • a starter motor for an internal combustion engine includes a rotatable shaft and a pinion assembly rotatable with the shaft.
  • the pinion assembly is movable axially relative to the shaft from a rest position to an operative position wherein in use the pinion of the pinion assembly engages the toothed wheel of the engine which is to be started.
  • the portion of the shaft along which the pinion assembly moves includes a region of reduced diameter which commences adjacent the pinion of the pinion assembly, when the pinion assembly is in its rest position, and which terminates within the pinion assembly when the pinion assembly is in its operative position.
  • the region of reduced diameter may be constituted by several smaller regions spaced apart by lands the diameter of which is equal to the diameter of the remainder of the shaft.
  • That part of the shaft along which the pinion assembly moves from its rest position to its operative position includes a region of reduced diameter, said region of reduced diameter commencing adjacent the pinion of the pinion assembly with the assembly in its rest position, and terminating within said pinion assembly when said pinion assembly is in its operative position.
  • FIG. 1 is a side elevational view of a starter motor
  • FIG. 2 is a fragmentary diagrammatic, part sectional representation of part of the starter motor shown in FIG. 1,
  • FIG. 3 is a view similar to FIG. 2 of an alternative arrangement
  • FIGS. 4 and 5 are views similar to FIGS. 2 and 3 respectively of a modification.
  • the starter motor includes a casing 11 having a shaft 12 journalled for rotation therein.
  • the shaft 12 is supported in bearings in the casing, one of the bearings being shown at 13.
  • the pinion assembly including a pinion l4, and adjacent the pinion 14 the casing 11 is cut away to expose the pinion.
  • the pinion assembly further includes a roller clutch which permits the pinion 14 to rotate relative to the shaft 12 in one direction, the roller clutch transmitting rotation of the shaft 12 to the pinion 14 in the other direction, so that the pinion 14 rotates with the shaft 12 in said other direction.
  • the starter motor is mounted adjacent the toothed fly wheel of an internal combustion engine, and the pinion assembly 14 is movable from a rest position, as shown in solid lines in the drawings, wherein the pinion is spaced from the toothed wheel of the engine, to an operative position, as shown in broken lines in the drawings, wherein the pinion 14 is engaged with the toothed wheel of the engine, rotation of the shaft 12 when the pinion is in its operative position serving to crank the engine.
  • the pinion assembly is movable from its rest position to its operative position by means of a solenoid mounted on the casing 11.
  • the solenoid includes a plunger which is moved axially when the solenoid is energized, and which is coupled to the pinion assembly to a lever arrangement.
  • the plunger of the solenoid further serves to control a switching device which in turn controls energization of the starter motor.
  • the switching device may be of a single stage type wherein the starter motor is not energized until the pinion is fully engaged with the toothed wheel of the engine, whereupon the starter motor is energized at its full torque value.
  • the switching device may be of a two stage type wherein the starter motor is energized at a low torque value when the pinion has been moved through a predetermined distance, and is then energized at its full torque value when the pinion fully engages the toothed wheel of the engine.
  • the pinion assembly and the shaft are provided with mating, quick pitch screw threads which, when the pinion engages the toothed flywheel, with the shaft rotating, drives the pinion assembly axially into full engagement with the flywheel.
  • the portion of the shaft between the rest position of the pinion and operative position of the pinion includes a region 15 of reduced diameter.
  • the region 15 is so positioned on the shaft 12 that one end of the region 15 is within the pinion 14 when the pinion is in its rest position, while the other end of the region 15 is within the pinion 14 when the pinion 14 is in its operative position.
  • the pinion 14 is part of a pinion assembly, which engages the shaft 12 at the side of the region 15 remote from the bearings 13, even when the pinion 14 is in its operative position.
  • the pinion is supported in its operative position by a portion of the shaft 12 adjacent the bearings 13, and by the portion of the shaft 12 on the side of the region 15 remote from the bearing 13.
  • the pinion assembly, the lever arrangement, and the plunger of the solenoid will have achieved sufficient momentum to break up the ice layer on the portion of the shaft 12 between the end of the region 15, and the operative position of the pinion 14.
  • the action of the quick pitch thread on the shaft and the pinion assembly will aid the full engagement of the pinion with the engine flywheel.
  • the region 15 is divided into two separate portions 15a, 15b by a generally centrally positioned land 16 of diameter equal to the diameter of the remainder of the shaft 12.
  • the portion 15a terminates, at its end adjacent the bearing 13, within the pinion 14 when the pinion 14 is in its operative position, and the portion 15b commences, at its end remote from the bearing 13, within the pinion 14 when the pinion 14 is in its rest position.
  • the pinion 14 will not be impeded until the pinion engages the land 16.
  • the momentum achieved by the plunger of the solenoid, the lever arrangement, and the pinion assembly during the movement of the pinion from its rest position to the point at which it engages the land 16, is sufficient to break the ice from the land 16 so that the pinion passes over the land 16.
  • the pinion will not be impeded again until it engages the portion of the shaft 12 adjacent the bearing 13, at which time the momentum achieved by the assembly will again be sufficient to break the ice from this region of the shaft 12.
  • the region 15 of the shaft 12 can be divided into more than two separate portions provided that the lands defined between the regions are not large enough to permit the formations of ice layers sufficiently large to arrest the progress of the pinion assembly.
  • region 15 or separate regions 15a, 15b etc. commence within the pinion in the rest position of the pinion assembly, provided that the land prior to the commencement of the reduced region or regions is of such a length that the force generated by the solenoid to move the pinion assembly is sufficient to break an ice layer formed on the land.
  • the groove and the grooves 15a, 15b are filled to the level of the remainder of the shaft 12 with a synthetic resin material to which ice does not adhere strongly and which will not weld to the material from which the pinion assembly is constructed.
  • Suitable synthetic resin materials include polytetrafluoroethylene and nylon.
  • a starter motor including a rotatable shaft and a pinion assembly rotatable with the shaft, the pinion assembly being movable axially relative to the shaft from a rest position to an operative position, wherein in use the pinion of the pinion as sembly engages the toothed wheel of an engine to be started, that part of the shaft along which the pinion assembly moves from its rest position from its operative position including a region of reduced diameter, said region of reduced diameter commencing adjacent the pinion of the pinion assembly with the assembly in its rest position, and terminating within said pinion assembly when said pinion assembly is in its operative position.
  • a starter motor as claimed in claim 1 wherein said region of reduced diameter comprises a pair of portions of reduced diameter separated by a land of diameter equal to the diameter of the remainder of the shaft.
  • a starter motor as claimed in claim 1 wherein said region of reduced diameter includes a plurality of portions of reduced diameter separated by lands and diameter equal to that of the remainder of the shaft.
  • a starter motor as claimed in claim 1 wherein the region of the shaft of reduced diameter is filled to the level of the remainder of the shaft with a synthetic resin material to which ice cannot adhere strongly and which will not weld to the material of the pinion assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Gears, Cams (AREA)

Abstract

A starter motor for an internal combustion engine includes a rotatable shaft and a pinion assembly rotatable with the shaft. The pinion assembly is movable axially relative to the shaft from a rest position to an operative position wherein in use the pinion of the pinion assembly engages the toothed wheel of the engine which is to be started. The portion of the shaft along which the pinion assembly moves includes a region of reduced diameter which commences adjacent the pinion of the pinion assembly, when the pinion assembly is in its rest position, and which terminates within the pinion assembly when the pinion assembly is in its operative position. The region of reduced diameter may be constituted by several smaller regions spaced apart by lands the diameter of which is equal to the diameter of the remainder of the shaft.

Description

United States Patent Bowcott [4 1 May 16, 1972 '[54] STARTER MOTORS FOR INTERNAL COMBUSTION ENGINES [72] Inventor:
[73] Assignee: Joseph Lucas (Industries) Limited, Birmingham, England [22] Filed: Nov. 10, 1970 [21] Appl.No.: 88,365
Roy Price Bowcott, Solihull, England [30] Foreign Application Priority Data Nov. 20, I969 Great Britain ..56,822/69 [52] U.S. Cl ..290/38, 290/37, 290/48, 310/83 [51] Int. Cl ..F02n 11/14 [58] Field of Search ..290/37 R, 38 R, 28, 48; 74/421 A; 310/75, 83
[56] References Cited UNITED STATES PATENTS 3,084,561 4/1963 Mattson ..290/38 R X 3,223,863 l2/l965 Preece et al ..290/38 R X Primary Examiner-Lewis H. Myers Assistant ExaminerH. Huberfeld Attorney-Holman & Stern [5 7] ABSTRACT A starter motor for an internal combustion engine includes a rotatable shaft and a pinion assembly rotatable with the shaft. The pinion assembly is movable axially relative to the shaft from a rest position to an operative position wherein in use the pinion of the pinion assembly engages the toothed wheel of the engine which is to be started. The portion of the shaft along which the pinion assembly moves includes a region of reduced diameter which commences adjacent the pinion of the pinion assembly, when the pinion assembly is in its rest position, and which terminates within the pinion assembly when the pinion assembly is in its operative position. The region of reduced diameter may be constituted by several smaller regions spaced apart by lands the diameter of which is equal to the diameter of the remainder of the shaft.
7 Claims, 5 Drawing Figures Patented May 16, 1972 3,663,825
INVENTOR 1 ATTORNEYS STARTER MOTORS FOR INTERNAL COMBUSTION ENGINES This invention relates to starter motors, for internal combustion engines, of the kind, including a rotatable shaft and a pinion assembly rotatable with the shaft, the pinion assembly being movable axially relative to the shaft from a rest position to an operative position, wherein in use the pinion of the pinion assembly engages the tooth wheel of the engine to be started.
A problem exists in starter motors of the kind specified in that in adverse weather conditions the pinion assembly may be prevented from moving from its rest position to its operative position by ice forming on the shaft, and it is an object of the present invention to minimize this problem.
According to the invention in a starter motor of the kind specified, that part of the shaft along which the pinion assembly moves from its rest position to its operative position includes a region of reduced diameter, said region of reduced diameter commencing adjacent the pinion of the pinion assembly with the assembly in its rest position, and terminating within said pinion assembly when said pinion assembly is in its operative position.
One example of the invention is illustrated in the accompanying drawings, wherein,
FIG. 1 is a side elevational view of a starter motor,
FIG. 2 is a fragmentary diagrammatic, part sectional representation of part of the starter motor shown in FIG. 1,
FIG. 3 is a view similar to FIG. 2 of an alternative arrangement, and
FIGS. 4 and 5 are views similar to FIGS. 2 and 3 respectively of a modification.
Referring first to FIGS. 1 to 3 of the drawings, the starter motor includes a casing 11 having a shaft 12 journalled for rotation therein. The shaft 12 is supported in bearings in the casing, one of the bearings being shown at 13. Mounted for axial movement on the shaft 12 adjacent the bearing 13 is the pinion assembly including a pinion l4, and adjacent the pinion 14 the casing 11 is cut away to expose the pinion. The pinion assembly further includes a roller clutch which permits the pinion 14 to rotate relative to the shaft 12 in one direction, the roller clutch transmitting rotation of the shaft 12 to the pinion 14 in the other direction, so that the pinion 14 rotates with the shaft 12 in said other direction. In use, the starter motor is mounted adjacent the toothed fly wheel of an internal combustion engine, and the pinion assembly 14 is movable from a rest position, as shown in solid lines in the drawings, wherein the pinion is spaced from the toothed wheel of the engine, to an operative position, as shown in broken lines in the drawings, wherein the pinion 14 is engaged with the toothed wheel of the engine, rotation of the shaft 12 when the pinion is in its operative position serving to crank the engine.
The pinion assembly is movable from its rest position to its operative position by means of a solenoid mounted on the casing 11. The solenoid includes a plunger which is moved axially when the solenoid is energized, and which is coupled to the pinion assembly to a lever arrangement. Thus, when the solenoid is energized the pinion assembly is moved axially with respect to the shaft, from its rest position towards its operative position. The plunger of the solenoid further serves to control a switching device which in turn controls energization of the starter motor. The switching device may be of a single stage type wherein the starter motor is not energized until the pinion is fully engaged with the toothed wheel of the engine, whereupon the starter motor is energized at its full torque value. Alternatively the switching device may be of a two stage type wherein the starter motor is energized at a low torque value when the pinion has been moved through a predetermined distance, and is then energized at its full torque value when the pinion fully engages the toothed wheel of the engine. In addition the pinion assembly and the shaft are provided with mating, quick pitch screw threads which, when the pinion engages the toothed flywheel, with the shaft rotating, drives the pinion assembly axially into full engagement with the flywheel.
In conventional starter motors the portion of the shaft 12 along which the pinion 14 is moved from its rest position to its operative position is plain, and in adverse weather conditions ice can form on this portion of the shaft. The formation of a layer of ice on this portion of the shaft can prevent movement of the pinion from its rest position to its operative position, and thereby prevent operation of the starter motor to start the associated internal combustion engine.
In the construction shown in FIG. 2 of the drawings, the portion of the shaft between the rest position of the pinion and operative position of the pinion includes a region 15 of reduced diameter. The region 15 is so positioned on the shaft 12 that one end of the region 15 is within the pinion 14 when the pinion is in its rest position, while the other end of the region 15 is within the pinion 14 when the pinion 14 is in its operative position. It should be noted, however, that the pinion 14 is part of a pinion assembly, which engages the shaft 12 at the side of the region 15 remote from the bearings 13, even when the pinion 14 is in its operative position. Thus, although the region 15 of the shaft 12 does not support the pinion 14 throughout its movement from its rest position to its operative position, the pinion is supported in its operative position by a portion of the shaft 12 adjacent the bearings 13, and by the portion of the shaft 12 on the side of the region 15 remote from the bearing 13.
When ice forms on the shaft 12, it will form in a layer of substantially uniform thickness, and the difference in diameter between the shaft 12 and the region 15 of the shaft 12 is chosen to be equal to, or slightly greater than, the maximum thickness of the ice layer which is likely to form on the shaft 12. Thus, since the pinion 14 extends over the region 15 when the pinion assembly is in its rest position, then the layer of ice which is formed on the region 15 of the shaft 12 will not impede the movement of the pinion 14. When the solenoid is energized to operate the starter motor, the pinion assembly will be moved relative to the shaft 12 towards its operative position, and the pinion will not be impeded by ice until the outermost end of the pinion 14 reaches the end of the region 15 adjacent the bearing 13. By this time, the pinion assembly, the lever arrangement, and the plunger of the solenoid will have achieved sufficient momentum to break up the ice layer on the portion of the shaft 12 between the end of the region 15, and the operative position of the pinion 14. Moreover, in a system employing a two stage switching device, the action of the quick pitch thread on the shaft and the pinion assembly will aid the full engagement of the pinion with the engine flywheel.
In the alternative arrangement shown in FIG. 3, the region 15 is divided into two separate portions 15a, 15b by a generally centrally positioned land 16 of diameter equal to the diameter of the remainder of the shaft 12. The portion 15a terminates, at its end adjacent the bearing 13, within the pinion 14 when the pinion 14 is in its operative position, and the portion 15b commences, at its end remote from the bearing 13, within the pinion 14 when the pinion 14 is in its rest position. Thus during movement of the pinion assembly 14 from the rest position to the operative position, the pinion 14 will not be impeded until the pinion engages the land 16. The momentum achieved by the plunger of the solenoid, the lever arrangement, and the pinion assembly during the movement of the pinion from its rest position to the point at which it engages the land 16, is sufficient to break the ice from the land 16 so that the pinion passes over the land 16. After passing over the land 16 the pinion will not be impeded again until it engages the portion of the shaft 12 adjacent the bearing 13, at which time the momentum achieved by the assembly will again be sufficient to break the ice from this region of the shaft 12. If desired the region 15 of the shaft 12 can be divided into more than two separate portions provided that the lands defined between the regions are not large enough to permit the formations of ice layers sufficiently large to arrest the progress of the pinion assembly.
Moreover, it is not essential that the region 15 or separate regions 15a, 15b etc. commence within the pinion in the rest position of the pinion assembly, provided that the land prior to the commencement of the reduced region or regions is of such a length that the force generated by the solenoid to move the pinion assembly is sufficient to break an ice layer formed on the land.
In the modification illustrated in FIGS. 4 and 5 the groove and the grooves 15a, 15b, are filled to the level of the remainder of the shaft 12 with a synthetic resin material to which ice does not adhere strongly and which will not weld to the material from which the pinion assembly is constructed. Suitable synthetic resin materials include polytetrafluoroethylene and nylon. This modification can of course be applied to an arrangement having more than two separate portions in the region 15 of the shaft 12.
Having thus described my invention what I claim as new and desire to secure by Letters Patent is:
l. A starter motor including a rotatable shaft and a pinion assembly rotatable with the shaft, the pinion assembly being movable axially relative to the shaft from a rest position to an operative position, wherein in use the pinion of the pinion as sembly engages the toothed wheel of an engine to be started, that part of the shaft along which the pinion assembly moves from its rest position from its operative position including a region of reduced diameter, said region of reduced diameter commencing adjacent the pinion of the pinion assembly with the assembly in its rest position, and terminating within said pinion assembly when said pinion assembly is in its operative position.
2. A starter motor as claimed in claim 1 wherein said region of reduced diameter commences within the pinion assembly when the pinion assembly is in its rest position.
3. A starter motor as claimed in claim 1 wherein said region of reduced diameter comprises a pair of portions of reduced diameter separated by a land of diameter equal to the diameter of the remainder of the shaft.
4. A starter motor as claimed in claim 1 wherein said region of reduced diameter includes a plurality of portions of reduced diameter separated by lands and diameter equal to that of the remainder of the shaft.
5. A starter motor as claimed in claim 1 wherein the region of the shaft of reduced diameter is filled to the level of the remainder of the shaft with a synthetic resin material to which ice cannot adhere strongly and which will not weld to the material of the pinion assembly.
6. A starter motor as claimed in claim 5 wherein said synthetic resin material is polytetrafluoroethylene.
7. A starter motor as claimed in claim 5 wherein said synthetic resin material is nylon.
* l =i t i

Claims (7)

1. A starter motor including a rotatable shaft and a pinion assembly rotatable with the shaft, the pinion assembly being movable axially relative to the shaft from a rest position to an operative position, wherein in use the pinion of the pinion assembly engages the toothed wheel of an engine to be started, that part of the shaft along which the pinion assembly moves from its rest position from its operative position including a region of reduced diameter, said region of reduced diameter commencing adjacent the pinion of the pinion assembly with the assembly in its rest position, and terminating within said pinion assembly when said pinion assembly is in its operative position.
2. A starter motor as claimed in claim 1 wherein said region of reduced diameter commences within the pinion assembly when the pinion assembly is in its rest position.
3. A starter motor as claimed in claim 1 wherein said region of reduced diameter comprises a pair of portions of reduced diameter separated by a land of diameter equal to the diameter of the remainder of the shaft.
4. A starter motor as claimed in claim 1 wherein said region of reduced diameter includes a pluralitY of portions of reduced diameter separated by lands and diameter equal to that of the remainder of the shaft.
5. A starter motor as claimed in claim 1 wherein the region of the shaft of reduced diameter is filled to the level of the remainder of the shaft with a synthetic resin material to which ice cannot adhere strongly and which will not weld to the material of the pinion assembly.
6. A starter motor as claimed in claim 5 wherein said synthetic resin material is polytetrafluoroethylene.
7. A starter motor as claimed in claim 5 wherein said synthetic resin material is nylon.
US88365A 1969-11-20 1970-11-10 Starter motors for internal combustion engines Expired - Lifetime US3663825A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB5682269 1969-11-20

Publications (1)

Publication Number Publication Date
US3663825A true US3663825A (en) 1972-05-16

Family

ID=10477626

Family Applications (1)

Application Number Title Priority Date Filing Date
US88365A Expired - Lifetime US3663825A (en) 1969-11-20 1970-11-10 Starter motors for internal combustion engines

Country Status (6)

Country Link
US (1) US3663825A (en)
JP (1) JPS4844965B1 (en)
CA (1) CA921283A (en)
DE (1) DE2053845A1 (en)
FR (1) FR2069178A5 (en)
GB (1) GB1323700A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818889A (en) * 1987-05-13 1989-04-04 Mitsubishi Denki Kabushiki Kaisha Pinion stopper for engine starter motor
US4821588A (en) * 1986-07-15 1989-04-18 Mitsubishi Denki Kabushiki Kaisha Starter motor
US5231307A (en) * 1991-02-04 1993-07-27 Hitachi, Ltd. Starter for starting internal combustion engine
US6031745A (en) * 1996-10-11 2000-02-29 Aim Controls, Inc. Time multiplexed power supply
US20060152094A1 (en) * 2003-09-19 2006-07-13 Kabushiki Kaisha Yaskawa Denki Rotor for micro-servomotor, and micro-servomotor equipped with said rotor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4926705A (en) * 1987-10-07 1990-05-22 Mitsubishi Denki Kabushiki Kaisha Starter device for internal combustion engines

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3084561A (en) * 1960-05-19 1963-04-09 Electric Auto Lite Co Coaxial solenoid for starter motors
US3223863A (en) * 1962-06-25 1965-12-14 Lucas Industries Ltd Electric starting mechanism for internal combustion engines

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3084561A (en) * 1960-05-19 1963-04-09 Electric Auto Lite Co Coaxial solenoid for starter motors
US3223863A (en) * 1962-06-25 1965-12-14 Lucas Industries Ltd Electric starting mechanism for internal combustion engines

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4821588A (en) * 1986-07-15 1989-04-18 Mitsubishi Denki Kabushiki Kaisha Starter motor
US4818889A (en) * 1987-05-13 1989-04-04 Mitsubishi Denki Kabushiki Kaisha Pinion stopper for engine starter motor
US5231307A (en) * 1991-02-04 1993-07-27 Hitachi, Ltd. Starter for starting internal combustion engine
US6031745A (en) * 1996-10-11 2000-02-29 Aim Controls, Inc. Time multiplexed power supply
US20060152094A1 (en) * 2003-09-19 2006-07-13 Kabushiki Kaisha Yaskawa Denki Rotor for micro-servomotor, and micro-servomotor equipped with said rotor

Also Published As

Publication number Publication date
JPS4844965B1 (en) 1973-12-27
GB1323700A (en) 1973-07-18
DE2053845A1 (en) 1971-05-27
CA921283A (en) 1973-02-20
FR2069178A5 (en) 1971-09-03

Similar Documents

Publication Publication Date Title
US8869640B2 (en) Engine starter
KR920008693Y1 (en) Uniaxial starter
US3663825A (en) Starter motors for internal combustion engines
US3772921A (en) Engine starter
DE202009010345U1 (en) Generator drive system for an internal combustion engine
DE4301067C1 (en) Starter with a protective device against damage due to a quick repeat start
EP2534368B1 (en) Method for meshing a starting pinion with a toothed ring of an internal combustion engine
US3071013A (en) Starting apparatus
US4092870A (en) Engine starting mechanism
DE2439981A1 (en) I.C. engine starter motor pinion drive - has free wheel keeping pinion in mesh with flywheel when respective speeds are unequal
US3741021A (en) Starter motors
US20020088286A1 (en) Engine starting apparatus
JPH0258467B2 (en)
US2887100A (en) Starting gear for internal combustion engines
US1210028A (en) Starting mechanism.
US4167929A (en) Engine including speed-control starter interlock
KR920000383Y1 (en) Start motor
US2944508A (en) Outboard motor and starting means therefor
US2934656A (en) Electric engine-starting motors
US2428750A (en) Engine starter
US1995520A (en) Engine starter
US2984115A (en) Starter gearing for internal combustion engines
US1811949A (en) Engine starting apparatus
US1672071A (en) Engine-starting apparatus
US3603803A (en) Electric starter motors