US3655360A - Metals and metal alloys and preparation thereof - Google Patents

Metals and metal alloys and preparation thereof Download PDF

Info

Publication number
US3655360A
US3655360A US879610A US3655360DA US3655360A US 3655360 A US3655360 A US 3655360A US 879610 A US879610 A US 879610A US 3655360D A US3655360D A US 3655360DA US 3655360 A US3655360 A US 3655360A
Authority
US
United States
Prior art keywords
metal
solution
metals
oxides
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US879610A
Inventor
Robert H Lindquist
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Original Assignee
Chevron Research and Technology Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron Research and Technology Co filed Critical Chevron Research and Technology Co
Application granted granted Critical
Publication of US3655360A publication Critical patent/US3655360A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1026Alloys containing non-metals starting from a solution or a suspension of (a) compound(s) of at least one of the alloy constituents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S75/00Specialized metallurgical processes, compositions for use therein, consolidated metal powder compositions, and loose metal particulate mixtures
    • Y10S75/956Producing particles containing a dispersed phase

Definitions

  • Application Data alloys comprising forming a solution comprising metal halide precursors, selected from fluorides, bromides and iodides, of [63] l 'm of the continuous and dispersed phases of the final product, ad- 1969, wh'ch a conunuauonm'pan of ding an epoxy compound to said solutions whereby a gel com- 582238SePt' l966Pat- 3,458,306' prising metal hydroxides is formed, converting said metal hydroxides to oxides, and reducing the oxide precursors of the [52] U.S. Cl ..75/0.5 AC continuous phase f the fi product and products so 51 int. Cl. ....B22f 9/00 prepared [58] Field ofSearch ..75/0.5 AC
  • the dispersed phase generally is incorporated in the continuous phase by: (a) selecting as the dispersed phase particles of a metal oxide material that has a high free energy of formation, AT, and therefore that is resistant to reduction to the metal in hydrogen; (b) forming around the dispersed phase a continuous phase of one or more metal compounds easily reducible to metal in hydrogen, (c) subjecting the resulting mass to a reducing treatment in hydrogen, whereby the continuous phase is converted to metal form without concurrent reduction to the metal of the dispersed oxide phase, and (d) pressing the resulting powdery mass under high pressure into a dense, coherent compact," which can be further worked, for example rolled, extruded or machined.
  • Particles size must be selected in advance, from a range of sizes that is limited to sizes producible by available technoloc.
  • Selective precipitation and selective crystallization particularly in the case of metal alloy preparation, are caused by nonhomogeneity of ,original mixture, and are serious problems that can be controlled only in part by vigorous agitation. Final product quality is drastically affected by minor deviations from uniformity of dispersion of the oxide particles in the original mixture.
  • Soluble salts such as sodium nitrate must be essentially completely removed by washing, because such contaminants adversely affect final product quality. It is known that such complete removal is extremely difficult.
  • At least one metal halide selected from the halides of metals which in the oxide form are reducible to the metal form in hydrogen at a temperature in the range 600 to l,800 F., said halides being further selected from metal fluorides, bromides and iodides,
  • At least one metal halide selected from the halides of metals the oxides of which are not reducible in hydrogen at a temperature in the range 600 to 1,800 E, said halides being further selected from metal fluorides, bromides and iodides, and
  • hydrogen at a temperature in the range 600 to l,800 F. include Y, Ca, La, Be, Th, Mg, U, l-If, Ce, Al, Zr, Ba, Ti, Si, Ta, V, Nb and Cr.
  • a process for producing a composition comprising a continuous phase comprising a material selected from the group consisting of iron, cobalt, nickel and alloys of at least two of these metals with each other, said composition further comprising a dispersed phase comprising particles of a refractory metal oxide, the improvement which comprises:
  • At least one metal halide selected from the halides of metals which in the oxide form are reducible to the metal form in hydrogen at a temperature in the range 600 to l,800 F., the metal cation of said metal halide being present in said solution in an amount of at least 45, preferably at least 70, weight percent of the total metal cations in said solution, said halide being further selected from metal fluorides, bromides and iodides,
  • At least one metal halide selected from the halides of metals the oxides of which are not reducible in hydrogen at a temperature in the range 600 to 1,800 E, the metal cation of said metal halide being present in said solution in an amount of less than 55, preferably less than 30, weight percent of the total metal cations in said solution, said halide being further selected from metal fluorides, bromides and iodides, and
  • the metals which in the oxide form are reducible to the 40 metal form in hydrogen at a temperature in the range 600 to 1,800 F. include Ni, Co, Fe, Cu, Cd, Tl, Ge, Sn, Pb, Bi, Mo, W, Re and In.
  • At least one metal halide selected from the group consisting of halides of iron, cobalt, and nickel, said halides being further selected from fluorides, bromides and iodides, the metal cation of said metal halide present in said solution in an amount of at least 45, preferably at least 70, weight percent of the total metal cations in said solution, and
  • At least one metal halide selected from the halides of Y, Ca, La, Be, Th, Mg, U, Hf, Ce, Al, Zr, Ba, Ti, Si, Ta, V, Nb and Cr, said halides being further selected from fluorides, bromides and iodides, the metal cation of said metal halide being present in said solution in an amount of less than 55, preferably less than 30, weight percent of 70 the total metal cations in said solution; and
  • a material comprising a continuous phase selected from metals and metal alloys surrounding a dispersed phase of refractory metal oxide particles, said particles being 0.005 to 1.0 micron in diameter and having an interparticle spacing of 0.01 to 1.0 micron, said material being prepared by any of the first three embodiments above.
  • a composition comprising a continuous phase selected from metals and metal alloys surrounding a dispersed phase of refractory metal oxide particles, said particles being 0.005 to 1.0 micron in diameter and having an interparticle spacing of 0.01 to 1.0 micron, said material being prepared by any of the first three embodiments above.
  • the epoxy compound used in the process of the present invention may be any epoxy compound that will react at a reasonable rate with the anion of the metal salt or metal salts present.
  • the epoxy compound preferably is a lower alkylene oxide or an epihalohydrin.
  • Said lower alkylene oxide may be, for example, ethylene oxide, propylene oxide or butylene oxide.
  • the lower alkanol used in the process of the present invention may be any lower alkanol, including methanol, ethanol, 1- propanol, 2-propanol, l-butanol, 2-butanol, 2-methyl-2- propanol, and Z-methyl-l-propanol.
  • a mixture comprising halohydrins and a metal hydroxide-containing gel, results from the addition of an epoxy compound to the starting solution.
  • this mixture conveniently releases the halohydrins, which vaporize off easily. Accordingly, no washing or other contaminant removal procedures are required.
  • the material resulting from the calcination treatment was a crumbly or powdery mass. It was subjected to a reducing treatment in an ebullating bed reactor, to reduce the nickel oxide portion thereof to nickel metal, as follows:
  • the ebullating bed reactor consisted of an upright quartz tube containing at the base a fritted quartz disc through which the hydrogen passed and caused the powder to bubble up or ebullate into the space above the disc, thereby preventing appreciable powder sintering during the reduction reaction,
  • the material resulting from the reducing treatment was a powder, which was found to weigh 320 grams, and to consist essentially of 98 weight percent nickel metal and 2 weight percent A1
  • a portion of the nickel-A1 0 powder was hot pressed to a cylindrically shaped compact having a diameter of 1% inches and a thickness of one-fourth inch, in a graphite die under a low pressure of hydrogen for one-half hour at a temperature of l,l00 C. and a pressure of 3,500 psig.
  • the resulting cylindrical compact was rolled to lower its thickness 10 percent, and was then annealed in hydrogen at 1,100 C.
  • the so-annealed compact could be cold rolled to a thickness of 0.050 inch without further annealing, and this was done. From the resulting 0.050-inch-thick material, two elongated tensile strength specimens were machined.
  • Example 2 A solution of the following composition was prepared:
  • Example 1 Approximately 95 weight percent of said gel was subjected to the same calcination treatment as in Example 1. The material resulting from the calcination treatment was subjected to the same reducing treatment as in Example 1.
  • the material resulting from the reducing treatment was a powder, which was found to weigh 320 grams, and to consist essentially of 96 weight percent nickel metal and 4 weight percent A1 0 A portion of the nickel-A1 0 powder was hot pressed, rolled, annealed, further rolled, and machined to produce an elongated tensile strength specimen, all exactly according to the procedure recited in Example I.
  • Example 1 Approximately weight percent of said gel was subjected to the same calcination treatment as in Example 1. The material resulting from the calcination treatment was subjected to the same reducing treatment as in-Example l.
  • the material resulting from the reducing treatment was a powder, which was found to weigh 300 grams, and to consist essentially of nickel metal.
  • Example I A portion of the nickel metal powder was hot pressed, rolled, annealed, further rolled, and machined to produce two elongated tensile strength specimens, all exactly according to the procedure recited in Example I.
  • Example 4 A solution of the following composition was prepared:
  • Example 1 The material resulting from the calcination treatment was subjected to the same reducing treatment as in Example 1.
  • the material resulting from the reducing treatment was a powder, which was found to weigh 600 grams, and to consist essentially of 98 weight percent nickel metal and 2 weight percent Th0
  • the Th0 in said material was determined by electron microscope examination to be in the form of particles having an average diameter of 200 Angstroms.
  • Example 1 A portion of the nickel-Th0 powder was hot pressed, rolled, annealed, further rolled, and machined to produce an elongated tensile strength specimen, all exactly according to the procedure recited in Example 1.
  • the gel formation step of the present process may be conducted at ambient to slightly elevated temperatures.
  • the desired particle size for the dispersed refractory metal oxide component in the final product when dispersion hardened metals or metal alloys are produced by the present process, is 0.005 to 0.1 micron in diameter. Contrary to prior art processes, this particle size varies as a function of process conditions, thereby providing great flexibility to the process.
  • the size of the dispersed refractory metal oxide particles is a function of the temperature during the calcination step, and the length of time the step is conducted. The temperature is in the general range 800 to 2,400 F., with smaller particles resulting from the use of lower temperatures and shorter periods. Temperatures should be chosen with regard to the particle size desired and the melting points of the materials used. When operating within the ranges set forth herein for proportions of ingredients, calcination temperatures, etc., the dispersed oxide particles in the final product will be extremely uniformly dispersed, and will have an interparticle spacing of 0.01 to 1.0 micron.
  • the grain size of the metal and metal alloy continuous phases of the products produced by the process of the present invention is a function of the temperature during the reduction step, and the length of time the step is conducted.
  • the temperature is in the general range 600 to l,800 F., with smaller grain sizes resulting from the use of lower temperatures and shorter periods.
  • a preferred temperature-time combination is 600 to l,600F. for not substantially longer than necessary for reduction reactions to be completed.
  • Exceptionally fine-grained metal and metal alloy continuous phases can be obtained in the products produced by the process of the present invention. Further, it is well known that a grain growth phenomenon occurs in conventional dispersion hardened metal and metal alloy shaped materials during stressing of the materials, particularly at elevated temperatures. Dispersion hardened metal and metal alloy shaped materials made from products of the present process show a markedly reduced grain growth, compared with the conventional materials, probably due in large part to the excellent and uniform dispersion of the dispersed oxide phase.
  • Grain diameters for the continuous metal phase of shaped materials made from products of the present process have been found to be -20 microns after tensile strength tests, compared with grain diameters of 300 to 500 microns for conventional dispersion hardened shapes of the same composition after the same tensile strength tests.
  • Recrystallization of conventional shaped dispersion strengthened materials after extensive cold rolling, resulting in coarse grain size, is a known problem.
  • the shaped materials made from products of the present process have demonstrated superior resistance to this recrystallization phenomenon, compared with similar prior art materials.
  • water be present in the starting solution in the present process, either in the form of free water or water of hydration. Most desirably, 2 to 6 mols of water will be present per mol of halide ion.
  • the final product after the reduction step preferably will consist of 80 to 99.5 weight percent metal or metal alloy and 20 to 0.5 weight percent dispersed refractory metal oxide.
  • the metal cation of the metal halide precursor of the metal or metal alloy of the continuous phase is present in the starting solution in an amount of at least 45, preferably at least 70, weight percent of the total metal cations present in that solution.
  • a final product comprising alumina dispersed in copper is a useful example.
  • the temperatures used in the step of reducing the oxide of the continuous phase material have been set forth above.
  • the reduction step may be carried out in a stream of hydrogen, with care being taken to prevent problems that can be caused by localized overheating, leading to temperature runaways and liquid metal formation, and also to prevent sintering of the metal oxide particles of the dispersed phase. Such problems can be prevented by use of the ebullating bed technique previously described and by taking care to maintain temperatures below the sintering temperature of the metal oxide particles.
  • the reduced product may be sintered as described in US. Pat. No. 3,019,103.
  • the product of the present process in the form of a powder, may be readily compacted, and the discussion in this connection in US. Pat. No. 3,019,103 is applicable.
  • the powder product ofthe present process preferably is used by compacting it, preferably to a density at least 90 percent, and more preferably at least 95 percent, of the theoretical density.
  • the resulting compact preferably is therrnomechanically worked and shaped into a desired material of construction.
  • thermomechanical working treatments would greatly increase the tensile strengths of the materials given in the examples in the present application, as well as further enhancing other properties such as creep resistance.
  • the further thermomechanical working treatments probably effectively develop an optimum and complex dislocation stopping network comprising dispersed oxide particles, grain boundaries and sub-boundaries, and dislocation tangles.
  • Control may be exercised over grain size of the continuous phase metal or metal alloy.
  • Control may be exercised over particle size of the dispersed phase metal oxide.
  • a volatile organic material anepoxy compound is used to cause a gel to form, rather than causing precipitation by using a metal hydroxide or other basic hydroxide that leaves an impurity that must be removed by washing after the precipitation is completed.
  • the undesired components of the epoxy compound vaporize off as halohydrins, leaving no contaminant removal problem.
  • Metal halide starting materials are available at low cost compared with many prior art starting materials.
  • the process of the present invention produces materials, particularly dispersion hardened metals and metal alloys, which may be formed into shapes having at least the following advantages, particularly under stress at elevated temperatures:
  • a process for preparing a material comprising a continuous phase selected from metals and metal alloys surrounding a dispersed phase of refractory metal oxide particles which comprises:
  • At least one metal halide selected from the halides of metals which in the oxide form are reducible to the metal form in hydrogen at a temperature in the range 600 to l,800 F., and halides being further selected from metal fluorides, bromides and iodides,
  • At least one metal halide selected from the halides of metals the oxides of which are not reducible in hydrogen at a temperature in the range 600 to l,800 F., said halides being further selected from metal fluorides, bromides and iodides, and
  • a process for preparing a material comprising a continuous phase selected from metals and metal alloys surrounding a dispersed phase of refractory metal oxide particles which comprises:
  • At least one metal halide selected from the halides of metals which in the oxide form are reducible to the metal form in hydrogen at a temperature in the range 600 to l,800 F., the metal cation of said metal halide being present in said solution in an amount of at least 45 weight percent of the total metal cations in said solution, said halide being further selected from metal fluorides, bromides and iodides,
  • At least one metal halide selected from the halides of metals the oxides of which are not reducible in hydrogen at a temperature in the range 600 to l,800 F the metal cation of said metal halide being present in said solution in an amount of less than 55 weight percent of the total metal cations in said solution, said halide being further selected from metal fluorides, bromides and iodides, and
  • composition comprising a continuous phase comprising a material selected from the group consisting of iron, cobalt, nickel and alloys of at least two of these metals with each other, said composition further comprising a dispersed phase comprising particles of a refractory metal oxide, the improvement which comprises:
  • At least one metal halide selected from the group consisting of halides of iron, cobalt, and nickel, said halides being further selected from fluorides, bromides and iodides, the metal cation of said metal halide being present in said solution in an amount of at least 45 weight percent of the total metal cations in said solution, and
  • an epoxy compound selected from the group consisting of lower alkylene oxides and 5 ggl zggggg? xggl g t i ig z g g ggfig ig gggfi metals, without reduction of at least one other oxide prising halohydrins and a gel containing at least one metal present hydroxide;

Abstract

Process for preparing dispersion-hardened metals and metal alloys, comprising forming a solution comprising metal halide precursors, selected from fluorides, bromides and iodides, of the continuous and dispersed phases of the final product, adding an epoxy compound to said solutions whereby a gel comprising metal hydroxides is formed, converting said metal hydroxides to oxides, and reducing the oxide precursors of the continuous phase of the final product, and products so prepared.

Description

UnitedStates Patent Lindquist [451 *Apr. 11, 1972 i541 METALS AND METAL ALLOYS AND [56] References Cited PREPARATION THEREOF UNITED STATES PATENTS [72] Berkeley Cahf' 3,458,306 7/1969 Lindquist ..75/05 AC [73] Assignee: Chevron Research Company, San Fran- 3,415,640 12/1968 Lambert ..75/0.5 AC
cisco, Calif. Notice: The portion of the term of this patent sub- @{gfiig i to July 1986 has been Att0mey-A. L. Snow, Frank E. Johnston, George F. Magdeburger, Charles J. Tonkin and Roy H. Davies [22} Filed: Nov. 24, 1969 21 A l N 879 610 [57] ABSTRACT 1 pp 0" Process for preparing dispersion-hardened metals and metal Related US. Application Data alloys, comprising forming a solution comprising metal halide precursors, selected from fluorides, bromides and iodides, of [63] l 'm of the continuous and dispersed phases of the final product, ad- 1969, wh'ch a conunuauonm'pan of ding an epoxy compound to said solutions whereby a gel com- 582238SePt' l966Pat- 3,458,306' prising metal hydroxides is formed, converting said metal hydroxides to oxides, and reducing the oxide precursors of the [52] U.S. Cl ..75/0.5 AC continuous phase f the fi product and products so 51 int. Cl. ....B22f 9/00 prepared [58] Field ofSearch ..75/0.5 AC
3 Claims, No Drawings RELATED APPLICATIONS This application is a continuation-in-part of Robert H. Lindquist application Ser. No. 796,222 for Preparation of Metals and Metal Alloys," filed Feb. 3, 1969, which in turn is a continuation-in-part of Robert H. Lindquist application Ser. No. 582,238 for Preparation of Metals and Metal Alloys," filed Sept. 27, 1966, now U.S. Pat. No. 3,458,306.
INTRODUCTION PRIOR ART Various methods are known for producing metals and metal alloys in which particles of a refractory oxide of a different metal are incorporated to improve various characteristics of the metals and metal alloys. The incorporation of the refractory oxide particles is known as dispersion strengthening, the metal or metal alloy is referred to as the continuous phase, and the refractory oxide particles are referred to as the dispersed phase or filler.
The dispersed phase generally is incorporated in the continuous phase by: (a) selecting as the dispersed phase particles of a metal oxide material that has a high free energy of formation, AT, and therefore that is resistant to reduction to the metal in hydrogen; (b) forming around the dispersed phase a continuous phase of one or more metal compounds easily reducible to metal in hydrogen, (c) subjecting the resulting mass to a reducing treatment in hydrogen, whereby the continuous phase is converted to metal form without concurrent reduction to the metal of the dispersed oxide phase, and (d) pressing the resulting powdery mass under high pressure into a dense, coherent compact," which can be further worked, for example rolled, extruded or machined.
Various theories and models, sometimes conflicting, have been proposed to predict and/or explain the improvement in strength and other characteristics of metals and alloys that results from the presence therein of a dispersed phase of refractory oxide particles. It is not a present purpose to present any such theories or models, because whatever the correct theory or model may be, there is no dispute that the dispersed phase results in improved characteristics of metals and metal alloys, particularly improved strength characteristics, especially in high-temperature service. Prior art theories and models, and methods of preparation of dispersionstrengthened metals and metal alloys, are well set forth in many publications, including the following articles and papers and U.S. patents:
A. Articles and Papers 1. A theory of Dispersion Strengthening, paper by F. V. Lenel and G. S. Ansell, presented at 1960 International Powder Metallurgy Conference, pp. 267-306.
2. New Design Data on TD Nickel, Robert E. Stuart, Materials in Design Engineering, August 1963, pp. 81-85.
3. Dispersion Strengthening Models, G. S. Ansell and J. S. Hirschhorn, ACTA Metallurgica, Vol. 13, 1965, pp. 572-576.
4. Creep of Thoriated Nickel above and below 0.5 T,,,, B. A. Wilcox and A. H. Clauer, Transactions of the Metallurgical Society of AIME, Vol. 236, April 1966, pp. 570-580.
5. The Structure of Nickel electrodeposited with Alumina Particles, E. Gillam, K. M. McVie and M. Phillips, Journal of the Institute of Metals, Vol. 94, pp. 228-229.
B. U.S. Pats.
1. Alexander et a]. No. 2,972,529 2. Alexander et al. No. 3,019,103 3. Grant et a]. No. 3,069,759 4. Grant et al. No. 3,176,386
DISADVANT AGES OF VARIOUS PRIOR ART METHODS OF PRODUCING DISPERSION STREN GTl-IEN ED METALS AND METAL ALLOYS Prior art methods of producing dispersion strengthened metals and metal alloys involve numerous disadvantages. In a typical priorart method of producing thoria dispersed nickel, particles of thoria are mixed in an aqueous solution of nickel nitrate, and the nickel nitrate is precipitated with sodium hydroxide during vigorous agitation, thus depositing nickel hydroxide around the thoria particles. The resulting precipitate must be filtered and washed to remove sodium nitrate. The precipitate is then dried to convert the nickel hydroxide to nickel oxide. The nickel oxide is then reduced to nickel metal. The nickel metal is in the form of a powder containing dispersed thoria particles. The powder may be fabricated, as by hot pressing, extrusion, etc. In such a process, these disadvantages exist:
a. No control exists over the size of the dispersed oxide particles during conduct of the process.
b; Particles size must be selected in advance, from a range of sizes that is limited to sizes producible by available technoloc. Selective precipitation and selective crystallization, particularly in the case of metal alloy preparation, are caused by nonhomogeneity of ,original mixture, and are serious problems that can be controlled only in part by vigorous agitation. Final product quality is drastically affected by minor deviations from uniformity of dispersion of the oxide particles in the original mixture.
d. Soluble salts such as sodium nitrate must be essentially completely removed by washing, because such contaminants adversely affect final product quality. It is known that such complete removal is extremely difficult.
OBJECTS In view of the foregoing, it is an object of the present invention to provide a process for producing metals and metal alloys from metal salts, and particularly for producing metals and metal alloys in a continuous phase containing a dispersed phase of refractory metal oxide particles, that avoids the aforesaid disadvantages.
It is a further object of the present invention to provide, in such a process for producing dispersion strengthened metals and metal alloys, means for controlling, during conduct of the process, particle size of the continuous phase metal or alloy, as well as dispersed oxide particle size.
STATEMENT OF INVENTION In accordance with a first embodiment of the present invention, there is provided a process for producing metals and metal alloys which comprises:
A. Forming a solution comprising:
a. at least one metal halide selected from the halides of metals which in the oxide form are reducible to the metal form in hydrogen at a temperature in the range 600 to l,800 F., said halides being further selected from metal fluorides, bromides and iodides,
b. at least one metal halide selected from the halides of metals the oxides of which are not reducible in hydrogen at a temperature in the range 600 to 1,800 E, said halides being further selected from metal fluorides, bromides and iodides, and
c. a lower alkanol;
B. Adding to said solution an epoxy compound, whereby the components of said solution and said epoxy compound react to form a mixture comprising halohydrins and a gel containing at least one metal hydroxide;
C. Separating said gel from said halohydrins;
metal oxides reducible in hydrogen at 600 to l,800 F., and metal oxides not so reducible; and
hydrogen at a temperature in the range 600 to l,800 F. include Y, Ca, La, Be, Th, Mg, U, l-If, Ce, Al, Zr, Ba, Ti, Si, Ta, V, Nb and Cr.
the present invention, there is provided, in a process for producing a composition comprising a continuous phase comprising a material selected from the group consisting of iron, cobalt, nickel and alloys of at least two of these metals with each other, said composition further comprising a dispersed phase comprising particles of a refractory metal oxide, the improvement which comprises:
D. Converting said metal hydroxide in said gel to a metal oxide;
E. Reducing said metal oxide to metal; and F. Compacting said metal, preferably to a density at least 90 percent of the theoretical density. 5
In accordance with a second embodiment of the present in- A. Forming a solution comprising:
a. at least one metal halide selected from the halides of metals which in the oxide form are reducible to the metal form in hydrogen at a temperature in the range 600 to l,800 F., the metal cation of said metal halide being present in said solution in an amount of at least 45, preferably at least 70, weight percent of the total metal cations in said solution, said halide being further selected from metal fluorides, bromides and iodides,
b. at least one metal halide selected from the halides of metals the oxides of which are not reducible in hydrogen at a temperature in the range 600 to 1,800 E, the metal cation of said metal halide being present in said solution in an amount of less than 55, preferably less than 30, weight percent of the total metal cations in said solution, said halide being further selected from metal fluorides, bromides and iodides, and
c. a lower alkanol;
B. Adding to said solution an epoxy compound selected from the group consisting of lower alkylene oxides and epihalohydrins, whereby a gel comprising metal hydroxides is fonned;
C. Converting said metal hydroxides to oxides, including D. Subjecting the resulting metal oxide-containing material to a reducing treatment, preferably in hydrogen, at a temperature in the range 600 to l,800 F.
The metals which in the oxide form are reducible to the 40 metal form in hydrogen at a temperature in the range 600 to 1,800 F. include Ni, Co, Fe, Cu, Cd, Tl, Ge, Sn, Pb, Bi, Mo, W, Re and In.
The metals the oxides of which are not reducible in In accordance with a third, and preferred, embodiment of A. Forming a solution comprising:
a. at least one metal halide selected from the group consisting of halides of iron, cobalt, and nickel, said halides being further selected from fluorides, bromides and iodides, the metal cation of said metal halide present in said solution in an amount of at least 45, preferably at least 70, weight percent of the total metal cations in said solution, and
. at least one metal halide selected from the halides of Y, Ca, La, Be, Th, Mg, U, Hf, Ce, Al, Zr, Ba, Ti, Si, Ta, V, Nb and Cr, said halides being further selected from fluorides, bromides and iodides, the metal cation of said metal halide being present in said solution in an amount of less than 55, preferably less than 30, weight percent of 70 the total metal cations in said solution; and
c. a lower alkanol;
B. Adding to said solution an epoxy compound selected from the group consisting of lower alkylene oxides and epihalohydrins, whereby the components of said solution and said epoxy compound react to form a mixture comprising halohydrins and a gel containing at least one metal hydroxide;
C. Subjecting said gel to a calcination treatment, whereby said metal hydroxides are converted to metal oxides;
D. Subjecting the resulting metal oxide-containing material to a reducing treatment, whereby all iron, cobalt and nickel oxides present are reduced to the corresponding metals, without reduction of at least one other oxide present.
In accordance with a fourth embodiment of the present invention, there is provided a material comprising a continuous phase selected from metals and metal alloys surrounding a dispersed phase of refractory metal oxide particles, said particles being 0.005 to 1.0 micron in diameter and having an interparticle spacing of 0.01 to 1.0 micron, said material being prepared by any of the first three embodiments above.
In accordance with a fifth embodiment of the present invention there is provided a composition comprising a continuous phase selected from metals and metal alloys surrounding a dispersed phase of refractory metal oxide particles, said particles being 0.005 to 1.0 micron in diameter and having an interparticle spacing of 0.01 to 1.0 micron, said material being prepared by any of the first three embodiments above.
The epoxy compound used in the process of the present invention may be any epoxy compound that will react at a reasonable rate with the anion of the metal salt or metal salts present. The epoxy compound preferably is a lower alkylene oxide or an epihalohydrin. Said lower alkylene oxide may be, for example, ethylene oxide, propylene oxide or butylene oxide.
The lower alkanol used in the process of the present invention may be any lower alkanol, including methanol, ethanol, 1- propanol, 2-propanol, l-butanol, 2-butanol, 2-methyl-2- propanol, and Z-methyl-l-propanol.
In the process of the present invention a mixture, comprising halohydrins and a metal hydroxide-containing gel, results from the addition of an epoxy compound to the starting solution. Upon drying, this mixture conveniently releases the halohydrins, which vaporize off easily. Accordingly, no washing or other contaminant removal procedures are required.
EXAMPLES The following examples, although using metal chlorides, illustrate how the process of the present invention may be carried out using fluorides, bromides and iodides, which halides produce similar results.
EXAMPLE 1 A solution of the following composition was prepared:
1,270 g. NiCI -6H O 6.4 g. AlCl 6H 0 2 liters MeOH A 1,500 cc. quantity of propylene oxide was added to the solution at room temperature. In 40 minutes the resulting mixture had set up into a gel.
Approximately weight percent of said gel was subjected to a calcination treatment in an oxygen-containing atmosphere, as follows:
a. 4 hours in air at 800 F., then b. 4 hours in 0 at 1,000 F.
The material resulting from the calcination treatment was a crumbly or powdery mass. It was subjected to a reducing treatment in an ebullating bed reactor, to reduce the nickel oxide portion thereof to nickel metal, as follows:
a. 1 hour in H at 600 F then b. 2 hours in H at 800 F then 0. 2 hours in H at 1,000 F then d. 2 hours in H at 1,450 F.
The ebullating bed reactor consisted of an upright quartz tube containing at the base a fritted quartz disc through which the hydrogen passed and caused the powder to bubble up or ebullate into the space above the disc, thereby preventing appreciable powder sintering during the reduction reaction,
which would otherwise occur, particularly at temperatures above about 1000F.
The material resulting from the reducing treatment was a powder, which was found to weigh 320 grams, and to consist essentially of 98 weight percent nickel metal and 2 weight percent A1 A portion of the nickel-A1 0 powder was hot pressed to a cylindrically shaped compact having a diameter of 1% inches and a thickness of one-fourth inch, in a graphite die under a low pressure of hydrogen for one-half hour at a temperature of l,l00 C. and a pressure of 3,500 psig. The resulting cylindrical compact was rolled to lower its thickness 10 percent, and was then annealed in hydrogen at 1,100 C. The so-annealed compact could be cold rolled to a thickness of 0.050 inch without further annealing, and this was done. From the resulting 0.050-inch-thick material, two elongated tensile strength specimens were machined.
Said two tensile strength specimens were tested for tensile strength at elevated temperature, in a 10,000-pound capacity tensile test machine, at a cross-head speed of 0.020 inches per minute, after the specimens had been heated to a stable temperature of 2,200 F. in a wire wound furnace for about 5 hours. Tension was applied by the machine pull rods to each specimen via dispersion hardened nickel pins inserted in holes near each end of the specimen.
The results of said tensile strength tests were:
First Second specimen specimen Percent elongation of 1-in. gage length ofspecimen 1.0 Ultimate tensile strength, p.s.i. 5,270 4,000
Example 2 A solution of the following composition was prepared:
1,270 g. Nick-611,0 12.8 g. AlCl '6H 0 2 liters MeOH A 1,500 cc. quantity of propylene oxide was added to the solution at room temperature. In 40 minutes the resulting mixture had set up into a gel.
Approximately 95 weight percent of said gel was subjected to the same calcination treatment as in Example 1. The material resulting from the calcination treatment was subjected to the same reducing treatment as in Example 1.
The material resulting from the reducing treatment was a powder, which was found to weigh 320 grams, and to consist essentially of 96 weight percent nickel metal and 4 weight percent A1 0 A portion of the nickel-A1 0 powder was hot pressed, rolled, annealed, further rolled, and machined to produce an elongated tensile strength specimen, all exactly according to the procedure recited in Example I.
Said tensile strength specimen was tested for tensile strength at elevated temperature, exactly according to the procedure used in Example 1.
The results of said tensile strength test were:
Percent elongation of l-in. gage length of specimen Ultimate tensile strength, p.s.i. 2510 Example 3 A solution of the following composition was prepared:
1,200 g. I 1,875 liters An 1,100 cc. quantity of propylene oxide was added to the solution at room temperature. The resulting mixture set up into a gel, which was dried 48 hours at room temperature, then 72 hours at 150 F.
Approximately weight percent of said gel was subjected to the same calcination treatment as in Example 1. The material resulting from the calcination treatment was subjected to the same reducing treatment as in-Example l.
The material resulting from the reducing treatment was a powder, which was found to weigh 300 grams, and to consist essentially of nickel metal.
A portion of the nickel metal powder was hot pressed, rolled, annealed, further rolled, and machined to produce two elongated tensile strength specimens, all exactly according to the procedure recited in Example I.
Said two tensile strength specimens were tested for tensile strength at elevated temperature, exactly according to the procedure used in Example 1.
The results of said tensile strength tests were:
First Second specimen specimen Percent elongation of l-in. gage length of specimen 4.6 11.0
Ultimate tensile strength, p.s.i. 1,480 2,500
Example 4 A solution of the following composition was prepared:
2,540 g. NiCl 'H fl 10.0 g. ThCl 4 liters MeOH A 1,060 m1. quantity of propylene oxide was added to the solution at room temperature. The resulting mixture set up into a gel within 1 hour.
Approximately 95 weight percent of said gel was subjected to a calcination treatment in air for 6 hours at 1,100F.
The material resulting from the calcination treatment was subjected to the same reducing treatment as in Example 1.
The material resulting from the reducing treatment was a powder, which was found to weigh 600 grams, and to consist essentially of 98 weight percent nickel metal and 2 weight percent Th0 The Th0 in said material was determined by electron microscope examination to be in the form of particles having an average diameter of 200 Angstroms.
A portion of the nickel-Th0 powder was hot pressed, rolled, annealed, further rolled, and machined to produce an elongated tensile strength specimen, all exactly according to the procedure recited in Example 1.
Said tensile strength specimen was tested for tensile strength at elevated temperature, exactly according to the procedure used in Example 1.
The results of said tensile strength tests were:
Percent elongation of 1in. gage length of specimen 2.5 Ultimate tensile strength, p.s.i. 3800 Example 5 In a manner similar to that set forth in Examples 14, these further metal-dispersed oxide specimens were prepared:
Weight percent SpeclmenNo 5 6 7 8 9 10 11 Component:
Example 6 Weight percent Specimen N 15 16 17 18 19 20 21 22 23 Component:
Fe metal 74 72 72 46 46 94. 75 94. 75 12 12 Cr metal- 18 18 20 20 2. 25 2. 25 15 15 Ni metal- 8 8 32 32 64 64 Mo metal. 1 1 5 Ti metal. 2 .2 Th0; 2 2 2 2 A1203 2 2 PROCESS CONDITIONS AND PARTICLE SIZES The gel formation step of the present process may be conducted at ambient to slightly elevated temperatures.
The desired particle size for the dispersed refractory metal oxide component in the final product, when dispersion hardened metals or metal alloys are produced by the present process, is 0.005 to 0.1 micron in diameter. Contrary to prior art processes, this particle size varies as a function of process conditions, thereby providing great flexibility to the process. The size of the dispersed refractory metal oxide particles is a function of the temperature during the calcination step, and the length of time the step is conducted. The temperature is in the general range 800 to 2,400 F., with smaller particles resulting from the use of lower temperatures and shorter periods. Temperatures should be chosen with regard to the particle size desired and the melting points of the materials used. When operating within the ranges set forth herein for proportions of ingredients, calcination temperatures, etc., the dispersed oxide particles in the final product will be extremely uniformly dispersed, and will have an interparticle spacing of 0.01 to 1.0 micron.
The grain size of the metal and metal alloy continuous phases of the products produced by the process of the present invention is a function of the temperature during the reduction step, and the length of time the step is conducted. The temperature is in the general range 600 to l,800 F., with smaller grain sizes resulting from the use of lower temperatures and shorter periods. A preferred temperature-time combination is 600 to l,600F. for not substantially longer than necessary for reduction reactions to be completed. A gradual increase in temperature from a temperature in the range of about 600 to 800 F. to a higher temperature will provide these advantages: (a) much of the reduction will occur at lower temperatures, which contribute to a fine-grained final product; (b) the subsequent higher temperatures will shorten the time necessary for completion of the reduction reactions, and a minimal time at a given temperature also contributes to a fine-grained final product; and (c) the length of time the reduction step is conducted at temperatures above 1,000 F., where care must be taken to avoid powder sintering, can be minimized.
Exceptionally fine-grained metal and metal alloy continuous phases can be obtained in the products produced by the process of the present invention. Further, it is well known that a grain growth phenomenon occurs in conventional dispersion hardened metal and metal alloy shaped materials during stressing of the materials, particularly at elevated temperatures. Dispersion hardened metal and metal alloy shaped materials made from products of the present process show a markedly reduced grain growth, compared with the conventional materials, probably due in large part to the excellent and uniform dispersion of the dispersed oxide phase. Grain diameters for the continuous metal phase of shaped materials made from products of the present process have been found to be -20 microns after tensile strength tests, compared with grain diameters of 300 to 500 microns for conventional dispersion hardened shapes of the same composition after the same tensile strength tests.
Recrystallization of conventional shaped dispersion strengthened materials after extensive cold rolling, resulting in coarse grain size, is a known problem. The shaped materials made from products of the present process have demonstrated superior resistance to this recrystallization phenomenon, compared with similar prior art materials.
PROPORTIONS OF INGREDIENTS The present process will be found to be most highly effective for producing high-quality metals and alloys when: (1) total weight of the metal halide starting materials is 15 to 40 percent, preferably 20 to 30 percent, of the weight of the lower alkanol; and (2) the mols of epoxy compound used per mol of halide ion is 1.1 to 2.0, preferably l.4 to 1.8.
It is highly desirable that water be present in the starting solution in the present process, either in the form of free water or water of hydration. Most desirably, 2 to 6 mols of water will be present per mol of halide ion.
When producing dispersion hardened metals or metal alloys, the final product after the reduction step preferably will consist of 80 to 99.5 weight percent metal or metal alloy and 20 to 0.5 weight percent dispersed refractory metal oxide. Those skilled in the art upon reading the present specification will be able to produce products of this or any desired weight ratio of metal or metal alloy to dispersed metal oxide that is obtainable by observing the requirement that the metal cation of the metal halide precursor of the metal or metal alloy of the continuous phase is present in the starting solution in an amount of at least 45, preferably at least 70, weight percent of the total metal cations present in that solution. If more than 30 weight percent of the metal cations in the starting solution were metal cations of the metal halide precursor of the metal oxide dispersed phase of the final product, that product would have inadequate ductility compared with the products of the present process. However, for applications in which a somewhat lower ductility can be tolerated, other advantages may be achieved when up to about 55 weight percent of the metal cations in the starting solution are metal cations of the metal halide precursor of the metal oxide dispersed phase of the final product. A final product comprising alumina dispersed in copper is a useful example.
The proportions of the various ingredients are varied within the foregoing ranges as necessary to produce the best product with the particular ingredients used. The best product will be obtained when a clear gel is produced in the gelation step, without accompanying precipitation. With this guide, and with the foregoing ranges as guides, those skilled in the art may determine optimum proportions for the particular ingredients being used.
REDUCTION STEP The temperatures used in the step of reducing the oxide of the continuous phase material have been set forth above. The reduction step may be carried out in a stream of hydrogen, with care being taken to prevent problems that can be caused by localized overheating, leading to temperature runaways and liquid metal formation, and also to prevent sintering of the metal oxide particles of the dispersed phase. Such problems can be prevented by use of the ebullating bed technique previously described and by taking care to maintain temperatures below the sintering temperature of the metal oxide particles.
' Further aids in achieving this protection include addition of hydrogen no faster than necessary to maintain an ebullating bed, when an ebullating bed is used, and dilution of the hydrogen with an inert gas such as nitrogen, as described in connection with the reduction step in US. Pat. No. 3,019,103. The extent of reduction necessary has been discussed previously, and in this connection the oxygen content of the product set forth in connection with the reduction step in US. Pat. No. 3,019,103 is applicable.
SINTERING THE REDUCED PRODUCT Although not in all events necessary, particularly in smallscale operations, the reduced product may be sintered as described in US. Pat. No. 3,019,103.
COMPACT ING AND WORKING THE PRODUCT The product of the present process, in the form of a powder, may be readily compacted, and the discussion in this connection in US. Pat. No. 3,019,103 is applicable. The powder product ofthe present process preferably is used by compacting it, preferably to a density at least 90 percent, and more preferably at least 95 percent, of the theoretical density. The resulting compact preferably is therrnomechanically worked and shaped into a desired material of construction.
It is well known that further working of compacted metallic powders, particularly those containing a dispersed metal oxide phase, greatly enhances tensile strength and other desirable properties of the final shaped products. Those skilled in the art have available a number of combinations of conventional steps ofthermomechanical working that are applicable to improvement of properties of compacts prepared from powders produced by the process of the present invention. Such further thermomechanical working treatments would greatly increase the tensile strengths of the materials given in the examples in the present application, as well as further enhancing other properties such as creep resistance. The further thermomechanical working treatments probably effectively develop an optimum and complex dislocation stopping network comprising dispersed oxide particles, grain boundaries and sub-boundaries, and dislocation tangles.
SUMMARY OF ADVANTAGES From the foregoing, it may be seen that the advantages of the process of the present invention, over prior art processes for producing metals and metal alloys, particularly dispersion strengthened metals and metal alloys, include:
a. Control may be exercised over grain size of the continuous phase metal or metal alloy.
b. Control may be exercised over particle size of the dispersed phase metal oxide.
c. Higher quality materials, particularly metal alloys, are more easily produced, because all components are homogeneously dispersed in the original solution, and therefore in the subsequent gel.
d. A volatile organic material anepoxy compound is used to cause a gel to form, rather than causing precipitation by using a metal hydroxide or other basic hydroxide that leaves an impurity that must be removed by washing after the precipitation is completed. The undesired components of the epoxy compound vaporize off as halohydrins, leaving no contaminant removal problem.
e. No washing facilities are required.
f. Metal halide starting materials are available at low cost compared with many prior art starting materials.
It may also be seen that the process of the present invention produces materials, particularly dispersion hardened metals and metal alloys, which may be formed into shapes having at least the following advantages, particularly under stress at elevated temperatures:
a. Superior resistance to creep, occurring over relatively short periods.
b. Superior resistance to fatigue, occurring over relatively long periods.
c. Superior resistance to grain growth in the continuous phase.
d. Superior resistance to recrystallization.
What is claimed is:
1. A process for preparing a material comprising a continuous phase selected from metals and metal alloys surrounding a dispersed phase of refractory metal oxide particles, which comprises:
A. Forming a solution comprising:
a. at least one metal halide selected from the halides of metals which in the oxide form are reducible to the metal form in hydrogen at a temperature in the range 600 to l,800 F., and halides being further selected from metal fluorides, bromides and iodides,
b. at least one metal halide selected from the halides of metals the oxides of which are not reducible in hydrogen at a temperature in the range 600 to l,800 F., said halides being further selected from metal fluorides, bromides and iodides, and
c. a lower alkanol;
B. Adding to said solution an epoxy compound, whereby the components of said solution and said epoxy compound react to form a mixture comprising halohydrins and a gel containing metal hydroxides;
C. Separating said gel from said halohydrins; I
D. Converting said metal hydroxides in said gel to metal oxides;
E. Subjecting the resulting metal oxide-containing material to a reducing treatment whereby at least one of said metal oxides is reduced to metal without reduction of at least one other of said metal oxides;
F. Compacting the resulting metal-containing material.
2. A process for preparing a material comprising a continuous phase selected from metals and metal alloys surrounding a dispersed phase of refractory metal oxide particles, which comprises:
A. Forming a solution comprising:
a. at least one metal halide selected from the halides of metals which in the oxide form are reducible to the metal form in hydrogen at a temperature in the range 600 to l,800 F., the metal cation of said metal halide being present in said solution in an amount of at least 45 weight percent of the total metal cations in said solution, said halide being further selected from metal fluorides, bromides and iodides,
b. at least one metal halide selected from the halides of metals the oxides of which are not reducible in hydrogen at a temperature in the range 600 to l,800 F the metal cation of said metal halide being present in said solution in an amount of less than 55 weight percent of the total metal cations in said solution, said halide being further selected from metal fluorides, bromides and iodides, and
c. a lower alkanol;
B. Adding to said solution an epoxy compound selected from the group consisting of lower alkylene oxides and epihalohydrins, whereby a gel comprising metal hydroxides is formed;
C. Converting said metal hydroxides to oxides, including oxides reducible in hydrogen at 600 to l,800 F and metal .oxides not so reducible;
D. Subjecting the resulting metal oxide-containing material to a reducing treatment at a temperature in the range 600 to l,800 F.
3. In a process for'producing a composition comprising a continuous phase comprising a material selected from the group consisting of iron, cobalt, nickel and alloys of at least two of these metals with each other, said composition further comprising a dispersed phase comprising particles of a refractory metal oxide, the improvement which comprises:
A. Forming a solution comprising:
a. at least one metal halide selected from the group consisting of halides of iron, cobalt, and nickel, said halides being further selected from fluorides, bromides and iodides, the metal cation of said metal halide being present in said solution in an amount of at least 45 weight percent of the total metal cations in said solution, and
b. at least one metal halide selected from the halides of Y, Ca, La, Be, Th, Mg, U, Hf, Ce, Al, Zr, Ba, Ti, Si, Ta, V, Nb and Cr, said halides being further selected from .fluorides, bromides and iodides, the metal cation of said metal halide being present in said solution in an 1 l 12 amount of less than 55 weight percent of the total metal C. Subjecting said gel to a calcination treatment, whereby 08 8 531d SOIUHOII; and said metal hydroxides are converted to metal oxides; C. a lower alkanol; D, Subjecting the resulting metal oxide-containing material B. Adding to said solution an epoxy compound selected from the group consisting of lower alkylene oxides and 5 ggl zggggg? xggl g t i ig z g g ggfig ig gggfi metals, without reduction of at least one other oxide prising halohydrins and a gel containing at least one metal present hydroxide;
to a reducing treatment, whereby all iron, cobalt and nickel oxides present are reduced to the corresponding

Claims (2)

  1. 2. A process for preparing a material comprising a continuous phase selected from metals and metal alloys surrounding a dispersed phase of refractory metal oxide particles, which comprises: A. Forming a solution comprising: a. at least one metal halide selected from the halides of metals which in the oxide form are reducible to the metal form in hydrogen at a temperature in the range 600* to 1,800* F., the metal cation of said metal halide being present in said solution in an amount of at least 45 weight percent of the total metal cations in said solution, said halide being further selected from metal fluorides, bromides and iodides, b. at least one metal halide selected from the halides of metals the oxides of which are not reducible in hydrogen at a temperature in the range 600* to 1,800* F., the metal cation of said metal halide being present in said solution in an amount of less than 55 weight percent of the total metal cations in said solution, said halide being further selected from metal fluorides, bromides and iodides, and c. a lower alkanol; B. Adding to said solution an epoxy compound selected from the group consisting of lower alkylene oxides and epihalohydrins, whereby a gel comprising metal hydroxides is formed; C. Converting said metal hydroxides to oxides, including oxides reducible in hydrogen at 600* to 1,800* F., and metal oxides not so reducible; D. Subjecting the resulting metal oxide-containing material to a reducing treatment at a temperature in the range 600* to 1, 800* F.
  2. 3. In a process for producing a composition comprising a continuous phase comprising a material selected from the group consisting of iron, cobalt, nickel and alloys of at least two of these metals with each other, said composition further comprising a dispersed phase comprising particles of a refractory metal oxide, the improvement which comprises: A. Forming a solution comprising: a. at least one metal halide selected from the group consisting of halides of iron, cobalt, and nickel, said halides being further selected from fluorides, bromides and iodides, the metal cation of said metal halide being present in said solution in an amount of at least 45 weight percent of the total metal cations in said solution, and b. at least one metal halide selected from the halides of Y, Ca, La, Be, Th, Mg, U, Hf, Ce, Al, Zr, Ba, Ti, Si, Ta, V, Nb and Cr, said halides being further selected from fluorides, bromides and iodides, the metal cation of said metal halide being present in said solution in an amount of less than 55 weight percent of the total metal cations in said solution; and c. a lower alkanol; B. Adding to said solution an epoxy compound selected from the group consisting of lower alkylene oxides and epihalohydrins, whereby the components of said solution and said epoxy compound react to form a mixture comprising halohydrins and a gel containing at least one metal hydroxide; C. Subjecting said gel to a calcination treatment, whereby said metal hydroxides are converted to metal oxides; D. Subjecting the resulting metal oxide-containing material to a reducing treatment, whereby all iron, cobalt and nickel oxides present are reduced to the corresponding metals, without reduction of at least one other oxide present.
US879610A 1969-11-24 1969-11-24 Metals and metal alloys and preparation thereof Expired - Lifetime US3655360A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US87961069A 1969-11-24 1969-11-24

Publications (1)

Publication Number Publication Date
US3655360A true US3655360A (en) 1972-04-11

Family

ID=25374497

Family Applications (1)

Application Number Title Priority Date Filing Date
US879610A Expired - Lifetime US3655360A (en) 1969-11-24 1969-11-24 Metals and metal alloys and preparation thereof

Country Status (1)

Country Link
US (1) US3655360A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040118245A1 (en) * 2002-12-23 2004-06-24 Ott Eric Allen Method for meltless manufacturing of rod, and its use as a welding rod
US20100297432A1 (en) * 2009-05-22 2010-11-25 Sherman Andrew J Article and method of manufacturing related to nanocomposite overlays
US20120238700A1 (en) * 2011-03-16 2012-09-20 The Arizona Board Of Regents On Behalf Of The University Of Arizona Method for producing metal oxide organic compound composite
US10100386B2 (en) 2002-06-14 2018-10-16 General Electric Company Method for preparing a metallic article having an other additive constituent, without any melting
US10604452B2 (en) 2004-11-12 2020-03-31 General Electric Company Article having a dispersion of ultrafine titanium boride particles in a titanium-base matrix

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3415640A (en) * 1966-10-28 1968-12-10 Fansteel Metallurgical Corp Process for making dispersions of particulate oxides in metals
US3458306A (en) * 1966-09-27 1969-07-29 Chevron Res Preparation of metals and metal alloys

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3458306A (en) * 1966-09-27 1969-07-29 Chevron Res Preparation of metals and metal alloys
US3415640A (en) * 1966-10-28 1968-12-10 Fansteel Metallurgical Corp Process for making dispersions of particulate oxides in metals

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10100386B2 (en) 2002-06-14 2018-10-16 General Electric Company Method for preparing a metallic article having an other additive constituent, without any melting
US20040118245A1 (en) * 2002-12-23 2004-06-24 Ott Eric Allen Method for meltless manufacturing of rod, and its use as a welding rod
US7727462B2 (en) * 2002-12-23 2010-06-01 General Electric Company Method for meltless manufacturing of rod, and its use as a welding rod
US10604452B2 (en) 2004-11-12 2020-03-31 General Electric Company Article having a dispersion of ultrafine titanium boride particles in a titanium-base matrix
US20100297432A1 (en) * 2009-05-22 2010-11-25 Sherman Andrew J Article and method of manufacturing related to nanocomposite overlays
CN102459701A (en) * 2009-05-22 2012-05-16 美索科特公司 Article and method of manufacturing related to nanocomposite overlays
US20120238700A1 (en) * 2011-03-16 2012-09-20 The Arizona Board Of Regents On Behalf Of The University Of Arizona Method for producing metal oxide organic compound composite
US8940807B2 (en) * 2011-03-16 2015-01-27 Canon Kabushiki Kaisha Method for producing metal oxide organic compound composite

Similar Documents

Publication Publication Date Title
US3019103A (en) Process for producing sintered metals with dispersed oxides
US3409417A (en) Metal bonded silicon nitride
US3159908A (en) Dispersion hardened metal product and process
US3409419A (en) Nitrides plus wear-resistant additives bonded with iron, cobalt or nickel
US3180727A (en) Composition containing a dispersionhardening phase and a precipitation-hardening phase and process for producing the same
CN106148756B (en) The preparation method of one Albatra metal
US2467675A (en) Alloy of high density
US2491866A (en) Alloy of high density
US3069759A (en) Production of dispersion strengthened metals
JP2002527626A (en) Micron metal powder based on tungsten and / or molybdenum and 3d transition metal
Grant et al. Dispersed hard particle strengthening of metals
US2793951A (en) Powder metallurgical process for producing dense tungsten alloys
US3458306A (en) Preparation of metals and metal alloys
US3655360A (en) Metals and metal alloys and preparation thereof
US3317285A (en) Composition comprising iron-group metal and particulate refractory metal oxide
US3366515A (en) Working cycle for dispersion strengthened materials
US3533760A (en) Dispersion strengthened nickel-chromium alloy composition
US3625673A (en) Preparation of metals and metal alloys
US3922180A (en) Method for oxidation-hardening metal alloy compositions, and compositions and structures therefrom
JP3071118B2 (en) Method for producing NiAl intermetallic compound to which fine additive element is added
US2840891A (en) High temperature structural material and method of producing same
US3368883A (en) Dispersion-modified cobalt and/or nickel alloy containing anisodiametric grains
US3150443A (en) Process of incorporating a refractory metal oxide in a metal and product resulting therefrom
JP2957424B2 (en) Corrosion resistant tungsten based sintered alloy
US3607254A (en) Dispersion strengthening of aluminum alloys by reaction of unstable oxide dispersions