US3658981A - Process for spinning polyblend yarn - Google Patents

Process for spinning polyblend yarn Download PDF

Info

Publication number
US3658981A
US3658981A US839110*A US3658981DA US3658981A US 3658981 A US3658981 A US 3658981A US 3658981D A US3658981D A US 3658981DA US 3658981 A US3658981 A US 3658981A
Authority
US
United States
Prior art keywords
melt
yarn
polyester
nylon
spinneret
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US839110*A
Inventor
Roger A Fleming
William H Harlacher
Raymond J Spalek
James B Lowe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allied Corp
Original Assignee
Allied Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allied Chemical Corp filed Critical Allied Chemical Corp
Application granted granted Critical
Publication of US3658981A publication Critical patent/US3658981A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/90Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyamides

Definitions

  • the filaments produced by this invention are prepared from a matrixforming polyamide having a relative viscosity in 90 percent-formic acid of about 40 to 65 when the polyester constituent comprises at least 20 percent by weight thereof.
  • spinnable blends consisting essentially ofpolyester dispersions in polyamides, from which multifilament yarns with high tensile properties and 'low' primary creep (measured by Flat Spot Index) can be .minating agent such as monocarboxylic acid, dicarboxylic acid,isooyanate; and the like-Using such terminated polyamides, itisapossible as .disclosedby Twilley to form a fi nely divided,homogeneous dispersion of molten poly 'est'erin a melt of fiber-forming synthetic linear polyamide (i.e. nylon), employing the equipment normally used when nylonfiis rneltedin an extruder; and it is possible to spin such dispersions from the melt by use of essentially conventional nylon ruelt spinning techniques.
  • a commercially important consideration in spinning multifilament yarn on a large scale is the yield of first quality yarn obtained from the starting polymer.
  • the most troublesome of these malfunctions in the spinningfof the Twilley dispersions have been found to be occurrence, at frequently considerably Hi'glfer'tliafi" usual inkonim'e'rcial nylon-6' yarn production, of drips in spinning, and breaks during drawing of the 'multifilament yarn to impart high tenacity.
  • the continuous multifilament yarn which is produced is of superior quality to that obtained when any of the above four parameters are outside their critical ranges.
  • the multifilament yarn obtained is materially improved over that obtained using conditions outside the ranges of this invention.
  • the filaments obtained by this invention are found to contain in each transverse cross section a much larger number of reinforcing polyester fibrils than are produced from like blends spun otherwise; this contrast remaining true even when the conventional operation of the nylon extruder is modified in the comparison tests, to produce the same degree of dispersion of polyester in the melt as is formed when operating in accordance with this invention.
  • the efiects of spinneret shear is particularly important as will appear below.
  • the average diameters of the fibrils in yarn of this invention, drawn at 5:1 draw ratio, are not over 0.15 micron.
  • the fibrils in the drawn yarn obtained by the present process have about 0.05 to 0.15 micron average diameter in yarn drawn 5 (i.e. drawn at draw ratio of 5 :1) and spun from about 25-60 parts by weight of PET (polyethylene terephthalate) and correspondingly -40 parts of polycaproamide.
  • the average number of fibrils in the 5X drawn polycaproamide yarns of this invention, per 1000 sq. microns transverse area, is at least 15,000 and in the best mode of operation is from at least 30,000 to as high as 1,000,000.
  • the length2diameter ratio of these fibrils of preferred operations averages at least 1,500:1.
  • typical drawn fibrils per this invention have progressively smaller average diameters, ranging about 0.02 micron, about 0.03-0.04 micron, and about 0.04-0.06 micron average diameter respectively in the yarn drawn 5
  • the average number of fibrils per transverse 1000 sq. micron area of 5 drawn yarns of this invention having 4-20 parts of polyester dispersed in correspondingly 96-80 partsof nylon by weight, typically about 50,0001,000,000.
  • the 5X drawn yarns of this 'invention contain a minimum of 30,000 fibrils per average 1000 sq. micron transverse area.
  • properties are averages arrived at by systematically sampling large quantities of yarn produced under given conditions, in quantities ranging from scores to hundreds of pounds for laboratory production, and hundreds to thousands of pounds for pilot plant production.
  • verification of high performance levels requires data from the spinning and drawing of several thousands of pounds of yarn produced under given conditions, for the reason that at high performance levels, the combined occurrence of drips and breaks is of the order of or per thousand pounds of polymer spun.
  • Tables of Examples below data obtained on laboratory scale and those on pilot plant scale are so indicated.
  • a drip catcher is provided at the bottom of the quench stack, to detect the large blob and signal the operator to remove the package of yarn being wound up, wipe the spinneret, and start a new yarn package.
  • the frequency of these drips is counted and is reported herein as drips per 1000 pounds" of polymer processed. In preferred operations in accordance with this invention, the drips average no more than 5 per 1000 pounds.
  • one segment of yarn e.g. formed from non-homogeneous melt
  • the re suit is that this segment will break, e.g. in the drawing zone, and the drawing operation must be shut down and restarted.
  • Such occurrences are called drawing breaks.
  • Their frequency is reported herein as breaks per 1000 pounds of first quality yarn produced.
  • the sum of drips and breaks measures performance as reported herein. It will be appreciated that breaks can generally be reduced by reducing the draw ratio; however this will generally result in lowering the tensile strength and modulus of the yarn.
  • the preferred undrawn yarns produced according to this invention are drawable by at least 5X without more than 10 breaks per 1000 pounds on the average.
  • the melt viscosities are standardized to a temperature of 275 C. and velocity gradient of 3000 reciprocal seconds.
  • Jet velocity (feet per minute)Given by the formula: q/vrr wherein q is the volumetric flow in cubic feet per minute per hole, and r is the radius of the spinneret capillary in feet.
  • melt density (gm./ml.)In calculating volumetric flow rates (q) from the throughput in weight units per hour, the following values are used for melt densities at 270 0.:
  • Nylon 6 polycaproamide-1.01 gm./ml.
  • PET polyethylene terephthalate1.21 gin/ml; PET/nylon 6 blends in weight ratios shown:
  • a three-milligram sample is dissolved at 25 C. in 200 cc. of aqueous formic acid which dissolves the nylon component and leaves a dispersion of the polyester component in the aqueous formic acid solution.
  • the polyester is in the form of spherical and slightly elongated particles.
  • Polyester fibril lengths in undrawn yarn (microns)i are averages, measured from photomicrographs of lengthwise sections of undrawn yarn stained with a dye for the nylon ingredient which does not dye the polyester; e.g. by immersion in a boiling 0.07% aqueous solution of Brilliant Acid Blue dye for one hour.
  • Diameter (d) of Polyester fibrils in the drawn yarn (microns)'Ihese.diameters are too small to be accurately determined with an optical microscope. Average diameter (d) as reported hereinis calculated from polyester fibril lengths, L, in the drawn yarn, as above defined, by' the'formulaz d: (D 1.5L) 4 wherein D is the diameter of polyester particles in the extrudate, as above defined.
  • the drawn polyester fibril diameter, thus calculated, has been checked by electron microscope measurement and found to agree within 10.01 "micron.
  • N Number (N) of polyester fibrils/ 1000 sq. microns of traverse filamentarea+As reported herein, (N) is calculated from the above defined diameter (d) of polyester .fibrils in drawn yarn by the formula:
  • . .ioF density of filament 1r(d/2)
  • X density of fibril
  • Th'edensityof the 'fibril' is that of drawn polyester, e.g.' 1'.38. gmJ/mlJfQr polyethylene terephthalate; and the values.
  • Tensile strengths are those measured on the Scott IP-4 Tensilometer. (Each determination is the average of five breaks per card.)
  • Toughness index is given by the formula: (UTS) (d) Flat spot index-A measure of primary creep, by the method of Twilley, U.S. application Ser. No. 368,028 above cited, p. 18, line lp. 19, line 17.
  • Fatigue resistance is measured (in minutes at 30 p.s.i.) by ASTM Standard Test of 1964, Part 25, Test D-885 upon two-ply (2X 840, 12Z 12S twist) tensilized cord (Goodyear Tube Fatigue Test).
  • Dye strengths and uniformity-Dyeing is accomplished with Color Index Disperse Blue 3 (a water insoluble anthraquinone dye) using 0.2% by weight on fabric or yarn in a dyebath at C. (205 F.).
  • Dye strength (based on nylon as and uniformity (freedom from streaks and bands, rated from (1) for excellent to (4) for poor) is judged by a panel of skilled observers.
  • Birefringence-A measure of the extent of molecular orientation in the direction of the filament axis, defined as the difference in the refractive index measured longitudinally of the filament vs. that measured perpendicular to the axis of the filament.
  • mixing shear in the present process depends upon variables whichi nclude the proportion of polyester in the dispersion, the time of mixing, and the time and shear during transfer of the molten dispersion from the mixing apparatus used.
  • a useful criterion of proper mixing shear has been found to be the particle size (i.e. average diameter) of the dispersed polyester particles in the extrudate, collected free of tension in molten form just below the spinneret. These polyester particles are observed microscopically in differentially stained cross sections of the extrudate to be spherical or slightly elongated. Similar sized polyester particles are observed in polymer blends collected at various points between the extruder and the inlet face of the spinneret.
  • the average particle diameter of the polyester dispersed in the molten nylon is somewhat smaller, the nearer the point of sampling is to the extruder outlet; e.g. 1.39 microns at the extruder outlet, 1.66 microns over the inlet face of the spinneret, and 1.80 microns in the collected extrudate for 30/70 weight blends of polyethylene terephthalate/nylon-6 have been observed in typical operations in accordance with this invention. It will be appreciated, accordingly, that results obtained by high mixing shear can and should be preserved by transferring the dispersion in relatively narrow pipes which will exert continuing shear such that the particles do not increase unduly in size during transfer.
  • the above parameters can be correlated over the range to about 60/40 ratios by weight of polyester/nylon by the following relation between desired average particle diameter D in the extrudate in microns; parts by weight P of the minor ingredient of the blend, based on the polyester/polyamide mixture as 100; and number of rings C (C being I or 2), in the poleyster chain unit:
  • poleyster is polyethylene terephthalate in weight proportion of 30/70 with nylon
  • P is 30
  • D in accordance with the above formula is at most 1.85 microns.
  • the standard deviation of these diameters turns out to be about 0.25 micron; and for lower average diameters the standard deviation is also lower; so that 0.25 micron represents a maximum for standard deviaiton of the polyester particle diameters at desired particle size.
  • polyester particle diameter (D) in the extrudate (in microns) in accordance with this invention will generally be in the range given by:
  • the apparent mixing shear therein expressed in terms of velocity gradient, should be at least 80 reciprocal seconds, preferably in the range 120-200 reciprocal seconds.
  • a velocity gradient in the pipes of 50-100 reciprocal seconds is genenerally suitable to maintain the particle size in the desired range during transfer.
  • spinneret shear in terms of velocity gradient through the spinneret hole, which must be used to obtain the excellent performance which may be accomplished by this invention start Well above the values (about 2000 reciprocal seconds) ordinarily used in commercial spinning of nylon. Marginal performance starts at about 3000 reciprocal seconds and generally improves as the velocity gradient increases. Velocity gradients through the spinneret hole of at least 5,000 reciprocal seconds, and still higher values up to about 30,000 reciprocal seconds are beneficial. Above a velocity gradient of about 30,000 reciprocal seconds the benefits of intensive spinneret shear appear to drop off.
  • Temperature in the molten blend is a variable which must be controlled Within limits, to obtain the optimum spinning performance and yarn quality.
  • the temperature should be near to that conventional for spinning nylon-6 alone, even though the polyester ingredient of the dispersions spun in the process of this invention will usually have a higher melting point than the nylon ingredient'and the melt viscosity of the blend may be higher than in conventional nylon-6 spinning.
  • the blend melt viscosities can be 2000 or more poises at 275 C.
  • Mixing and spinning temperatures of the melt for the present process are about 275 C.i-l0 C. It will be appreciated that shearing action increases the polymer temperature, so the temperatures in the extruder 'walls should be correspondingly lower.
  • a phenomenon common to melt spinning of linear polymers is the so-called melt bulge normally observed in the running molten filament about 1 mm; below the outlet from the spinneret hole.
  • the diameter of this bulge will exceed the diameter of the spinneret hole and will vary depending upon the polymer being spun,its viscosity, the jet velocity, the tension on the filament, and the geometry of the hole including the geometry of the entrance to the hole.
  • This melt bulge is considered to be due to release of shear stress and pressure on the melt.
  • the molecules change shape, e.g.-by coiling, folding, etc.
  • melt bulge In the polymer blends as used in this invention, containing polyester dispersed in nylon, a melt bulge like that just described but much larger is observed about 1 cm. below the spinneret face. This latter bulgetypically has a diameter from about 0.6 mm. to about 1.7 mm. in polyethylene terephthalate/nylon-6 blends,"varying with polyester proportions andthe spinning conditions. It is this large bulge which is referred to hereinafter as the melt bulge.
  • the molten filament will snap back like rubber,..forminga'blob at the point where the melt bulge had about its maximum diameter.
  • t 1 1 p q It is observed in spinning the blends which are ',the subject of this invention that filament-breaks tend to occur at or near the melt bulge. The tendency to break at that point probably arises from strains due to the chang ing flow pattern as the polymer passes into the zone of maximum melt bulge. If those strains can. be reduced, minor inhomogeneities which would otherwise cause filament ruptureand drips are harmless,and better spinning performance can be obtained.
  • the ratio of length/ diameter of the capillary should be 1.5 or'greater, up to'the limit imposed by the increase of pressure, required toforce the polymer through a longer capillary at the desired jet velocity.
  • a preferred range of ratiosforcapillary length/diameter is from about 2 to 5 using a capillary of about 6 to 22 mils diameter as is the practice in melt spinning of nylon-6.
  • These capillaries can be round or may be slot-shaped, curved, triangular, square, crescent, cross-shaped, star-shaped, Y-shaped, etc. and/or can be grouped to produce partial coalescence of filaments to form various non-round cross sections. Holes forming hollow filaments can also be used. However, it will be appreciated that use of irregular shapes will afiect the spinneret shears.
  • melt bulge diameter will not exceed at most 1.4 mm.; and in preferred operations is not over 1.2 mm.
  • favorable control of this parameter of melt flow into the spinneret capillary cooperates with high mixing shear in and beyond the extruder, i.e. with a critical fineness of the dispersion obtained, and with high spinneret shear and also with temperature maintained throughout the melt at 275 110 C. to afford major benefits in spinning and drawing performance when all these 4 parameters are given their critical values.
  • capillary diameter i.e. the die swell factor
  • the die swell factor corresponds to a melt bulge diameter of 1.4 mm. in a 14 mil die, and higher in larger dies.
  • the permissible die swell factor will be greater than 4 since the permissible melt bulge of 1.4 mm. represents an increasingly large die swell factor, the smaller the die used.
  • the filaments After being extruded, usually into a heated zone as above mentioned, the filaments are carried downward into a cooling or quench zone which can be designed as for nylon spinning. Some tension is applied to the extruded filaments by the take-up rolls at the bottom of the quench stack, as usual in melt spinning of multifilament yarn. In spinning operations in accordance with this invention the take-up tension is kept at a low level, but sufiicient to maintain smooth operation. Tension on the molten filament is produced by the action of the take-up rolls and by the weight of filament below the melt bulge, acting to attenuate the molten filament.
  • the tension is related to the extent to which the filament is elongated in being taken up, and this in turn is proportional to the stack draw down, i.e. the take-up: speed divided by the jet velocity of the molten polymer stream.
  • Higher jet velocities thus allow lower tension on the molten filament at given throughput and wind-up speeds; the higher jet velocities are also beneficial in reducing the diameter of the melt bulge. It has been found desirable in the process of this invention to utilize a stack draw down of at least but not over 100 and a jet velocity of at least 25 feet/min.
  • the maximum jet velocity to be used depends on factors such as polymer viscosity, quench air flow, etc. and is limited by the fact that at excessive jet velocities the extruded filaments develop a melt bulge which intermittently varies in shape, producing irregularities in filament denier, etc. In operations in accordance with this invention the jet velocities ordinarily used do not exceed about 200 ft./min.
  • polyamide component is polycaproamide terminated by a dicarboxylic acid as described in copending Twilley US. application Ser. No. 426,632 filed Jan. 19, 1965; which polycaproamide has not over 10 m.eq. (milliequivalents) of primary amino groups per kg. (kilogram) of polyamide and has a formic acid relative viscosity (ASTM D-789-62T) in the range of about 40-65 (washed and dried) for 20-50 weight percent polyester and 40-100 FAV for polyester weight concentration below about 20%.
  • These high viscosity polyamides have high melt viscosities in the range of about 600-3300 poises at 275 C.
  • the process of this invention is not confined to use with such polyamides, however, but can be used to spin even polyamides having say m.eq. of end groups and more than 40 m.eq. of primary amino groups per kg. of polyamide.
  • the polyester ingredient of the dispersion can have relatively low viscosity.
  • Polyesters can be used which reduce the melt viscosity of the dispersion as compared to that of the nylon ingredient alone, e.g. polyethylene terephthalate with melt viscosity of 400 poises and reduced viscosity of 0.45 dL/mg. can be used.
  • Polyester such as specifically polyethylene terephthalate having areduced viscosity as low as 0.45 is marginal in utility for fiber formation when spun as such from the melt. The fact that such polyester is valuable for use in the process and product of the present invention may be connected with the fine diameter of fibril produced by the present process.
  • the viscosity should nevertheless be adequate to permit cold drawing i.e. permanently elongating an undrawn filament of the polymer by drawing at a temperature below the polymer fusion temperature whereby the polymer generally displays, by X-ray, orientation along the filament axis.
  • a minimum reduced viscosity for the poly ester ingredient will usually be about 0.3 dl./gm.
  • the polyester and polyamide should have low and uniform moisture content, when subjected to melting, preferably not over 0.02% by weight moisture and particularly 0.01% by weight or less moisture.
  • the polymer blends will generally contain additives such as heat and/or light stabilizer, delustrant, pigment, antistat, lubricant, etc. appropriate to the intended end use, as employed in nylon or in polyester.
  • the blends can also contain bridging agents to increase the Wetability or dispersibility of polyester by nylon, whereby to facilitate forming and maintaining a dispersion of molten polyester particles in molten nylon.
  • the filaments of undrawn yarn produced in accordance with this invention will contain fine polyester fibrils dispersed therein, mainly lying lengthwise along the filament axis.
  • the fibril lengths usually average about 20-100 microns and the fibril diameters average from about 0.04 micron to about 0.4 micron.
  • These undrawn yarns are lubricated by the usual lube roll and wound into a package at the usual deniers, e.g. about 4600 denier for undrawn 136-filament yarn.
  • These undrawn yarns have low birefringence which will usually be in the range between about 0.002 and 0.004.
  • the undrawn yarns produced as above outlined can be drawn with or without heating while drawing, to impart molecular orientation along the filament axis, by
  • nylon yarns can be further treated, e.g. heat treated for relaxation of strains, coated with finishes, crimped, twisted and/or entangled, etc. by procedures used for nylon yarns whereby to adjust and lower the levels of shrinkage, creep, etc.; impart desired friction characteristics; impart bulk; improve runability; etc.
  • the resulting yarns processed for high tenacity and high tensile modulus still have low flat spot index (creep). They are useful in tire cords, tow ropes, belting, high pressure hose reinforcement, safety harness and safety nets, loading slings, fish nets, etc.
  • the yarns produced in accordance with the invention and processed for uniform denier, uniform molecular orientation, etc. to promote uniform dyeability as required in carpets, textiles, etc. will still have relatively high tensile modulus both dry and wet, after being heat relaxed to lower the shrinkage level to suit the end use.
  • These yarns also show a high level of liveliness or resilience as measured by Work Recovery. They are particularly useful in upholstery; in carpeting, e.g. loop pile tufted carpets from texturized yarn; in stretch fabric from false-twisted yarn; in knitted fabric; in staple for blending with e.g.
  • cotton in general for applications of fibers requiring one or more of the following: high tensile modulus both when dry and when hot and wet; low shrinkage; high abrasion resistance; high bulk resilience; and low water absorption high and low being relative to like yarn composed only of the nylon ingredient of the blend, as conventionally produced.
  • polyester fibrils are greatly elongated and lie in the direction of the filament axis.
  • these fibrils are discrete polyester fibrils in the nylon matrix; whereas in compositions of this invention having higher polyester content, from about 40/60 to about 60/40 weight ratios with nylon, some of the polyester fibrils are interconnected to form a network within the nylon matrix and the remainder of the polyester is in the form of discrete fibrils in the nylon.
  • these drawn polyester fibrils are too fine to be observed accurately with an optical microscope in cross sections of the filaments even when the nylon matrix is stained to heighten the contrast.
  • the fibril diameters in the drawn yarn can be calculated as discussed under Definitions, Formulae, and Tests from the diameter of the polyester particles observed microscopically in the collected extrudate and length of the fibrils in the undrawn yarn, and can be measured in drawn filament cross-sections by electron microscope observation. The electron microscope measurements check the diameters calculated from particle size in the extrudate within about 10%.
  • the lengths of the fibrils in the undrawn yarn can be measured microscopically, as noted under Definitions, Formulae, and Tests.
  • the lengths of the fibrils in the drawn yarn are derivable by multiplying undrawn fibril length times draw ratio, as checked by the electron microscope observation.
  • the average lengths of the polyester fibrils in the 5 drawn yarn of this invention are in the range from 100 microns up to 500 microns or more.
  • the drawn yarns produced in accordance with this invention containing polyester fibrils of diameters in the range from about 0.02-0.15 microns (the lower diameters corresponding to lower proportions of polyester in the total blend) have on the average at least 15,000 poly ester fibrils per 1000 sq. microns of transverse area of the drawn filament; and at and below polyester/nylon weight proportions in the filament of 15/85, the number of polyester fibrils per 1000 sq. microns of transverse filament area, per this invention, is at least 30,000. These numbers have been observed as high as 250,000 and could go as high as 1,000,000. Again such counts have been 12 checked within about 10% by electron microscopic "observation.
  • the filaments having the recited minimum numbers of fine fibrils, and especially those averaging at least about 40,000 fibrils per 1000 sq. microns of trans-f verse area, are found to have high levels of tensileand elastic properties, especially high tensile modulus; and greatly improved fatigue properties'as against yarns of like overall composition spun under conditions outsender the limits of the invention.
  • Such comparison yarns, drawn: at 5 x ratio, are found to have average numbers perunit transverse area, substantially lower than the minima found in yarns spun in accordance with this invention.
  • truder and up to the spinneret was generally in the range of 4 to 10 minutes; and in the pilot plant the residence.
  • the take-up speed was 1360 feet per minute for the standard throughput of 25.8 pounds per 136 holes.
  • Undrawn denier was about 30-35 per filament. Birefringence of the undrawn yarn was in the range between 0.002 and 0.008.
  • the yarn was drawn in accordance with known procedures, either for maximum strength as desired in industrial yarns; or for high strength, and high uniformity as indicated by freedom from dye streaks and bands, as described in textile yarns.
  • a heat relaxation or annealing step allowing about 5% -17% contraction of the drawn yarn was generally used in producing the textile yarns of the tables below, operated to adjust shrinkage to the desired levels as known in the art.
  • the solid polymers used after blending as-chips, were dried by vacuum and heat in the blender to bring the moisture content below 0.02% by weight.
  • the nylon ingredient contained a heat stabilizer, generally cupric chloride dihydrate at 50 parts per million of copper.
  • the nylon ingredient contained titanium dioxide delustrant at 0.3% by Weight and manganese dichloride tetrahydrate light stabilizer at 20 parts per million of manganese.
  • the blending, transferring, and melting operations were conducted under a blanket of dry nitrogen (dew point not above -40 C.) with oxygen content not above parts per million.
  • the properties attained at maximum draw are: UTS of at least 10 g./d.; toughness index of at least initial tensile modulus of at least fiat spot index of at most 20; Goodyear tube fatigue endurance of at least 1500 minutes; and for the hot wet yarn (in water at 95 C.) initial tensile modulus of at least 40 g./d. and UTS ofat least6g./d. l
  • the preferred yarn products of the invention when drawn and processedfor textile uses rather than for maximum tenacity, attain high initial tensile modulus of at least 60 g./d. and high hotwet tensile modulus of at least 40 g./d. as for the high tenacity yarns. They have dye strength, compared to nylon-6 as 100, of at least 150 tested with Cl. Disperse Blue 3, anddyeing uniformity rating of Excellent. Their liveliness, measured by percent work recovery is at least compared to about 50% for nylon-6.
  • the total combination of the above yarn properties is found in certain yarn products of the invention, per the examples, especially in yarns spun from PET (polyethylene terephthalate)/nylon-6 blends containing about 25- 40 parts byweight PET and correspondingly about -60 parts by weight nylon-6 wherein the nylon-6 has relative viscosity in aqueous formic acid in' the range of about 40-65 by ASTM Test D-789-62T, and has not over about 10 m.eq. of primary amino groups per kg. of nylon and not over 80 m.eq. of total end groups per kg. of nylon.
  • the cited combination of attainable properties in this yarn is believed to be unique and of extraordinary consequence in offering a single yarn product which is of exceptional value for all of a wide range of end uses.
  • Polyester wgt. proportion (and type) i 0 4 (E2) 4 (E3) 30 (E2) 60 (E1) 60 (E2) 60 (E3) Nylon-6, Wgt. proportion (and type) (N2) 96 (N1) 96 (N2) 70 (N2) 50 (N3) 40 (N 1) 40 (N2) Melt viscosity of blend 1, 0 ca. 500 ca. 1, 100 ca 1, 200 ca. 1, 100 ca. 1, 000 ca. 1, 900 Apparent mixing shear in extruder (velocity gradient, sec-: 1 1 6 :2 150 150 1111 Q Extruder rev. per min 35 50 40 71 89 50 41 Avg. diam. of polyester particles in extrudate (microns) 0.5 0. 7 1.6 2.1 1. 9 ca.
  • Ex. A shows data for spinning nylon-6 under commercial conditions, using 18 mil diameter spinneret capillaries; and for comparison using 13 mil diameter capillaries with the same throughput (viz, 25.8 lb./hr. for 136 holes).
  • this figure applies to both sizes of capillary; a single figure and a blank means the value was measured only for one of the capillary sizes; and otherwise a figure is shown for each size capillary in the appropriate column. These yarns were drawn for maximum tenacity.
  • the seat belts from yarn of this invention have desirable level of elongation coupled with very high breaking strength and high retention of breaking strength after being flexed or abraded; and have at the same time excellent dyea'bility.
  • Table H illustrates, in Examples 14-18, yarns produced by the small scale procedure above outlined, under the conditions indicated in the table and using the variants of the polyester and nylon ingredients indicated in the table. As seen from the table, the yarn products of these examples showed improved properties over the nylon-6 control generally as for the yarns of Table I.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)

Abstract

A PROCESS FOR PRODUCING MULTIFILAMENT YARN FROM BLENDS CONSISTING ESSENTIALLY OF DISPERSIONS OF SYNTHETIC LINEAR POLYESTERS IN A CONTINUOUS PHASE OF ACID TERMINATED SYNTHETIC LINEAR POLYAMIDE BY EMPLOYING AN INTENSIFIED SHEAR IN THE EXTRUDER AND AT THE SPINNERET AS COMPARED TO CONVENTIONAL MELT SPINNING OF NYLON; MAINTAINING THE TEMPERATURE THROUGHOUT THE MELT IN THE RANGE OF 275*$10* C.; AND FLOWING THE MELT INTO THE SPINNERET CAPILLARY WITH GRADUAL CONVERGENCE OF THE STREAM TO SELECTIVELY CONTROL THE MELT BULGE IN THE EXTRUDER FILAMENT. OBSERVANCE OF THE ABOVE CONDITIONS MAKES IT POSSIBLE TO PRODUCE MULTIFILAMENT YARNS ECONOMICALLY FROM BLENDS OF MATERIALS WHEREIN ONE COMPONENT IS UNIFORMLY DISPERSED INTO A MATRIX-FORMING COMPONENT IN THE FORM OF FINE FIBRILS WHICH IMPORT IMPROVED PROPERTIES TO THE YARN. THE FILAMENTS PRODUCED BY THIS INVENTION ARE PREPARED FROM A MATRIXFORMING POLYAMIDE HAVING A RELATIVE VISCOSITY IN 90 PERCENT FORMIC ACID OF ABOUT 40 TO 65 WHEN THE POLYESTER CONSTITUENT COMPRISES AT LEAST 20 PERCENT BY WEIGHT THEREOF.

Description

3,658,981 Patented Apr. 25, 1972 United States Patent Ofice Int. Cl. B29b 1/04 U.S. Cl. 264-349 7 Claims ABSTRACT on THE DISCLOSURE A process for producing multifilament yarn from blends consisting essentially of dispersions of synthetic linear polyesters in a continuous phase of acid terminated synthetic linear polyamide by employing an intensified shear in the extruder and at the spinneret as compared to conventional melt spinning of nylon; maintaining the temperature throughout the melt in the range of 275 ":10 C.; and flowing the melt'into the spinneret capillary with gradual convergence of the stream to selectively control the melt bulge in the extruder filament. Observance of the above conditions makes it possible to produce multifilament yarns economically from blends of materials wherein one component is uniformly dispersed into a matrix-forming component in the form of fine fibrils which import improved properties to the yarn. The filaments produced by this invention are prepared from a matrixforming polyamide having a relative viscosity in 90 percent-formic acid of about 40 to 65 when the polyester constituent comprises at least 20 percent by weight thereof.
This is a divisional of application Ser. No. 677,064, :filedOct; 23,1967, and now U.S. Pat. 3,470,686.
BACKGROUND OF THE INVENTION ..I In'U.S. application Ser, No. 368,028 of Ian C. Twilley, filedMay 18, 19 64 are disclosed spinnable blends consisting essentially ofpolyester dispersions in polyamides, from which multifilament yarns with high tensile properties and 'low' primary creep (measured by Flat Spot Index) can be .minating agent such as monocarboxylic acid, dicarboxylic acid,isooyanate; and the like-Using such terminated polyamides, itisapossible as .disclosedby Twilley to form a fi nely divided,homogeneous dispersion of molten poly 'est'erin a melt of fiber-forming synthetic linear polyamide (i.e. nylon), employing the equipment normally used when nylonfiis rneltedin an extruder; and it is possible to spin such dispersions from the melt by use of essentially conventional nylon ruelt spinning techniques.
A commercially important consideration in spinning multifilament yarn on a large scale is the yield of first quality yarn obtained from the starting polymer. There are various malfunctions which can result in'production of off-quality yarn. The most troublesome of these malfunctions in the spinningfof the Twilley dispersions have been found to be occurrence, at frequently considerably Hi'glfer'tliafi" usual inkonim'e'rcial nylon-6' yarn production, of drips in spinning, and breaks during drawing of the 'multifilament yarn to impart high tenacity.
2 SUMMARY OF THE INVENTION In accordance with the present invention, it has been found that for melt spinning blends of polyester dispersed in nylon, four parameters of the melt spinning operation are critical. They are an intensified shear in the extruder, and an intensified shear at the spinneret, compared to that developed at the corresponding stages in the usual operations for melt spinning of the nylon ingredient of the blend; maintenance of temperatures throughout the melt in the range of 275il0 C.; and fiow of the melt into the spinneret capillary with gradual convergence of the stream, whereby the melt bulge in the extruded filament will not exceed a diameter of about 1.4 mm. when the longest dimension of the capillary cross section is up to 0.35 mm., and a die swell factor not over 4 when said dimension exceeds 0.35 mm. It is then possible to melt spin and draw the subject polyester dispersions in nylon at performance levels comparable with the melt spinning and drawing performance of nylon processed under commercial conditions.
At the same time, it is found, the continuous multifilament yarn which is produced is of superior quality to that obtained when any of the above four parameters are outside their critical ranges. In particular with respect to the high tensile modulus, the good fatigue properties, and the uniformity of properties which can be achieved by use of the present process, the multifilament yarn obtained is materially improved over that obtained using conditions outside the ranges of this invention. The filaments obtained by this invention are found to contain in each transverse cross section a much larger number of reinforcing polyester fibrils than are produced from like blends spun otherwise; this contrast remaining true even when the conventional operation of the nylon extruder is modified in the comparison tests, to produce the same degree of dispersion of polyester in the melt as is formed when operating in accordance with this invention. The efiects of spinneret shear is particularly important as will appear below.
Although the principles underlying the invention are at best only partially understood, it appears the fineness and correspondingly large number and the great lengths of polyester fibrils obtained by the present process are critically important features in the high performance of the resulting yarn products. The average diameters of the fibrils in yarn of this invention, drawn at 5:1 draw ratio, are not over 0.15 micron. Typically the fibrils in the drawn yarn obtained by the present process have about 0.05 to 0.15 micron average diameter in yarn drawn 5 (i.e. drawn at draw ratio of 5 :1) and spun from about 25-60 parts by weight of PET (polyethylene terephthalate) and correspondingly -40 parts of polycaproamide. The average number of fibrils in the 5X drawn polycaproamide yarns of this invention, per 1000 sq. microns transverse area, is at least 15,000 and in the best mode of operation is from at least 30,000 to as high as 1,000,000. The length2diameter ratio of these fibrils of preferred operations averages at least 1,500:1.
At lower weight ratios of PET/nylon-6, such as 4/96, 10/ and 20/80 by weight, typical drawn fibrils per this invention have progressively smaller average diameters, ranging about 0.02 micron, about 0.03-0.04 micron, and about 0.04-0.06 micron average diameter respectively in the yarn drawn 5 The average number of fibrils per transverse 1000 sq. micron area of 5 drawn yarns of this invention, having 4-20 parts of polyester dispersed in correspondingly 96-80 partsof nylon by weight, typically about 50,0001,000,000. At and below 15 parts of polyester by weight, per 100 parts of nylon and polyester in the composition the 5X drawn yarns of this 'invention contain a minimum of 30,000 fibrils per average 1000 sq. micron transverse area.
When properties are referred to herein, it is to be understood they are averages arrived at by systematically sampling large quantities of yarn produced under given conditions, in quantities ranging from scores to hundreds of pounds for laboratory production, and hundreds to thousands of pounds for pilot plant production. Particularly with respect to spinning and drawing peformance, verification of high performance levels requires data from the spinning and drawing of several thousands of pounds of yarn produced under given conditions, for the reason that at high performance levels, the combined occurrence of drips and breaks is of the order of or per thousand pounds of polymer spun. In the Tables of Examples below, data obtained on laboratory scale and those on pilot plant scale are so indicated.
Definitions, formulae and tests DripsDuring melt spinning of multifilament yarn, a rupture of one of the individual filaments where it is molten, at or near the spinneret, may occur, due e.g. to gel or foreign matter weakening the filament, or partial blockage of polymer flow through one hole of the spinneret, etc. The filament thereafter extruded from the affected spinneret hole will no longer be under take-up tension. It will hang or descend slowly, collecting molten polymer in a blob which carries the filament down the stack under its own weight. The loose filament with its heavy blob, unless prevented, will usually snag other filaments in the bundle before or during wind-up of the undrawn yarn package so that the yar'n'breaks when the package is being unwound.
A drip catcher is provided at the bottom of the quench stack, to detect the large blob and signal the operator to remove the package of yarn being wound up, wipe the spinneret, and start a new yarn package. The frequency of these drips is counted and is reported herein as drips per 1000 pounds" of polymer processed. In preferred operations in accordance with this invention, the drips average no more than 5 per 1000 pounds.
Breaks-In the drawing process, one segment of yarn, e.g. formed from non-homogeneous melt, may not draw as much without breaking as does the main yarn. The re suit is that this segment will break, e.g. in the drawing zone, and the drawing operation must be shut down and restarted. Such occurrences are called drawing breaks. Their frequency is reported herein as breaks per 1000 pounds of first quality yarn produced. The sum of drips and breaks measures performance as reported herein. It will be appreciated that breaks can generally be reduced by reducing the draw ratio; however this will generally result in lowering the tensile strength and modulus of the yarn. The preferred undrawn yarns produced according to this invention are drawable by at least 5X without more than 10 breaks per 1000 pounds on the average.
Melt viscosity (poises)-As reported herein, measured by use of an Instron Melt Rheometer with 50 mils diameter capillary 4 inches long, and with a conical entrance having angle of convergence of 60 (i.e. elements at opposite sides of the entrance cone converge in the direction of flow, at an angle of 60 at the apex). The melt viscosities are standardized to a temperature of 275 C. and velocity gradient of 3000 reciprocal seconds.
Reduced viscosity (deciliters per gram)-As reported herein, determined at 25 C. and polymer concentration of about 0.5 gram per 100 ml. in purified ortho-chlorophenol containing 0.1% by weight of water. (See the above-cited Twilley application Ser. No. 368,028 at page 8, lines 9-20.) i Mixing temperature C.)As reported herein, measured by a thermocopule in a well protruding into the melt at the exit from the extruder. a
Apparent mixing shear (Sec. )--Expressed herein in terms of shear rate, i.e. velocity gradient of mixing in reciprocal seconds, under the assumption that viscosity is constant. In a screw extruder, this mixing shear is given by the formula: d (r.p.s.)/ H, wherein d is the screw diameter, r.p.s. is the revolutions per second of the screw, and H is the depth of the channel between the screw threads in the metering section of the extruder, in the same units as d. w
Spinning temperature(' C.)As reported herein, measured by a thermocouple in a Well protruding into the melt at the inlet face of the spinneret.
Apparent pipe and spinneret capillary shear'(sec.*)- Expressed herein as linear velocitygradient through each pipe, or each capillary hole of the spinneret, in reciprocal seconds, under the assumption that viscosity is constant. Given by the formula: 4q/7rr wherein q is the volumetric fiow per second per pipe or spinneret hole, e.g. cubic feet per second per hole, and r is the radius of the pipe or the spinneret hole capillary in the same linear units as for q, e.g. feet.
Jet velocity (feet per minute)Given by the formula: q/vrr wherein q is the volumetric flow in cubic feet per minute per hole, and r is the radius of the spinneret capillary in feet.
Melt density (gm./ml.)In calculating volumetric flow rates (q) from the throughput in weight units per hour, the following values are used for melt densities at 270 0.:
Nylon 6 (polycaproamide)-1.01 gm./ml. PET (polyethylene terephthalate)1.21 gin/ml; PET/nylon 6 blends in weight ratios shown:
Melt bulge (mm.)-A bulge with diameter greater than that of the spinneret capillary, observed in emerging molten filaments just below their point of emergence from the spinneret. Diameter of melt bulge is measured from photographs of the emerging filaments.
Stack draw downRatio between take-up speed of undrawn yarn in e.g. feet per minute and jet velocity (in the same velocity units). a
Diameter of polyester particles (D) in the extrudate (microns)-The molten filaments are cut a few inches below the spinnerete, releasing the take-up tension on the filaments being extruded; and the forward how of molten polymer from the spinnerete holes is collected on a tray in the form of relatively thick filaments which quickly solidify on the tray. A three-milligram sample is dissolved at 25 C. in 200 cc. of aqueous formic acid which dissolves the nylon component and leaves a dispersion of the polyester component in the aqueous formic acid solution. The polyester is in the form of spherical and slightly elongated particles. One gram of potassium chloride is added to render the liquid phase conductive and the dispersion is then passed through a Coulter Counter (Model A) with a 30 micron aperture. The counter determines the average particle volume (V) and the volume distribution. Assuming the particles to be spherical, the average diameter (D) of the dispersed polyester particles, reported herein, and its standard deviation is calculated using .the formula:-
Polyester fibril lengths in undrawn yarn (microns)i These lengths as reported herein are averages, measured from photomicrographs of lengthwise sections of undrawn yarn stained with a dye for the nylon ingredient which does not dye the polyester; e.g. by immersion in a boiling 0.07% aqueous solution of Brilliant Acid Blue dye for one hour.
Polyester-fibril lengths (L) in drawn yarn (microns)- These lengths (L) are averages calculated by multiplying the fibril length in the undrawn yarn by the draw ratio.
These calculatedvvalues agree with observations by electron microscope.
Diameter (d) of Polyester fibrils in the drawn yarn (microns)'Ihese.diameters are too small to be accurately determined with an optical microscope. Average diameter (d) as reported hereinis calculated from polyester fibril lengths, L, in the drawn yarn, as above defined, by' the'formulaz d: (D 1.5L) 4 wherein D is the diameter of polyester particles in the extrudate, as above defined. The drawn polyester fibril diameter, thus calculated, has been checked by electron microscope measurement and found to agree within 10.01 "micron.
Number (N) of polyester fibrils/ 1000 sq. microns of traverse filamentarea+As reported herein, (N) is calculated from the above defined diameter (d) of polyester .fibrils in drawn yarn by the formula:
. .ioF (density of filament) 1r(d/2) X (density of fibril) wherein F is the weight fraction of polyester in the fiberforfnin'g blend and (d) is the above defined fibril diameter. Th'edensityof the 'fibril'is that of drawn polyester, e.g.' 1'.38. gmJ/mlJfQr polyethylene terephthalate; and the values.
Solid polymer moisture content (percent by wgt.)-A sample from a sealed container of the polymer (about 5 grams) is weighed to 0.1 mg. precision under strictly anhydrous conditions in a vial, then is maintained at reduced pressure (100 mm. Hg absolute) and at 185 C. for 2 hours. The pressure of the evolved water vapor, exerted on an oil manometer, is measured. The water content of the sample is determined from the measurement of water vapor pressure, by use of a calibration curve.
Yarn propertiesAs reported herein these are determined by the usual standard tests below indicated:
(a) Tensile strengths (UTS, in gms./denier) are those measured on the Scott IP-4 Tensilometer. (Each determination is the average of five breaks per card.)
(b) Ultimate Elongation (UE, in percent-As for UTS.
(c) Toughness index is given by the formula: (UTS) (d) Flat spot index-A measure of primary creep, by the method of Twilley, U.S. application Ser. No. 368,028 above cited, p. 18, line lp. 19, line 17.
(e) Initial tensile modulus (gms./denier) is measured on the Instron instrument, as the slope of the first linear portion of the stress-strain curve, X100.
(f) Hot Wet mechanical properties are determined as above on drawn yarn held under water at 95 C.
(g) Fatigue resistance is measured (in minutes at 30 p.s.i.) by ASTM Standard Test of 1964, Part 25, Test D-885 upon two-ply (2X 840, 12Z 12S twist) tensilized cord (Goodyear Tube Fatigue Test).
(h) Work recovery (percent)-As herein reported, determined with the Instron instrument at 65% relative humidity and 70 F. (21 C.) and given by the formula:
100 (area under the stress-strain curve for recovery from 1% elongation)/ (area under the stress-strain curve for 1% elongation).
(j) Adhesion to rubber (lbs.)Measured by standard H adhesion test employing tensilized two-ply cords (2/ 804, 12Z 12S twist, with standard resorcinol-formaldehyde-latex finish and with inch of cord embedded in natural rubber. Reported value is average force in pounds to pull one test cord from the rubber at 250 F (121 C.)
Dye strengths and uniformity-Dyeing is accomplished with Color Index Disperse Blue 3 (a water insoluble anthraquinone dye) using 0.2% by weight on fabric or yarn in a dyebath at C. (205 F.). Dye strength (based on nylon as and uniformity (freedom from streaks and bands, rated from (1) for excellent to (4) for poor) is judged by a panel of skilled observers.
Birefringence-A measure of the extent of molecular orientation in the direction of the filament axis, defined as the difference in the refractive index measured longitudinally of the filament vs. that measured perpendicular to the axis of the filament.
The four critical melt spinning parameters, and values thereof used in this invention, are discussed in detail in the following, together with other conditions which are important for best results in the practice of this invention.
The critical stages at which shear normally used in melt spinning nylon-6 should be intensified, in accordance with this invention, are in the melt prior to its formation into filaments, and in the melt during extrusion of the molten dispersion of polyester in polyamide through the spinneret holes. The application of intensified shear at each of these successive stages 'at essential for high quality spinning and drawing performance.
The specific requirements of mixing shear in the present process depend upon variables whichi nclude the proportion of polyester in the dispersion, the time of mixing, and the time and shear during transfer of the molten dispersion from the mixing apparatus used. A useful criterion of proper mixing shear has been found to be the particle size (i.e. average diameter) of the dispersed polyester particles in the extrudate, collected free of tension in molten form just below the spinneret. These polyester particles are observed microscopically in differentially stained cross sections of the extrudate to be spherical or slightly elongated. Similar sized polyester particles are observed in polymer blends collected at various points between the extruder and the inlet face of the spinneret.
In general the average particle diameter of the polyester dispersed in the molten nylon is somewhat smaller, the nearer the point of sampling is to the extruder outlet; e.g. 1.39 microns at the extruder outlet, 1.66 microns over the inlet face of the spinneret, and 1.80 microns in the collected extrudate for 30/70 weight blends of polyethylene terephthalate/nylon-6 have been observed in typical operations in accordance with this invention. It will be appreciated, accordingly, that results obtained by high mixing shear can and should be preserved by transferring the dispersion in relatively narrow pipes which will exert continuing shear such that the particles do not increase unduly in size during transfer.
It has been found that for reasons not at present fully understood, the higher the proportion of polyester in the dispersion, up to about a 50/50 weight ratio, the larger will be the particle size of the dispersed polyester which will still give good results in spinning, and in the yarn obtained; but at 60/40 weight ratio the desired particle size is below the 50/50 level. Also, structure of the polyester influences the permissible particle size, in the sense that a polyester having 2 rings in the chain unit can have a larger particle size than when there is only 1 ring and still give good spinning and drawing performance, per our ata.
The above parameters can be correlated over the range to about 60/40 ratios by weight of polyester/nylon by the following relation between desired average particle diameter D in the extrudate in microns; parts by weight P of the minor ingredient of the blend, based on the polyester/polyamide mixture as 100; and number of rings C (C being I or 2), in the poleyster chain unit:
For instance when the poleyster is polyethylene terephthalate in weight proportion of 30/70 with nylon, P is 30 and D in accordance with the above formula is at most 1.85 microns.
When the polyester particles have average diameters about the maximum specified above of about 3 microns, the standard deviation of these diameters turns out to be about 0.25 micron; and for lower average diameters the standard deviation is also lower; so that 0.25 micron represents a maximum for standard deviaiton of the polyester particle diameters at desired particle size.
In general the values, in accordance with this invention, observed for average diameter D in given blends will depend on intensity of mixing shear and will range down below the permissible maximum in an interval up to about 0.5 microns as the mixing shear is intensified. There is, however, a point at which the effect of increased mixing shear begins to level oil and moreover, such increased shear requires higher power and tends to build up the temperature in the melt. Accordingly the value for polyester particle diameter (D) in the extrudate (in microns) in accordance with this invention will generally be in the range given by:
D50.04P1+0.4Ci0.25
When a conventional nylon single screw extruder with a metering section is used to mix the molten polyarnide/ polyester dispersion, the apparent mixing shear therein, expressed in terms of velocity gradient, should be at least 80 reciprocal seconds, preferably in the range 120-200 reciprocal seconds. A velocity gradient in the pipes of 50-100 reciprocal seconds is genenerally suitable to maintain the particle size in the desired range during transfer.
Mixing shear and spinneret shear together, as previously noted, have been found to cooperate, critical levels of both being required for securing major beneficial elfect, both on spinning and drawing performance, and on properties of the drawn filament, e.g. in particular on the tensile modulus and fatigue properties.
Specific values of spinneret shear, in terms of velocity gradient through the spinneret hole, which must be used to obtain the excellent performance which may be accomplished by this invention start Well above the values (about 2000 reciprocal seconds) ordinarily used in commercial spinning of nylon. Marginal performance starts at about 3000 reciprocal seconds and generally improves as the velocity gradient increases. Velocity gradients through the spinneret hole of at least 5,000 reciprocal seconds, and still higher values up to about 30,000 reciprocal seconds are beneficial. Above a velocity gradient of about 30,000 reciprocal seconds the benefits of intensive spinneret shear appear to drop off.
It is possible to observe directly the effect of spinnert shear upon the polyester particles in the subject dispersions by the following procedure. The fialments are cut, relieving them of tension in the zone where still molten below the spinneret; the molten free end of the filament retracts and makes a blob. A tube full of water is held under the blob and'is raised up to the spinneret hole so that the molten polymer extrudes directly into the water. The sample of extrudate'thus collected tapers from the thick blob to a stern, of diameter aboutequal to the spinneret hole diameter, formed from quickly chilled polymer collected as it was emerging from the spinneret hole. I
Longitudinal sectioning of these samples and microscopic observation of the differentially stained section reveals long, relativelythin polyester fibrils in the stern. In-extrudate from-30 /70 weight ratio blends of polyethylene terephthalate/nylon-6"these fibrils average about 50-100 microns long and about 0.2-0.3 micron in diameter. In the sections taken progressively along the filament as it thickens toward the blob at'the end, the fibrils become shorter and thicker until in the thickest part of the sample, at the blob on the end, only spherical or slightly elongated particles, like those observed in 'theeXtr'udate previously described, are found. These have diameters in the same general range as for the particles in the previously described extrudate, viz. about 1.4-1.8 microns for 30/70 weight ratio blend of polyethylene terephthalate/ nylon-'6. I
Temperature in the molten blend is a variable which must be controlled Within limits, to obtain the optimum spinning performance and yarn quality. The temperature should be near to that conventional for spinning nylon-6 alone, even though the polyester ingredient of the dispersions spun in the process of this invention will usually have a higher melting point than the nylon ingredient'and the melt viscosity of the blend may be higher than in conventional nylon-6 spinning. For example, the blend melt viscosities can be 2000 or more poises at 275 C. Mixing and spinning temperatures of the melt for the present process are about 275 C.i-l0 C. It will be appreciated that shearing action increases the polymer temperature, so the temperatures in the extruder 'walls should be correspondingly lower. Preferably about 260 C. in the extruder metering zone. Therefore at very high shear it may be necessary to cool the extruder by a fan or equivalent means. I w It is desirable especially when relatively high molecular weight, high viscosity nylon-6 (polycaproamide) 'is the polyamide component, to maintain in the spinning tower (also called the quench stack) a relatively high temperature in the zone into which the filaments emerge from the spinneret, generally as disclosed in copendlng US. application of E. A. Swanson et a]. Ser. No. 426,631 filed Jan. 19, 1965. ln particular, temperatures measured at a distance of A" from the outermost ring of filaments and /2" from the spinneret face are desirably in the range 310 C. to 400 C.
A phenomenon common to melt spinning of linear polymers is the so-called melt bulge normally observed in the running molten filament about 1 mm; below the outlet from the spinneret hole. The diameter of this bulge will exceed the diameter of the spinneret hole and will vary depending upon the polymer being spun,its viscosity, the jet velocity, the tension on the filament, and the geometry of the hole including the geometry of the entrance to the hole. This melt bulge is considered to be due to release of shear stress and pressure on the melt. With the resulting freedom for relieving strain along the polymer molecule, the molecules change shape, e.g.-by coiling, folding, etc.
In the polymer blends as used in this invention, containing polyester dispersed in nylon, a melt bulge like that just described but much larger is observed about 1 cm. below the spinneret face. This latter bulgetypically has a diameter from about 0.6 mm. to about 1.7 mm. in polyethylene terephthalate/nylon-6 blends,"varying with polyester proportions andthe spinning conditions. It is this large bulge which is referred to hereinafter as the melt bulge.
If the filament is cut at a point where it is still molten, say about 3 inches below the large melt bulge, the molten filament will snap back like rubber,..forminga'blob at the point where the melt bulge had about its maximum diameter. t 1 1 p q It is observed in spinning the blends which are ',the subject of this invention that filament-breaks tend to occur at or near the melt bulge. The tendency to break at that point probably arises from strains due to the chang ing flow pattern as the polymer passes into the zone of maximum melt bulge. If those strains can. be reduced, minor inhomogeneities which would otherwise cause filament ruptureand drips are harmless,and better spinning performance can be obtained.
Better flow and less strain at the melt bulge can be obtained, it is found (indicated by a reduction in maximum diameter of the melt bulge), by utilizing a generally conical entrance with relatively gradual convergence from the wide vertical shaft or. counterbore into the spinneret capillary. These conical entrances should have an angle of convergence betweenelements at opposite sides of the cone, i.e. an apex angle, not exceeding about 60. The 'sharperapex angles, in theran'ge 15 to 30, give better 'result s but are more diflicult to fabricate with the necessary precision and smoothness. f v
Moreover', the ratio of length/ diameter of the capillary should be 1.5 or'greater, up to'the limit imposed by the increase of pressure, required toforce the polymer through a longer capillary at the desired jet velocity. A preferred range of ratiosforcapillary length/diameter is from about 2 to 5 using a capillary of about 6 to 22 mils diameter as is the practice in melt spinning of nylon-6. These capillaries can be round or may be slot-shaped, curved, triangular, square, crescent, cross-shaped, star-shaped, Y-shaped, etc. and/or can be grouped to produce partial coalescence of filaments to form various non-round cross sections. Holes forming hollow filaments can also be used. However, it will be appreciated that use of irregular shapes will afiect the spinneret shears.
Under proper flow conditions in accordance with this invention the melt bulge diameter will not exceed at most 1.4 mm.; and in preferred operations is not over 1.2 mm. Again, favorable control of this parameter of melt flow into the spinneret capillary cooperates with high mixing shear in and beyond the extruder, i.e. with a critical fineness of the dispersion obtained, and with high spinneret shear and also with temperature maintained throughout the melt at 275 110 C. to afford major benefits in spinning and drawing performance when all these 4 parameters are given their critical values.
The stated maximum melt bulge diameter of 1.4 mm. applies when round spinneret capillaries are used having relatively low diameters such as 8-14 mils. When capillaries of a larger diameter or of non-round shape are used it is preferred to operate in accordance with limits upon the ratio of maximum melt bulge diameter: capillary diameter (i.e. the die swell factor). Accordingly when using a capillary cross section having a longest dimension of 14 mils, or 0.35 mm., we believe the die swell factor along that dimension should be not greater than 4; and this die swell factor of 4, it will be noted, corresponds to a melt bulge diameter of 1.4 mm. in a 14 mil die, and higher in larger dies. In using the smaller dies, it will be recognized, the permissible die swell factor will be greater than 4 since the permissible melt bulge of 1.4 mm. represents an increasingly large die swell factor, the smaller the die used.
After being extruded, usually into a heated zone as above mentioned, the filaments are carried downward into a cooling or quench zone which can be designed as for nylon spinning. Some tension is applied to the extruded filaments by the take-up rolls at the bottom of the quench stack, as usual in melt spinning of multifilament yarn. In spinning operations in accordance with this invention the take-up tension is kept at a low level, but sufiicient to maintain smooth operation. Tension on the molten filament is produced by the action of the take-up rolls and by the weight of filament below the melt bulge, acting to attenuate the molten filament. The tension is related to the extent to which the filament is elongated in being taken up, and this in turn is proportional to the stack draw down, i.e. the take-up: speed divided by the jet velocity of the molten polymer stream. Higher jet velocities thus allow lower tension on the molten filament at given throughput and wind-up speeds; the higher jet velocities are also beneficial in reducing the diameter of the melt bulge. It has been found desirable in the process of this invention to utilize a stack draw down of at least but not over 100 and a jet velocity of at least 25 feet/min.
The maximum jet velocity to be used depends on factors such as polymer viscosity, quench air flow, etc. and is limited by the fact that at excessive jet velocities the extruded filaments develop a melt bulge which intermittently varies in shape, producing irregularities in filament denier, etc. In operations in accordance with this invention the jet velocities ordinarily used do not exceed about 200 ft./min.
Particularly good results in spinning and drawing, and particularly high strength of the yarn are obtained when the polyamide component is polycaproamide terminated by a dicarboxylic acid as described in copending Twilley US. application Ser. No. 426,632 filed Jan. 19, 1965; which polycaproamide has not over 10 m.eq. (milliequivalents) of primary amino groups per kg. (kilogram) of polyamide and has a formic acid relative viscosity (ASTM D-789-62T) in the range of about 40-65 (washed and dried) for 20-50 weight percent polyester and 40-100 FAV for polyester weight concentration below about 20%. These high viscosity polyamides have high melt viscosities in the range of about 600-3300 poises at 275 C. The process of this invention is not confined to use with such polyamides, however, but can be used to spin even polyamides having say m.eq. of end groups and more than 40 m.eq. of primary amino groups per kg. of polyamide.
When melt spinning is in accordance with this invention, the polyester ingredient of the dispersion can have relatively low viscosity. Polyesters can be used which reduce the melt viscosity of the dispersion as compared to that of the nylon ingredient alone, e.g. polyethylene terephthalate with melt viscosity of 400 poises and reduced viscosity of 0.45 dL/mg. can be used. Polyester such as specifically polyethylene terephthalate having areduced viscosity as low as 0.45 is marginal in utility for fiber formation when spun as such from the melt. The fact that such polyester is valuable for use in the process and product of the present invention may be connected with the fine diameter of fibril produced by the present process. Moreover, it may be of value to have a relatively fluid polyester so that it can easily be elongated in the melt. The viscosity should nevertheless be adequate to permit cold drawing i.e. permanently elongating an undrawn filament of the polymer by drawing at a temperature below the polymer fusion temperature whereby the polymer generally displays, by X-ray, orientation along the filament axis. A minimum reduced viscosity for the poly ester ingredient will usually be about 0.3 dl./gm.
To avoid polymer inhomogeneities arising from localized hydrolysis, the polyester and polyamide should have low and uniform moisture content, when subjected to melting, preferably not over 0.02% by weight moisture and particularly 0.01% by weight or less moisture.
The polymer blends will generally contain additives such as heat and/or light stabilizer, delustrant, pigment, antistat, lubricant, etc. appropriate to the intended end use, as employed in nylon or in polyester. The blends can also contain bridging agents to increase the Wetability or dispersibility of polyester by nylon, whereby to facilitate forming and maintaining a dispersion of molten polyester particles in molten nylon.
The filaments of undrawn yarn produced in accordance with this invention will contain fine polyester fibrils dispersed therein, mainly lying lengthwise along the filament axis. In these undrawn filaments, the fibril lengths usually average about 20-100 microns and the fibril diameters average from about 0.04 micron to about 0.4 micron. These undrawn yarns are lubricated by the usual lube roll and wound into a package at the usual deniers, e.g. about 4600 denier for undrawn 136-filament yarn. These undrawn yarns have low birefringence which will usually be in the range between about 0.002 and 0.004.
The undrawn yarns produced as above outlined can be drawn with or without heating while drawing, to impart molecular orientation along the filament axis, by
methods conventionally used for nylon yarns; and can be further treated, e.g. heat treated for relaxation of strains, coated with finishes, crimped, twisted and/or entangled, etc. by procedures used for nylon yarns whereby to adjust and lower the levels of shrinkage, creep, etc.; impart desired friction characteristics; impart bulk; improve runability; etc.
The resulting yarns processed for high tenacity and high tensile modulus still have low flat spot index (creep). They are useful in tire cords, tow ropes, belting, high pressure hose reinforcement, safety harness and safety nets, loading slings, fish nets, etc.
The yarns produced in accordance with the invention and processed for uniform denier, uniform molecular orientation, etc. to promote uniform dyeability as required in carpets, textiles, etc. will still have relatively high tensile modulus both dry and wet, after being heat relaxed to lower the shrinkage level to suit the end use. These yarns also show a high level of liveliness or resilience as measured by Work Recovery. They are particularly useful in upholstery; in carpeting, e.g. loop pile tufted carpets from texturized yarn; in stretch fabric from false-twisted yarn; in knitted fabric; in staple for blending with e.g. cotton; and in general for applications of fibers requiring one or more of the following: high tensile modulus both when dry and when hot and wet; low shrinkage; high abrasion resistance; high bulk resilience; and low water absorption high and low being relative to like yarn composed only of the nylon ingredient of the blend, as conventionally produced.
It is found that in the drawn yarns of this invention the polyester fibrils are greatly elongated and lie in the direction of the filament axis. In blends containing up to about 40/60 weight ratios of polycsterznylon, these fibrils are discrete polyester fibrils in the nylon matrix; whereas in compositions of this invention having higher polyester content, from about 40/60 to about 60/40 weight ratios with nylon, some of the polyester fibrils are interconnected to form a network within the nylon matrix and the remainder of the polyester is in the form of discrete fibrils in the nylon. As noted above under the heading Tests, these drawn polyester fibrils are too fine to be observed accurately with an optical microscope in cross sections of the filaments even when the nylon matrix is stained to heighten the contrast. The fibril diameters in the drawn yarn can be calculated as discussed under Definitions, Formulae, and Tests from the diameter of the polyester particles observed microscopically in the collected extrudate and length of the fibrils in the undrawn yarn, and can be measured in drawn filament cross-sections by electron microscope observation. The electron microscope measurements check the diameters calculated from particle size in the extrudate within about 10%.
The lengths of the fibrils in the undrawn yarn can be measured microscopically, as noted under Definitions, Formulae, and Tests. The lengths of the fibrils in the drawn yarn are derivable by multiplying undrawn fibril length times draw ratio, as checked by the electron microscope observation. As thus calculated, the average lengths of the polyester fibrils in the 5 drawn yarn of this invention are in the range from 100 microns up to 500 microns or more.
The drawn yarns produced in accordance with this invention, containing polyester fibrils of diameters in the range from about 0.02-0.15 microns (the lower diameters corresponding to lower proportions of polyester in the total blend) have on the average at least 15,000 poly ester fibrils per 1000 sq. microns of transverse area of the drawn filament; and at and below polyester/nylon weight proportions in the filament of 15/85, the number of polyester fibrils per 1000 sq. microns of transverse filament area, per this invention, is at least 30,000. These numbers have been observed as high as 250,000 and could go as high as 1,000,000. Again such counts have been 12 checked within about 10% by electron microscopic "observation. The filaments having the recited minimum numbers of fine fibrils, and especially those averaging at least about 40,000 fibrils per 1000 sq. microns of trans-f verse area, are found to have high levels of tensileand elastic properties, especially high tensile modulus; and greatly improved fatigue properties'as against yarns of like overall composition spun under conditions outsiile the limits of the invention. Such comparison yarns, drawn: at 5 x ratio, are found to have average numbers perunit transverse area, substantially lower than the minima found in yarns spun in accordance with this invention.
PREFERRED EMBODIMENTS 0F Tl-IE ;j
INVENTION The examples which follow are illustrative of this vention and of the best mode contemplated by the in diameter screw and depth of channel in the metering sec tion of 0.0938 inch. The throughput was generally 25.8
pounds of polymer per hour, for each 136 hole spinneret/ quench stack combination. From one to foursuch spinnerets were fed by the one extruder in various runs.
In the laboratory runs, the residence time in the ex-:
truder and up to the spinneret was generally in the range of 4 to 10 minutes; and in the pilot plant the residence.
time in the extruder and up to the spinneret decreased from 8 to 2.5 minutes as the number of l36-hole spinnerets fed by the extruder increased from one to four.
During practice of this invention, it will be realized, certain conditions will normally be changed during the course of a run, at least in the large scale runs. For example, the extruder discharge pressure will be increased periodically during a run by increasing the rate of revolution of the screw, as material accumulates in the sand pack filters ahead of the spinnerets and sometimes cause pressure build-ups through the sand pack under. the con-, ditions of constant throughput which are maintained. Ac-.. cordingly, data listed for, the particular examplesbelowf are averages of date taken under a given set of conditions, rather than being necessarily taken all in the same run. Generally the examples, both laborator and pilot plant, at given conditions represent several weeks of operation. r
The headings in the tables of examples, identifying data, are explained in the preceding section of fDefinitions, Formulae, and Tests or in footnotes to thetablesf Data or complete examples labeled Lab in the tables were obtained on a scale of about 1 to 5 pounds per hour, as above indicated; the bulk of the data were obtained onthe pilot plant scale of 25.8 pounds per hour per spin neret. It was verified that the laboratory data can validly be used for at least rough comparisons with pilot plant data. Where data may be less reliable than theiregular pilot plant data this is indicated by ca, i or ,1 in the tables. e
Various operating conditions usedin the examples are shown in the tables which follow. Conditions used in ex--; amples identified by letters in the tables are outside the limits of this inventionin one or more respectsand are given for purposes of comparison with the examples of the invention, identified by numbers.
Conditions other than shown in the tables were as follows The quench stack used in the pilot plant runs of Table l below was as in Example 1 of Swanson et al. copending US. application Ser. No. 426,631 above cited, usinga flow of cooling gas countercurrent to the filament travel upward from the gas inlet, and below the gas inlet a main flow of gas cocurrent with the filament travel. The zone immediately below the spineret was heated and t e gas therein was maintained essentially quiescent. In this zone the temperature was about 310 C.-390 C. at a point A inch below the spineret and inch outside the outermost ring of spinneret holes. The laboratory stack was a smaller version, without heating means.
The take-up speed was 1360 feet per minute for the standard throughput of 25.8 pounds per 136 holes. Undrawn denier was about 30-35 per filament. Birefringence of the undrawn yarn was in the range between 0.002 and 0.008.
The yarn was drawn in accordance with known procedures, either for maximum strength as desired in industrial yarns; or for high strength, and high uniformity as indicated by freedom from dye streaks and bands, as described in textile yarns. A heat relaxation or annealing step allowing about 5% -17% contraction of the drawn yarn was generally used in producing the textile yarns of the tables below, operated to adjust shrinkage to the desired levels as known in the art.
The solid polymers used, after blending as-chips, were dried by vacuum and heat in the blender to bring the moisture content below 0.02% by weight. For industrial yarns the nylon ingredient contained a heat stabilizer, generally cupric chloride dihydrate at 50 parts per million of copper. For textile yarns, the nylon ingredient contained titanium dioxide delustrant at 0.3% by Weight and manganese dichloride tetrahydrate light stabilizer at 20 parts per million of manganese.
The blending, transferring, and melting operations were conducted under a blanket of dry nitrogen (dew point not above -40 C.) with oxygen content not above parts per million.
When yarns are produced in accordance with the invention, as will be seen from the examples, throughout the range of blends up to at least 60/40 by weight of polyester/nylon, the occurrence of drips is not over 15 and breaks is not over 30 and both combined are not over 40, per 1000 pounds of polymer spun. In the preferred yarn products of this invention, having when drawn 5X at least 30,000 polyester fibrils per1000 sq. microns of transverse area, the properties attained at maximum draw are: UTS of at least 10 g./d.; toughness index of at least initial tensile modulus of at least fiat spot index of at most 20; Goodyear tube fatigue endurance of at least 1500 minutes; and for the hot wet yarn (in water at 95 C.) initial tensile modulus of at least 40 g./d. and UTS ofat least6g./d. l
The preferred yarn products of the invention, when drawn and processedfor textile uses rather than for maximum tenacity, attain high initial tensile modulus of at least 60 g./d. and high hotwet tensile modulus of at least 40 g./d. as for the high tenacity yarns. They have dye strength, compared to nylon-6 as 100, of at least 150 tested with Cl. Disperse Blue 3, anddyeing uniformity rating of Excellent. Their liveliness, measured by percent work recovery is at least compared to about 50% for nylon-6.
The total combination of the above yarn properties is found in certain yarn products of the invention, per the examples, especially in yarns spun from PET (polyethylene terephthalate)/nylon-6 blends containing about 25- 40 parts byweight PET and correspondingly about -60 parts by weight nylon-6 wherein the nylon-6 has relative viscosity in aqueous formic acid in' the range of about 40-65 by ASTM Test D-789-62T, and has not over about 10 m.eq. of primary amino groups per kg. of nylon and not over 80 m.eq. of total end groups per kg. of nylon. The cited combination of attainable properties in this yarn is believed to be unique and of extraordinary consequence in offering a single yarn product which is of exceptional value for all of a wide range of end uses.
TABLE I.-PART B Yarns Drawn and Processed for Textile Use Example number or letter Ex, 11. Ex. 10 Ex. F 5 Ex. 11 (Lab) Ex. 13 Ex. G 5
Operating conditions: 1 4
Polyester, wgt. proportion (and type) i 0 4 (E2) 4 (E3) 30 (E2) 60 (E1) 60 (E2) 60 (E3) Nylon-6, Wgt. proportion (and type) (N2) 96 (N1) 96 (N2) 70 (N2) 50 (N3) 40 (N 1) 40 (N2) Melt viscosity of blend 1, 0 ca. 500 ca. 1, 100 ca 1, 200 ca. 1, 100 ca. 1, 000 ca. 1, 900 Apparent mixing shear in extruder (velocity gradient, sec-: 1 1 6 :2 150 150 1111 Q Extruder rev. per min 35 50 40 71 89 50 41 Avg. diam. of polyester particles in extrudate (microns) 0.5 0. 7 1.6 2.1 1. 9 ca. Avg. spinning temp. C.-range=;i=3 C.) r 265 270 25 270 270 270 gig 5 Apparent spinneret capillary shear (1,000s sec. 2. 5 t i 19. 1 18. 4 13. 2 Spinneret capillary diam. (mils) 22 13 18 9 9 10 18 Spirmeret hole entrance apex angle 3 (deg.) 6 Q 20 20 20 Capillary length/diam 2. 5 1 0 4.. 0 g 2. 5 Melt bulge, max. diam. (mm.) lab 0. 6 0. 7 1 1: 1.2 m velocity rt min. 2s. 5 61 g 101 103' 80 gg Stack draw down 70 25 4s 1a 1a 15.5 54
Spinning and Drawing Results on Yarns Drawn and Processed i 1' j for Textile Use (drawn for high level of both tenacity and dye j r a ing uniformity) H 1 Drips per 1,000 po 1 1. 5 3 V 3 8 2Q Breaks per 1,000 pounds 4 5 g 5 9 s g Sun} or drips and breaks tu tf. 5 7 2g 8 g 14 2 Draw r atio: 5.1 l 5.1 5.0 5.0 H 5.0 5.0 Avg. diam. oi drawn fibrils (microns) 0. 02 0.06 0.09 0. 13 0. 12 ca. 0. 4 Avg. length of drawn fibrils (microns) 215 71 380 380 g 300 65 Avg. number (in-1,000s of fibrils per 1,000 sq. mlerons'of 1 5 1 1 drawn filament traverse area 1 100 13. 2 4 7 v 46.1 1 ca. 4 4 U'r's (gram/denier) L as e. 0 5.8 7. 1 5.5 5.0 .5 UE (percent) 31 18 25 17 16.4 14 15 Initial tensile modulus (g./d. a2 55 g5 7s 88 94 V; 75 Avg length/diam. drawn 5151-; 10, 750 1,180 4, 200' 153 Initial tensile modulus or hot wet yarn (g.ld.) l5 2 5 2Q 49 60 48 See footnotes at end of table.
TABLE L-PART B-Continued Ex. 12 Example number or letter Ex. E Ex. 10 Ex. 13 Ex. 11 (Lab) Ex. 13 Ex. Gr
UTS for hot wet yarn (g./d.) 3. 3. 8 3. 5. 2 5. 8 6. 2 5. 9 Dye strength (vs. Nylon-6) 100 11g 190 160 180 140 L12 Dyeing uniformity (rating)- 2 g 8 1 g g g Work recovery (percent) (lab) 61 6 E 73 78 l I See Table A below:
TABLE A (2) Durability test (miles to failure per Government (1) Polyethylene terephthmte properties Services Administration test, Bull. ZZ-T-003 8L] of End groups Melt July 13, 1959, modified by a final 80% overload stage).
(m.e.q./kg.) Reduced viscosity viscosity (275 0., 15 Type CO0H OH (dl./gm.) poises) Test sequence El as 125 0. 45 400 g; 2g 3.8 5,233 (a) Infiate to 24 p.s.1. (abs) at ambient temperature; E4IIIIIIIIIIIIIII 22 69 019 31200 (b) Run 420 miles under full load (1020 lb.) at 60 m.p.h.
Norm-For all the PETs, glass transition, temperature is about about 58 C. by DTA (2) Nylon-6 properties End groups B (m.e.q./kg.)
Melt Reduced viscosity Rel. viscosity (275 0.,
COOH d NH2 Vise. b (dl./gm.) poises) N0rE.Singly underscored values are outside preferred ranges; doubly underscored values are outside ranges of the invention.
8 Angle between cone elements lying in opposite positions along entrance from spinneret hole counterbore into spinneret capillary.
4 Ex. A (nylon control) shows data for spinning nylon-6 under commercial conditions, using 18 mil diameter spinneret capillaries; and for comparison using 13 mil diameter capillaries with the same throughput (viz, 25.8 lb./hr. for 136 holes). Where a single figure is tabulated under Ex. A, this figure applies to both sizes of capillary; a single figure and a blank means the value was measured only for one of the capillary sizes; and otherwise a figure is shown for each size capillary in the appropriate column. These yarns were drawn for maximum tenacity.
6 Polymers dried only to 0.040.06% moisture; at 0.02% moisture in 30/70 blends of PET/nylon drips are ca. 4 per 1,000 lbs. lower than at 0.04% moisture.
6 Data for spinning nylon-6 under commercial conditions, and draw ng and processing for textile use, with high level of both tenacity and dyeing uniformity.
7 Standard nylon hole.
TIRES FROM PREFERRED YARN OF THE INVENTION Standard 750 x 14 2-ply tires were produced by the procedure of Example 2 of the copending US. application of C. W. Beringer, Ser. No. 473,215, filed July 19, 1965, for Reinforcing Cord and Tire Therefrom, using 1260 denier, 204 filament count yarn spun at throughput of 38.7 lb./hr. through a 204 hole spinneret under the conditions of Example 4 above. These tires were compared against tires similarly produced from commercial nylon-6 yarn in the commercially most important properties, with the results shown in the table below:
(1) Time (seconds) at 30 m.p.h. to non-objectionable fiat spot, per panel jury. This invention: 36 sec.; Comparison: 60 sec.
(7 hrs.); then (0) Run 960 miles under 1204 lb. (20% overload),
60 m.p.h. (16 hrs.); then (d) Run 1440 miles under 1408 lb. (40% overload),
.60 m.p.h. 24 hrs.); then (d) Inflate to 45 p.s.i.g. and run under 1816 lb.
overload), 45 m.p.h. to failure.
Results (hours under 80% overload at 45 m.p.h., to failure): This invention: 33 hrs.; comparison: 3 hrs.
SEAT BELTS FROM PREFERRED YARN OF THE INVENTION 2" automotive seat belts were woven by a standard procedure from yarn of Example 3 above and compared against seat belts similarly woven from (A) commercial nylon-6 yarn and (B) yarn of Example B above. The following table shows the results of the comparison in important properties for seat belts.
(6) Dyeability (CI) Disperse Blue 3: This invention: Ex-
cellent; vs. (A) Good, (B) Good.
It will be seen that the seat belts from yarn of this invention have desirable level of elongation coupled with very high breaking strength and high retention of breaking strength after being flexed or abraded; and have at the same time excellent dyea'bility.
Table H below illustrates, in Examples 14-18, yarns produced by the small scale procedure above outlined, under the conditions indicated in the table and using the variants of the polyester and nylon ingredients indicated in the table. As seen from the table, the yarn products of these examples showed improved properties over the nylon-6 control generally as for the yarns of Table I.
TABLE II (LAB SOALE).VARIO US POLYESTER/NYLON TEXTILE YARNS Example number or letter Ex. H Ex. 14 Ex. 15 Ex. 16 Ex. 17 Ex: 18
Polyester, wgt. proportion (and type) 1 30 (E3) 30 (E5) 38 (E6) (E7) (E8) Nylon wgt. proportion (and type) 2 100 (N2) 70 (N 66) 70 (N2) 67 (N2) 80 (N2) 70 (N2) Apparent mixing shear in extruder (velocity gradient, sec. 70 110 110 110 130 120 Extruder rev. per min 40 65 65 65 77 70 Avg. diam. of polyester particles in extrudate (microns) 1.8 1. 9 1. 9 1. 2 2. 2 Avg. spinning temp. OJ Range==l=3 C.) 265 265 265 270 264 268 Apparent spinneret capillary shear (1,000s sec. 2. 5 5. 5 13 20 27 27 Splnneret hole entrance apex angle (deg) 60 60 60 60 60 Capillary length/ 3. 8 3v 8 3. 8 3. 8 3. 8 Melt bulge, max. diam. (mm) 1.3 1.3 1. 3 1.3 l. 3 Denier and count (drawn) 120/20 90/12 80/ 12 70/12 65/ 20 Sum of drips and breaks per 1,000 lb ca. 20 ca. 20 15 15 15 15 Draw ratio- 4. 2 5. 6 5. 2 5. 9 ti. 0 5. 4 Avg. diam. of drawn fibrils (microns) 0. 14 0. 12 0.1 0. O5 0. 12 Avg. length of drawn fibrils (microns) 206 340 490 555 500 Avg. numbers (in 1,000's) ol fibrils per 1,000 sq. microns of drawn filament transverse ar 17. 2 24. 6 39 102 23. 4 UTS (gram/denier) 7.0 8.4 8.5 6.6 0.5 5.5 UE (percent). 6 10. 8 12 12. 4 l2. 0 12. 0 Toughness index (U'IS) X U.E. 36 27. 6 20.5 23. 3 31. 0 18. 0 Initial tensile modulus (g./d. denier) 29 80 70 58 80 Flat spot index 34 20 22 22 16 20 Initial tensile modulus and hot wgt. yarn (g./d.) 18 48 42 35 4s 21 Percent shrinkage in boiling water (including creep). 12. 5 9. 8 10. 1 11 10 10 Textile properties 3 2 1 1 2 2 1 Avg. length/diameter drawn fibrils 1, 410 2, 820 4, 900 11, 100 4, 160
E3See Table A(1), above: E5498: See Table B, below:
TABLE B-POLYESTER E5-E8 '1 7 c:
H) E590% polyethylene 2,6-naphthalene dicarboxy lalte, 10 polyethylene 2,7-napht-halene drcarb- E690% polyethylene 2,6-naphthalene dlcarboxlate, 10%po1yethylene 2,7-naphthalene dicarboxylate. KEY-Polyethylene Ali-naphthalene dlcarboxylaltc. E8-Polyhexamethylene 4,4-dlphenylsulfone d1- carboxylate. (See U.S.P. 3,228,913 of January 11, 1966 to Nesty et al., Example 1.)
The invention claimed is:
1. A process for melt spinning, to form continuous filament yarn, a dispersion of polyester in polyamide, which polyester contains from 1 to 2 rings in the repeating unit of the main polymer chain, the polyester ingredient and the polyamide ingredient each being capable of being formed into a filament which can be cold drawn whcrcby at least the polyamide ingredient displays, by X-ray, orientation along the filament axis; which process comprises:
(a) subjecting a molten mixture of said polyester and polyamide to mixing shear which brings the average diameter of the polyester particles dispersed in the polyamide to a value D in microns given by the relation:
D0.04P,+0.4C+0.25, where P is the parts by weight of the minor ingredient of the blend, based on the polyestcr/polyamide mixture is 100, and C is the number of rings in the polyester chain unit;
(b) flowing the resulting molten dispersion through each spinncrct capillary at apparent shear having a velocity gradient of at least 3,000 reciprocal seconds; and
(c) maintaining in the melt, from the exit out of the mixing zone up to the spinneret, a temperature in the range 275 C., :10 C.
2. The process of claim 1 wherein the molten dispersion is advanced through each spinneret hole in a gradually converging stream which produces in the molten extruded filament a diameter of the melt bulge not exceeding about 1.4 mm. when the longest dimension of the capillary cross section is up to 0.35 mm., and a die swell factor not over 4 when said dimension exceeds 0.35 mm.
3. The process of claim 2 wherein the molten mixture of polyester and polyamide is subjected to an apparent mixing shear of at least 100 reciprocal seconds and is subjected to an apparent spinnerct shear in the range between 5,000 and 30,000 reciprocal seconds; and the molten dispersion is flowed through spinncret holes having a conical entrance to the capillary wherein the apex angle does not exceed about 60.
I\ 2-See Table 11(2), above. N6'6Commercia1 nylon-66 (polyhexamethylene adipamide).
3 Rating scale of textile properties:
(1) Excellent. (2) Very good, similar to the control. 4 Standard nylon hole.
4. Process of claim 2 wherein the polyester ingredient is predominantly polyethylene terephthalate and the nylon ingredient is predominantly poly-e-caproamidc; the value of D in microns is given by the relation D References Cited UNITED STATES PATENTS 3,099,067 7/ 1967 Merriam et al. 2882 3,342,901 9/1967 Kosinsky et al. 264349 3,369,057 2/1968 T Willey 260857 3,382,305 5/1968 Brcen 264-171 3,439,084 4/1969 Ono et al. .264-176 F 3,506,753 4/1970 Flamand 264-176 F 3,558,420 l/ 1971 Opfell 264-473 3,549,741 12/1970 Caison ct al. 264210 F OTHER REFERENCES Polymer Processing by McKelvey, pp. 69-72, John Wiley and Sons, New York, 1962; US. Pat. Office Sci. Lib.
Mech. Property of Polymer Melt Process" by Pearson, pp. 49-52 and 111, Pergmon Press, New York, 1966; US. Pat. Ofiicc Sci. Lib.
JAY H. WOO, Primary Examiner US. Cl. XJR.
US839110*A 1967-10-23 1969-04-10 Process for spinning polyblend yarn Expired - Lifetime US3658981A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US67706467A 1967-10-23 1967-10-23
US83911069A 1969-04-10 1969-04-10

Publications (1)

Publication Number Publication Date
US3658981A true US3658981A (en) 1972-04-25

Family

ID=27101697

Family Applications (1)

Application Number Title Priority Date Filing Date
US839110*A Expired - Lifetime US3658981A (en) 1967-10-23 1969-04-10 Process for spinning polyblend yarn

Country Status (1)

Country Link
US (1) US3658981A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3899563A (en) * 1971-12-06 1975-08-12 Allied Chem Synthetic fibers having improved soil and stain repellency
US4052481A (en) * 1975-10-15 1977-10-04 Unitika Ltd. Resin composition and a process for preparing same
US4215021A (en) * 1978-04-06 1980-07-29 Bridgestone Tire Company Limited Coating rubber composition for tire cords
US4670203A (en) * 1975-08-30 1987-06-02 Shao Chi Chang Method for manufacturing molded products of polyethylene terephthalate
US5565158A (en) * 1994-11-16 1996-10-15 Basf Corporation Process for recycling multicomponent mixed polymer wastes
US20050035486A1 (en) * 2002-02-13 2005-02-17 Basf Aktiengesellschaft Device and method for producing moulded bodies from thermoplastic polymers
US20170114477A1 (en) * 2014-04-01 2017-04-27 Kordsa Global Endustriyel Iplik Ve Kord Bezi Sanayi Ve Ticaret Anonim Sirketi System for industrial yarn production from composite polyethylene naphthalate material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3899563A (en) * 1971-12-06 1975-08-12 Allied Chem Synthetic fibers having improved soil and stain repellency
US4670203A (en) * 1975-08-30 1987-06-02 Shao Chi Chang Method for manufacturing molded products of polyethylene terephthalate
US4863652A (en) * 1975-08-30 1989-09-05 Chang Shao C Method for manufacturing molded products of polyethylene terephthalate
US4052481A (en) * 1975-10-15 1977-10-04 Unitika Ltd. Resin composition and a process for preparing same
US4215021A (en) * 1978-04-06 1980-07-29 Bridgestone Tire Company Limited Coating rubber composition for tire cords
US5565158A (en) * 1994-11-16 1996-10-15 Basf Corporation Process for recycling multicomponent mixed polymer wastes
US20050035486A1 (en) * 2002-02-13 2005-02-17 Basf Aktiengesellschaft Device and method for producing moulded bodies from thermoplastic polymers
US20170114477A1 (en) * 2014-04-01 2017-04-27 Kordsa Global Endustriyel Iplik Ve Kord Bezi Sanayi Ve Ticaret Anonim Sirketi System for industrial yarn production from composite polyethylene naphthalate material

Similar Documents

Publication Publication Date Title
US5092381A (en) Polyester industrial yarn and elastomeric objects reinforced with said yarn
US3369057A (en) Polyamide-polyester dispersions wherein the polyamide is less than 40% amine terminated
US3227793A (en) Spinning of a poly(polymethylene) terephthalamide
US7935283B2 (en) Melt spinning blends of UHMWPE and HDPE and fibers made therefrom
US4518744A (en) Process of melt spinning of a blend of a fibre-forming polymer and an immiscible polymer and melt spun fibres produced by such process
US4228118A (en) Process for producing high tenacity polyethylene fibers
US4276348A (en) High tenacity polyethylene fibers and process for producing same
US3963678A (en) Large denier polyethylene terephthalate monofilaments having good transverse properties
JP2521773B2 (en) Aramid copolymer system
EP1507902B1 (en) Method for producing polyamide filaments of high tensile strength by high speed spinning
KR20120072860A (en) Process for preparing high modulus polyester tire cord having an excellent dimensional satability
US3658981A (en) Process for spinning polyblend yarn
US4560743A (en) Poly(P-phenyleneterephthalamide) fibers
JP2545595B2 (en) Colored aramid fiber
US3470686A (en) Polyblend yarns
EP0154425B1 (en) Melt spinning of a blend of a fibre-forming polymer and an immiscible polymer
US20050161854A1 (en) Dimensionally stable yarns
JPS6088121A (en) High speed production of sufficiently stretched polyester yarn
EP0295147B1 (en) High strength polyester yarn
KR0160463B1 (en) Method of manufacturing the polyamide yarn
KR20110078415A (en) High tenacity polyester filament and process for preparing polyester tire cord
KR100230899B1 (en) High elongation(p-phenylene terephthalamide)fiber
JP3234295B2 (en) Method for producing polyhexamethylene adipamide fiber
JPH03152215A (en) High-strength and highly durable conjugate fiber
US3498042A (en) Staple blend of 3-methylbutene-1 copolymer and cellulosic fibers