US3647431A - Substituted bis(p-diakylaminophenyl) methane photoconductors - Google Patents

Substituted bis(p-diakylaminophenyl) methane photoconductors Download PDF

Info

Publication number
US3647431A
US3647431A US862923A US3647431DA US3647431A US 3647431 A US3647431 A US 3647431A US 862923 A US862923 A US 862923A US 3647431D A US3647431D A US 3647431DA US 3647431 A US3647431 A US 3647431A
Authority
US
United States
Prior art keywords
group
photoconductive
bis
electrophotographic
photoconductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US862923A
Inventor
Louis J Rossi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Application granted granted Critical
Publication of US3647431A publication Critical patent/US3647431A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/64Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/20Radicals substituted by singly bound hetero atoms other than halogen by nitrogen atoms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06144Amines arylamine diamine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06147Amines arylamine alkenylarylamine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0624Heterocyclic compounds containing one hetero ring
    • G03G5/0627Heterocyclic compounds containing one hetero ring being five-membered
    • G03G5/0629Heterocyclic compounds containing one hetero ring being five-membered containing one hetero atom
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0666Dyes containing a methine or polymethine group
    • G03G5/0668Dyes containing a methine or polymethine group containing only one methine or polymethine group

Definitions

  • the process of xerography employs an electrophotographic element comprising a support material bearing a coating of a normally insulating material whose electrical resistance varies with the amount of incident electro'rnagneJc radiation it receives during an imagewise exposure.
  • the element commonly termed a photoconductive element, is first given a uniform surface charge, generally in the dark after a suitable period of dark adaptation. It is then exposed to a pattern of actinic radiation which has the effect of differentially reducing the potential of this surface charge in accordance with the relative energy contained in various parts of the radiation pattern.
  • the differential surface charge or electrostatic latent image remaining on the electrophotographic element is then made visible by contacting the surface with a suitable electroscopic marking material.
  • marking material or toner whether contained in an insulating liquid or on a dry carrier, can be deposited on the exposed surface in accordance with either the charge pattern or discharge pattern as desired.
  • Deposited marking material can then be either permanently fixed to the surface of the sensitive element by known means such as heat, pressure, solvent vapor, or the like, or transferred to a second element to which it can similarly be fixed.
  • the electrostatic latent image can be transferred to a second element and developed there.
  • Various photoconductive insulating materials have been employed in the manufacture of electrophotographic elements. For example, vapors of selenium and vapors of selenium alloys deposited on a suitable support and particles of photoconductive zinc oxide held in a resinous, film-forming binder have found wide application in the present-day document-copying applications.
  • Typical of these organic photoconductors are the triphenylamines and the triarylmethane leuco bases.
  • Optically clear photoconductor-containing elements having desirable electrophotographic properties can be especially useful in electrophotography. Such electrophotographic elements can be exposed through a transparent base if desired, thereby providing unusual flexibility in equipment design.
  • Such compositions when coated as a film or layer on a suitable support, also yield an element which is reusable; that is, it can be used to form subsequent images after residual toner from prior images has been removed by transfer and/or cleaning.
  • the selection of various compounds for incorporation into photoconductive compositions to form electrophotographic layers has proceeded on a compound-by-compound basis. None as yet has been discovered from the large number of different photoconductive substances tested which permits effective prediction, and therefore selection of the particular compounds exhibiting the desired electrophotographic properties.
  • Still another object of this invention is to provide electrophotographic elements containing the novel photoconductors described herein.
  • diarylmethanes and triarylmethanes have exhibited photoconductive properties when used as photoconductors in electrophotographic elements. Typical of these are the leuco base of malachite green, bis(4- dimethylaminophenyl)methane, bis(4-dimethylaminophenyl)-p-dimethylaminostyrylmethane and bis(4- dimethylaminophenyl)phenylmethane as described in British Pat. Nos. 984,965 and 980,879. Also, diarylmethane compounds have been used as activators for zinc oxide photoconductors. Such uses are described in British Pat. No. 1,141,666. According to this invention, it has been found that the photoconductors described herein have enhanced speed and/or stability over those photoconductors described in the prior art.
  • R, R R and R- can be the same or different substituents each representing any of the following:
  • alkoxyalkyl e.g., methyl, ethyl, propyl, butyl, isobutyl, including a substituted alkyl group having one to six carbon atoms such as a. alkoxyalkyl e.g.,
  • cyanoalkyl e.g., 3-cyanopropyl, 2-cyanoethyl,
  • haloalkyl having two to six carbon atoms e.g., 2-
  • halogen such as chlorine, or fluorine
  • an alkyl group having one to four carbon atoms e.g., methyl, ethyl, propyl, isopropyl, butyl, isobutyl, etc., including a substituted alkyl group having one to four carbon atoms such as a. alkoxyalkyl e.g., ethoxypropyl,
  • hydroxyalkyl e.g., hydroxypropyl, hydroxyethyl
  • R and R each can be the same or different substituents each representing any of the following: an aryl group, e.g., phenyl or naphthyl, including a substituted aryl group such as a. alkoxyaryl, e.g., ethoxyphenyl, methoxyphenyl,
  • aminoaryl e.g., aminophenyl or aminonaphthyl
  • hydroxyaryl e.g., hydroxyphenyl, hydroxynaphthyl
  • alkylaminoaryl e.g., methylaminophenyl
  • methylaminonaphthyl etc. and also including dialkylaminoaryl, e.g., diethylaminophenyl,
  • arylaminoaryl e.g., phenylaminophenyl, diphenylaminophenyl, N-phenyI-N-ethylaminophenyl, etc.
  • cyanoaryl e.g., cyanophenyl, cyanonaphthyl, etc.
  • haloaryl e.g., chlorophenyl, bromophenyl,
  • alkaryl e.g., tolyl, ethylphenyl, propylnaphthyl,
  • a heterocyclic group including a substituted heterocyclic group containing five to six members in the heteronucleus and including at least one sulfur, seleniurn, oxygen or nitrogen atom
  • a thienyl group e.g., a benzothienyl group
  • a pyrrolyl group e.g., a nitropyrrolyl group, a pyrrolidinyl group, e.g., a pyrrolyl group, a pyrrolinyl group, a benzopyrrolyl group, e.g., an indolyl group, a carbazolyl group, a furyl group, e.g., a furfuryl group, a benzofuryl group, etc., a pyridyl group, an alkylpyridyl group, etc., a piperidyl group, a quinolyl group, a pyranyl group, a benzopyranyl group,
  • a pyrazolyl group an oxazolyl group, a thiazolyl group,
  • R represents any of the following groups:
  • aryl group e.g., phenyl including a substituted aryl groups such as a. alkoxyaryl e.g., methoxyphenyl, etc.
  • aminoaryl e.g., aminophenyl, aminonaphthyl, etc.
  • hydroxyaryl e.g., hydroxyphenyl, hydroxynaphthyl
  • alkylaminoaryl e.g., methylaminophenyl
  • methylaminonaphthyl etc.
  • dialkylaminoaryl e.g., p-diethylaminophenyl'
  • dipropylaminophenyl, etc. e. arylaminoaryl, e.g., phenylaminophenyl, diphenylaminophenyl, N-phenyl-N-ethylaminophenyl, etc., f. nitroaryl, e.g., nitrophenyl, nitronaphthyl, etc., g. cyanoaryl, e.g., cyanophenyl, cyanonaphthyl, etc., h. haloaryl, e.g., chlorophenyl, bromophenyl,
  • alkaryl e.g., tolyl, ethylphenyl, propylnaphthyl, etc.
  • an aliphatic alkyl group having one to four carbon atoms e.g., methyl, ethyl, propyl, butyl, isobutyl,
  • R and R when taken together with the carbon atom to which they are attached, represent a heterocyclic group including a substituted heterocyclic group containing five to six members in the hetero nucleus and including at least one sulfur, selenium, oxygen or nitrogen atom such as an indolinylidene group, a 3-alkyl-2-benzothiazolinylidene group, a -3- alkyl-2-benzoxazolinylidene group, a 3-alkyl-2- benzoselenazolinylidene group, a 3-alkyl-2-benzimidazolinylidene group, etc.;
  • n is zero or one with the provision that n is zero when R, and R are taken together to represent a covalent bond.
  • Typical compounds which belong to the herein described general class of photoconductive materials include the following listed in Table I below.
  • the photoconductive layers. of the invention can also be sensitized by the addition'of effective amounts of sensitizing compounds to exhibit improved electrophotosensitivity.
  • Sensitizing compounds useful with the photoconductive compounds of the present invention can be selected from a wide variety of materials, including such materials as pyrylium dye salts including thiapyrylium dye salts and selenapyrylium dye salts disclosed in VanAllan et al., U.S. Pat. No.
  • fluorenes such as 7,1Z-dioxo-l3-dibenzo(a,h)fluorene, 5,10- dioxo-4a,l l-diazabenzo(b)flourene, 3, l 3-dioxo-7-oxadibenzo(b,g)fluorene, and the like; aggregate-type sensitizers of the type described in Light, Belgian Pat. No. 705,1 17, dated Apr. 16, 1968; aromatic nitro compounds of the kinds described in U.S. Pat. No. 2,610,120; anthrones like those disclosed in U.S. Pat. No. 2,670,284; quinones, U.S. Pat. No.
  • the sensitizers preferred for use with the compounds of this invention are selected from pyrylium salts including selenapyrylium salts and thiapyrylium salts, and cyanine dyes including carbocyanine dyes.
  • sensitizing compound is employed with the binder and organic photoconductor to form a sensitized electrophotographic element
  • Other methods of incorporating the sensitizer or the effect of the sensitizer may, however, be employed consistent with the practice of this invention. ln preparing the photoconductive layers, no sensitizing compound is required to give photoconductivity in the layers which contain the photoconducting substances, therefore, no sensitizer is required in a particular photoconductive layer. However, since relatively minor amounts of sensitizing compound give substantial improvement in speed in such layers, the sensitizer is preferred.
  • the amount of sensitizer that can be added to a photoconductorincorporating layer to give effective increases in speed can vary widely.
  • the optimum concentration in any given case will vary with the specific photoconductor and sensitizing compound used.
  • substantial speed gains can be obtained where an appropriate sensitizer is added in a concentration range from about 0.0001 to about 30 percent by weight based on the weight of the film-forming coating composition.
  • a sensitizer is added to the coating composition in an amount by weight from about 0.005 to about 5.0 percent by weight of the total coating composition.
  • Preferred binders for use in preparing the present photoconductive layers are film-forming, hydrophobic polymeric binders having fairly high dielectric strength which are good electrically insulating film-forming vehicles.
  • Materials of this type comprise styrene-butadiene copolymers; silicone resins; styrene-alkyd resins; silicone-alkyd resins; soyaalkyl resins; poly(vinyl chloride); poly(vinylidene chloride); vinylidene chloride-acrylonitrile copolymers; poly(vinyl acetate); vinyl acetate-vinyl chloride copolymers; poly(vinyl acetals), such as poly(vinyl butyral); polyacrylic and methacrylic esters, such as poly(methyl methacrylate), poly(n-butyl methacrylate), poly-(isobutyl methacrylate), etc.; polystyrene; nitrated polystyrene; polymethylst
  • styrene-alkyd resins can be prepared according to the method described in U.S. Pat. Nos. 2,361,019 and 2,258,423.
  • Suitable resins of the type contemplated for use in the photoconductive layers of the invention are sold under such tradenames as Vitel PE-lOl, Cymac, Piccopale 100, Saran F-220, Lexan and Lexan 145.
  • Other types of binders which can be used in the photoconductive layers of the invention include such materials as paraffin, mineral waxes, etc.
  • Solvents useful for preparing coating compositions with the photoconductors of the present invention can include a wide variety of organic solvents for the components of the coating.
  • organic solvents for the components of the coating.
  • benzene; toluene; acetone; 2-butanone; chlorinated hydrocarbons such as methylene chloride; ethylene chloride; and the like; ethers, such as tetrahydrofuran and the like, or mixtures of such solvents can advantageously be employed in the practice of this invention.
  • the photoconductive substance is present in an amount equal to at least about 1 weight percent of the coating composition.
  • the upper limit in the amount of photoconductive material present can be widely varied in accordance with usual practice. It is normally required that the photoconductive material be present in an amount ranging from about 1 weight percent of the coating composition to about 99 weight percent of the coating composition.
  • a preferred weight range for the photoconductive material in the coating composition is from about 10 weight percent to about 60 weight percent.
  • Coating thicknesses of the photoconductive composition on a support can vary widely. Normally, a wet coating thickness in the range of about 0.001 inch to about 0.01 inch is useful in the practice of the invention. A preferred range of coating thickness is from about 0.002 inch to about 0.006 inch before drying, although such thicknesses can vary widely depending on the particular application desired for the electrophotographic element.
  • Suitable supporting materials for the photoconductive layers of the present invention can include any of the electrically conducting supports, for example, conducting papers; aluminum-paper laminates; metal foils, such as aluminum foil, zinc foil, etc.; metal plates, such as aluminum, copper, zinc, brass, and galvanized plates; vapor deposited metal layer such as silver, nickel or aluminum on conventional film supports such as cellulose acetate, poly(ethylene terephthalate), polystyrene and the like conducting supports.
  • An especially useful conducting support can be prepared by coating a transparent film support material such as poly(ethylene terephthalate) with a layer containing a semiconductor dispersed in a resin.
  • a suitable conducting coating can be dispersed in a resin.
  • a suitable conducting coating can be prepared from the sodium salt of a carboxyester lactone of a maleic anhydn'de-vinyl acetate copolymer, cuprous iodide and the like.
  • compositions of the present invention can be employed in photoconductive elements useful in any of the well known electrophotographic processes which require photoconductive layers.
  • One such process is the xerographic process.
  • an electrophotographic element held in the dark is given a blanket electrostatic charge by placing it under a corona discharge to give a uniform charge to the surface of the photoconductive layer. This charge is retained by the layer owing to the substantial dark insulating property of the layer, i.e., the low conductivity of the layer in the dark.
  • the electrostatic charge formed on the surface of the photoconductive layer is then selectively dissipated from the surface of the layer by imagewise exposure to light by means of a conventional exposure operation such as for example, by a contact-printing technique, or by lens projection of an image, or reflex or bireflex techniques and the like, to thereby form a latent electrostatic image in the photoconductive layer.
  • Exposing the surface in this manner forms a pattern of electrostatic charge by virtue of the fact that light energy striking the photoconductor causes the electrostatic charge in the light struck areas to be conducted away from the surface in proportion to the intensity of the illumination in a particular area.
  • the charge pattern produced by exposure is then developed or transferred to another surface and developed there, i.e., either the charge or uncharged areas rendered visible, by treatment with a medium comprising electrostatically responsive particles having optical density.
  • the developing electrostatically responsive particles can be in the form of a dust, or powder and generally comprise a pigment in a resinous carrier called a toner.
  • a preferred method of applying such a toner to a latent electrostatic image for solid area development is by the use of a magnetic brush. Methods of forming and using a magnetic brush toner applicator are described in the following U.S. Pat. Nos.
  • Liquid development of the latent electrostatic image may also be used.
  • the developing particles are carried to the image-bearing surface in an electrically insulating liquid carrier.
  • Methods of development of this type are widely known and have been described in the patent literature, for example, U.S. Pat. No. 2,297,691 and in Australian Pat. No. 212,315.
  • dry developing processes the most widely used method of obtaining a permanent record is achieved by selecting a developing particle which has as one of its components a low-melting resin. Heating the powder image then causes the resin to melt or fuse into or on the element. The powder is, therefore, caused to adhere permanently to the surface of the photoconductive layer. In other cases, a transfer of the charge image or powder image formed on the photocon-.
  • ductive layer can be made to a second support such as paper which would then become the final print after developing and fusing or fusing respectively.
  • Techniques of the type indicated are well known in the art and have been described in a number of U.S. and foreign patents, such as U.S. Pat. Nos. 2,297,691 and 2,551,582, and in RCA Review, vol. (1954) pages 469-484.
  • compositions of the present invention can be used in electrophotographic elements having many structural variations.
  • the photoconductive composition can be coated in the form of single layers or multiple layers on a suitable opaque or transparent conducting support.
  • the layers can be contiguous or spaced having layers of insulating material or other photoconductive material between layers or overcoated or interposed between the photoconductive layer or sensitizing layer and the conducting layer. It is also possible to adjust the position of the support and the conducting layer by placing a photoconductor layer over a support and coating the exposed face of the support or the exposed or overcoated face of the photoconductor with a conducting layer. Configurations difierfing from those contained in the examples can be useful or even preferred for the same or different application for the electrophotographic element.
  • EXAMPLE 1 A composition in the form of a dope consisting of the following materials is coated at a wet thickness of 0.004 inch on a poly(ethylene terephthalate) film support containing a conducting layer of the sodium salt of a carboxyester resin lactone:
  • Photoconductor 0.25 g. Polymeric binder [Vitel 101, 1.00 g. a polyester resin sold by Goodyear Tire and Rubber Co.
  • Sensitizer-Rhodamine B 0.01 g.
  • the surface of the photoconductive layer so prepared is charged to potential of about +600 volts under a corona charger.
  • the layer is then covered with a transparent sheet bearing a pattern of opaque and light-transmitting areas and exposed to the radiation from an incandescent lamp with an illumination intensity of about meter-candles for 12 seconds.
  • the resulting electrostatic latent image is developed by cascading over the surface of the layer negatively charged black thermoplastic toner particles on glass bead carriers.
  • Example 1 is repeated except the sensitizer employed is 2,4,7-trinitro-9-fluorenone.
  • the photoconductors used and the quality of the image obtained are set forth in Table 111.
  • Binder Lexan 145 [trade name of General Electric Company for a poly(4,4'-)
  • Photoconductor 1 (0.025 g.) is then dissolved in the resultant mixture which is then coated at 0.04 inch wet thickness on a poly(ethylene terephthalate) support which has been precoated with an evaporated nickel conducting layer.
  • the photoconducting compounds of this invention can generally be prepared by synthesis familiar to those skilled in the art. Typical preparations are set forth in the following Examples.
  • An electrophotographic element comprising a support having coated thereon a photoconductive composition comprising a polymeric film-forming binder and an organic photoconductor having the formula:
  • R, R R and R are each selected from the group consisting of an alkyl group and hydrogen;
  • X is selected from the group consisting of an alkyl group, an
  • Y is selected from the group consisting of an alkyl group, an alkoxy group, a hydroxy group, a halogen atom and .a hydrogen atom;
  • R is selected from the group consisting of an aryl group and a heterocyclic group containing five to six members in the hetero nucleus and including at least one hetero atom selected from sulfur, selenium, oxygen and nitrogen;
  • R is selected from the group consisting of an aryl group, a heterocyclic group containing five to six members in the hetero nucleus and including at least one hetero atom selected from sulfur, selenium, oxygen and nitrogen and, when taken with R a covalent bond;
  • R is selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and, when taken with R a covalent bond;
  • n is 0 or 1 when R is an aryl group, and n is 0 when R, and
  • R form a covalent bond
  • n l and R, and R are aryl groups.
  • n 0 and R and R are phenyl groups.
  • n 0, and R is a phenyl group and R and R, taken together are a covalent bond.
  • An electrophotographic element comprising a support having coated thereon a photoconductive composition comprising a. from about 10 to about 60 percent by weight based on said photoconductive composition of 3,3-diphenylallylidene-4,4-bis(N,N-diethyl-m-toluidine),
  • An electrophotographic element comprising a support having coated thereon a photoconductive composition comprising a. from about 10 to about 60 percent by weight based on said photoconductive composition of 3-phenyl-2- propynylidene 4,4'-bis(N,N-diethyl-m-toluidine),
  • a photoconductive composition comprising a polymeric film-forming binder and an organic photoconductor having the formula:
  • R R R and R are each selected from the group consisting of an alkyl group and hydrogen
  • X is selected from the group consisting of an alkyl group, an
  • Y is selected from the group consisting of an alkyl group, an alkoxy group, a hydroxy group, a halogen atom and a hydrogen atom;
  • R is selected from the group consisting of an aryl group and a heterocyclic group containing five to six members in the hetero nucleus and including at least one hetero atom selected from sulfur, selenium, oxygen and nitrogen;
  • R is selected from the group consisting of an aryl group, a heterocyclic group containing five to six members in the hetero nucleus and including at least one hetero atom selected from sulfur, selenium, oxygen and nitrogen, and when taken with R a covalent bond;
  • R is selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and, when taken with R, a covalent bond;
  • n is 0 or 1 when R, is an aryl group, and n is 0 when R and R form a covalent bond.

Abstract

Organic photoconductors for electrophotographic elements are described. These photoconductors are bis-(pdialkylaminophenyl)methanes having a third substituent comprising an unsaturated group having two or four carbon atoms wherein an omega -carbon atom of the third substituent is fully substituted by aryl group(s), heterocyclic group(s) or combinations thereof.

Description

United States Patent Rossi Mar. 7, 1972 [54] SUBSTITUTED BIS(P- DIAKYLAMINOPHENYL) METHANE PHOTOCONDUCTORS [72] Inventor: Louis J. Rossi, Rochester, N.Y.
[73] Assignee: Eastman Kodak Company, Rochester,
221 Filed: on. 1,1969
21 Appl.No.: 862,923
[52] US. Cl. ..96/l.5, 96/ 1.6, 96/1 PC, 260/571, 260/576, 252/501 [51] Int. Cl. ..G03g 5/06 [58] FieldofSearch ..260/571,576;96/1,1.5, 1.6; 252/501 [56] References Cited UNITED STATES PATENTS 3,140,948 7/1964 Stewart ..96/48 3,232,755 2/1966 Hoegl et a1 ..96/1 3,310,401 3/ 1967 Grei'g .96/ 1 .5 3,317,315 5/1967 Nicoll et al. ..96/l.1
FOREIGN PATENTS OR APPLICATIONS 1,285,486 1962 France ..96/1 .5
Primary Examiner-George F. Lesmes Assistant Examiner-John C. Cooper AttarneyWi1liam H. J. Kline, James R. Frederick and Fred L. Denson ABSTRACT 10 Claims, No Drawings SUBSTITUTED BIS(l-DIAKYLAMINOPHENYL) METHANE PHOTOCONDUCTORS This invention relates to electrophotography, and is particular to photoconductive compositions and elements.
The process of xerography, as disclosed'by Carlson in U.S. Pat. No. 2,297,691, employs an electrophotographic element comprising a support material bearing a coating of a normally insulating material whose electrical resistance varies with the amount of incident electro'rnagneJc radiation it receives during an imagewise exposure. The element, commonly termed a photoconductive element, is first given a uniform surface charge, generally in the dark after a suitable period of dark adaptation. It is then exposed to a pattern of actinic radiation which has the effect of differentially reducing the potential of this surface charge in accordance with the relative energy contained in various parts of the radiation pattern. The differential surface charge or electrostatic latent image remaining on the electrophotographic element is then made visible by contacting the surface with a suitable electroscopic marking material. Such marking material or toner, whether contained in an insulating liquid or on a dry carrier, can be deposited on the exposed surface in accordance with either the charge pattern or discharge pattern as desired. Deposited marking material can then be either permanently fixed to the surface of the sensitive element by known means such as heat, pressure, solvent vapor, or the like, or transferred to a second element to which it can similarly be fixed. Likewise, the electrostatic latent image can be transferred to a second element and developed there.
Various photoconductive insulating materials have been employed in the manufacture of electrophotographic elements. For example, vapors of selenium and vapors of selenium alloys deposited on a suitable support and particles of photoconductive zinc oxide held in a resinous, film-forming binder have found wide application in the present-day document-copying applications.
Since the introduction of electrophotography, a great many organic compounds have also been screened for their photoconductive properties. As a result, a very large number of organic compounds have been known to possess some degree of photoconductivity. Many organic compounds have revealed a useful level of photoconduction and have been incorporated into photoconductive compositions.
Typical of these organic photoconductors are the triphenylamines and the triarylmethane leuco bases. Optically clear photoconductor-containing elements having desirable electrophotographic properties can be especially useful in electrophotography. Such electrophotographic elements can be exposed through a transparent base if desired, thereby providing unusual flexibility in equipment design. Such compositions, when coated as a film or layer on a suitable support, also yield an element which is reusable; that is, it can be used to form subsequent images after residual toner from prior images has been removed by transfer and/or cleaning. Thus far, the selection of various compounds for incorporation into photoconductive compositions to form electrophotographic layers has proceeded on a compound-by-compound basis. Nothing as yet has been discovered from the large number of different photoconductive substances tested which permits effective prediction, and therefore selection of the particular compounds exhibiting the desired electrophotographic properties.
It is, therefore, an object of this invention to provide a novel class of photoconductors having high photosensitivity when electrically charged.
It is another object to provide novel photoconductor-containing compositions which exhibit high electrical speeds.
It is a further object of the invention to provide an improved process utilizing the novel photoconductors described herein.
Still another object of this invention is to provide electrophotographic elements containing the novel photoconductors described herein.
These and other objects of the invention are accomplished by employing certain substituted bis(p-dialkylamino-phenyl)methanes as photoconductors. These materials are characterized by having a third substituent attached to the methane carbon atom, this substituent generally being an unsaturated group having two or four carbon atoms and having its m (terminal) carbon atom fully substituted by aryl heterocyclic groups or combinations thereof. Typical third substituents include an m,w-diaralkenyl group, an m-aralkynyl group, an (0,10- diaralkadienyl group, etc. The unsaturated group can have additional substituents on positions other than the m-carbon atom, and the aryl groups and heterocyclic groups attached to the w-carbon atom can be substituted or unsubstituted.
A large number of substituted diarylmethanes and triarylmethanes have exhibited photoconductive properties when used as photoconductors in electrophotographic elements. Typical of these are the leuco base of malachite green, bis(4- dimethylaminophenyl)methane, bis(4-dimethylaminophenyl)-p-dimethylaminostyrylmethane and bis(4- dimethylaminophenyl)phenylmethane as described in British Pat. Nos. 984,965 and 980,879. Also, diarylmethane compounds have been used as activators for zinc oxide photoconductors. Such uses are described in British Pat. No. 1,141,666. According to this invention, it has been found that the photoconductors described herein have enhanced speed and/or stability over those photoconductors described in the prior art.
The preferred methanes useful as photoconductors in this invention are characterized by the following formula:
wherein R,, R R and R-, can be the same or different substituents each representing any of the following:
1. hydrogen;
2. an alkyl group having one to six carbon atoms e.g.,
methyl, ethyl, propyl, butyl, isobutyl, including a substituted alkyl group having one to six carbon atoms such as a. alkoxyalkyl e.g.,
propoxymethyl, etc., b. hydroxyalkyl having two to six, carbon atoms e.g., 3-
hydroxypropyl, Z-hydroxyethyl, etc., c. cyanoalkyl, e.g., 3-cyanopropyl, 2-cyanoethyl,
cyanomethyl, etc.,
ethoxypropyl, methoxybutyl,
d. haloalkyl having two to six carbon atoms e.g., 2-
ethoxypropyl, methoxybutyl,
substituted bis(p-dialkylaminophenyl) alkoxy having one to four carbon atoms e.g., methoxy,
ethoxy, propoxy, butoxy, etc.,
. halogen such as chlorine, or fluorine,
. hydroxy,
. hydrogen,
. an alkyl group having one to four carbon atoms e.g., methyl, ethyl, propyl, isopropyl, butyl, isobutyl, etc., including a substituted alkyl group having one to four carbon atoms such as a. alkoxyalkyl e.g., ethoxypropyl,
propoxymethyl, etc., and b. hydroxyalkyl, e.g., hydroxypropyl, hydroxyethyl,
hydroxymethyl, etc.;
R and R each can be the same or different substituents each representing any of the following: an aryl group, e.g., phenyl or naphthyl, including a substituted aryl group such as a. alkoxyaryl, e.g., ethoxyphenyl, methoxyphenyl,
propoxynaphthyl, etc., b. aminoaryl, e.g., aminophenyl or aminonaphthyl, c. hydroxyaryl, e.g., hydroxyphenyl, hydroxynaphthyl,
MANN
methoxybutyl,
d. alkylaminoaryl, e.g., methylaminophenyl,
methylaminonaphthyl, etc. and also including dialkylaminoaryl, e.g., diethylaminophenyl,
dipropylaminophenyl, 4-diethylarnino-2-tolyl, etc.,
e. arylaminoaryl, e.g., phenylaminophenyl, diphenylaminophenyl, N-phenyI-N-ethylaminophenyl, etc.,
f. cyanoaryl, e.g., cyanophenyl, cyanonaphthyl, etc.,
g. haloaryl, e.g., chlorophenyl, bromophenyl,
chloronaphthyl, etc.
h. aryl substituted with an acyl group having the formuwherein R is hydroxy, hydrogen, aryl, e.g., phenyl, naphthyl, etc., amino including substituted amino, e.g., diloweralkylamino, lower alkoxy having one to four carbon atoms, e.g., butoxy, methoxy, etc., aryloxy, e.g., phenoxy, naphthoxy, etc., lower alkyl having one to four carbon atoms, e.g., methyl, ethyl, propyl, butyl, etc.,
i. alkaryl, e.g., tolyl, ethylphenyl, propylnaphthyl,
2. a heterocyclic group including a substituted heterocyclic group containing five to six members in the heteronucleus and including at least one sulfur, seleniurn, oxygen or nitrogen atom such as a thienyl group e.g., a benzothienyl group, a pyrrolyl group, e.g., a nitropyrrolyl group, a pyrrolidinyl group, e.g., a pyrrolyl group, a pyrrolinyl group, a benzopyrrolyl group, e.g., an indolyl group, a carbazolyl group, a furyl group, e.g., a furfuryl group, a benzofuryl group, etc., a pyridyl group, an alkylpyridyl group, etc., a piperidyl group, a quinolyl group, a pyranyl group, a benzopyranyl group,
a pyrazolyl group, an oxazolyl group, a thiazolyl group,
etc.; R represents any of the following groups:
1. hydrogen 2. an aryl group, e.g., phenyl including a substituted aryl groups such as a. alkoxyaryl e.g., methoxyphenyl, etc.,
b. aminoaryl e.g., aminophenyl, aminonaphthyl, etc.,
c. hydroxyaryl, e.g., hydroxyphenyl, hydroxynaphthyl,
etc.,
d. alkylaminoaryl e.g., methylaminophenyl,
methylaminonaphthyl, etc., and also including dialkylaminoaryl, e.g., p-diethylaminophenyl',
dipropylaminophenyl, etc., e. arylaminoaryl, e.g., phenylaminophenyl, diphenylaminophenyl, N-phenyl-N-ethylaminophenyl, etc., f. nitroaryl, e.g., nitrophenyl, nitronaphthyl, etc., g. cyanoaryl, e.g., cyanophenyl, cyanonaphthyl, etc., h. haloaryl, e.g., chlorophenyl, bromophenyl,
chloronaphthyl, etc., I i. aryl substituted with an acyl group having the formula wherein R is hydroxy, hydrogen, aryl, e.g., phenyl, naphthyl, etc., amino including substituted amino e.g., diloweralkylamino, lower alkoxy having one to four carbon atoms, e.g., butoxy, methoxy, aryloxy, e.g., phenoxy, naphthoxy, etc., lower alkyl having one to eight carbon atoms e.g., methyl, ethyl, propyl, butyl, etc.,
j. alkaryl e.g., tolyl, ethylphenyl, propylnaphthyl, etc.,
3. an aliphatic alkyl group having one to four carbon atoms e.g., methyl, ethyl, propyl, butyl, isobutyl,
R and R when taken together with the carbon atom to which they are attached, represent a heterocyclic group including a substituted heterocyclic group containing five to six members in the hetero nucleus and including at least one sulfur, selenium, oxygen or nitrogen atom such as an indolinylidene group, a 3-alkyl-2-benzothiazolinylidene group, a -3- alkyl-2-benzoxazolinylidene group, a 3-alkyl-2- benzoselenazolinylidene group, a 3-alkyl-2-benzimidazolinylidene group, etc.;
n is zero or one with the provision that n is zero when R, and R are taken together to represent a covalent bond.
Typical compounds which belong to the herein described general class of photoconductive materials include the following listed in Table I below.
TABLE I I 3,3-DiphenylaIlylidene-4,4'-bis (N ,N-diethyl-m-toluidine) II 3-Phenyl-2-propynylidene-4,4'-bis (N,N-diethyl-m-toluidine) Ill 3-Phenyl-3-(2-thienyl)allylidene-4,4'
-bis( N,N-diethyl-m toluidine) IV 5,S-Diephenyl-Z,4-pcntadienylidene-4,4
-bis(N,N-diethyl-rn-toluidine) V 2'[2,Z-bis( p-diethylamino-o4olyl) ethylidenel-3-ethylbenzothiazoline (N,N-diethyI-2 ,S-xylidine) X 3 ,3-Diphenyllayiidene-4,4 '-bis (N ,N-diethyl-2-chloroaniline) 3,3-Bis(4-methoxyphenyl)allylidenc-4,4 -bis(N,N-diethyl-m-toluidine) XII 3,3-Diphenylallylidene-4,4 -bis (N-ethyl-m-toluidine) XIII 3,3-Diphenylallylidene-4,4'-bis (N.N-dibenzyLm-toluidine) XIV 3-p-N,N-diethylaminophenyl-2- propynylidene-4,4-bis (N-ethyl N-2-hydroxyethyl-m-toluidine) XV J-Phenyl-2-propynylidene-4,4'-bis (N-2-cyanoethyl-N-ethyl-m-toluidine) Electrophotographic elements of the invention can be prepared with the photoconducting compounds of the invention in the usual manner, i.e., by blending a dispersion or solution of a photoconductive compound together with a binder, when necessary or desirable, and coating or forming a selfsupporting layer with the photoconductor-containing material. Mixtures of the photoconductors described herein can be employed. Likewise, other photoconductors known in the art such as those described in Light, Belgian Pat, No. 705,117, dated Apr. 16, 1968, can be combined with the present photoconductors. In addition, supplemental materials useful for changing the spectral sensitivity or electrophotosensitivity of the element can be added to the composition of the element when it is desirable to produce the characteristic effect of such materials. v I
The photoconductive layers. of the invention can also be sensitized by the addition'of effective amounts of sensitizing compounds to exhibit improved electrophotosensitivity. Sensitizing compounds useful with the photoconductive compounds of the present invention can be selected from a wide variety of materials, including such materials as pyrylium dye salts including thiapyrylium dye salts and selenapyrylium dye salts disclosed in VanAllan et al., U.S. Pat. No. 3,250,615; fluorenes, such as 7,1Z-dioxo-l3-dibenzo(a,h)fluorene, 5,10- dioxo-4a,l l-diazabenzo(b)flourene, 3, l 3-dioxo-7-oxadibenzo(b,g)fluorene, and the like; aggregate-type sensitizers of the type described in Light, Belgian Pat. No. 705,1 17, dated Apr. 16, 1968; aromatic nitro compounds of the kinds described in U.S. Pat. No. 2,610,120; anthrones like those disclosed in U.S. Pat. No. 2,670,284; quinones, U.S. Pat. No. 2,670,286; benzophenones U.S. Pat. No. 2,670,287; thiazoles, U.S. Pat. No. 2,732,301; mineral acids; carboxylic acids, such as maleic acid, dichloroacetic acid, and salicyclic acid; sulfonic and phosphoric acids; and various dyes, such as cyanine (including carbocyanine), merocyanine, diarylmethane, thiazine, azine, oxazine, xanthene, phthalein, acridine, azo, anthraquinone dyes and the like and mixtures thereof. The sensitizers preferred for use with the compounds of this invention are selected from pyrylium salts including selenapyrylium salts and thiapyrylium salts, and cyanine dyes including carbocyanine dyes.
Where a sensitizing compound is employed with the binder and organic photoconductor to form a sensitized electrophotographic element, it is the normal practice to mix a suitable amount of the sensitizing compound with the coating composition so that, after thorough mixing, the sensitizing compound is uniformly distributed in the coated element. Other methods of incorporating the sensitizer or the effect of the sensitizer may, however, be employed consistent with the practice of this invention. ln preparing the photoconductive layers, no sensitizing compound is required to give photoconductivity in the layers which contain the photoconducting substances, therefore, no sensitizer is required in a particular photoconductive layer. However, since relatively minor amounts of sensitizing compound give substantial improvement in speed in such layers, the sensitizer is preferred. The amount of sensitizer that can be added to a photoconductorincorporating layer to give effective increases in speed can vary widely. The optimum concentration in any given case will vary with the specific photoconductor and sensitizing compound used. In general, substantial speed gains can be obtained where an appropriate sensitizer is added in a concentration range from about 0.0001 to about 30 percent by weight based on the weight of the film-forming coating composition. Normally, a sensitizer is added to the coating composition in an amount by weight from about 0.005 to about 5.0 percent by weight of the total coating composition.
Preferred binders for use in preparing the present photoconductive layers are film-forming, hydrophobic polymeric binders having fairly high dielectric strength which are good electrically insulating film-forming vehicles. Materials of this type comprise styrene-butadiene copolymers; silicone resins; styrene-alkyd resins; silicone-alkyd resins; soyaalkyl resins; poly(vinyl chloride); poly(vinylidene chloride); vinylidene chloride-acrylonitrile copolymers; poly(vinyl acetate); vinyl acetate-vinyl chloride copolymers; poly(vinyl acetals), such as poly(vinyl butyral); polyacrylic and methacrylic esters, such as poly(methyl methacrylate), poly(n-butyl methacrylate), poly-(isobutyl methacrylate), etc.; polystyrene; nitrated polystyrene; polymethylstyrene; isobutylene polymers; polyesters; such as poly[ethylene-co-alkylenbis(alkyleneoxyaryl) phenylenedicarboxylate] phenolfonnaldehyde resins; ketone resins; polyamides; polycarbonates; polythiocarbonates; poly[ethylene-co-isopropylidene-2,2-bis(ethyleneoxyphenyl) terephthalate]; copolymers of vinyl haloarylates and vinyl acetate such as poly(vinyl m-bromobenzoate-covinyl acetate); etc. Methods of making resins of this type have been described in the prior art, for example, styrene-alkyd resins can be prepared according to the method described in U.S. Pat. Nos. 2,361,019 and 2,258,423. Suitable resins of the type contemplated for use in the photoconductive layers of the invention are sold under such tradenames as Vitel PE-lOl, Cymac, Piccopale 100, Saran F-220, Lexan and Lexan 145. Other types of binders which can be used in the photoconductive layers of the invention include such materials as paraffin, mineral waxes, etc.
Solvents useful for preparing coating compositions with the photoconductors of the present invention can include a wide variety of organic solvents for the components of the coating. For example, benzene; toluene; acetone; 2-butanone; chlorinated hydrocarbons such as methylene chloride; ethylene chloride; and the like; ethers, such as tetrahydrofuran and the like, or mixtures of such solvents can advantageously be employed in the practice of this invention.
In preparing the coating compositions utilizing the photoconducting compounds disclosed herein, useful results are obtained where the photoconductive substance is present in an amount equal to at least about 1 weight percent of the coating composition. The upper limit in the amount of photoconductive material present can be widely varied in accordance with usual practice. It is normally required that the photoconductive material be present in an amount ranging from about 1 weight percent of the coating composition to about 99 weight percent of the coating composition. A preferred weight range for the photoconductive material in the coating composition is from about 10 weight percent to about 60 weight percent.
Coating thicknesses of the photoconductive composition on a support can vary widely. Normally, a wet coating thickness in the range of about 0.001 inch to about 0.01 inch is useful in the practice of the invention. A preferred range of coating thickness is from about 0.002 inch to about 0.006 inch before drying, although such thicknesses can vary widely depending on the particular application desired for the electrophotographic element.
Suitable supporting materials for the photoconductive layers of the present invention can include any of the electrically conducting supports, for example, conducting papers; aluminum-paper laminates; metal foils, such as aluminum foil, zinc foil, etc.; metal plates, such as aluminum, copper, zinc, brass, and galvanized plates; vapor deposited metal layer such as silver, nickel or aluminum on conventional film supports such as cellulose acetate, poly(ethylene terephthalate), polystyrene and the like conducting supports.
An especially useful conducting support can be prepared by coating a transparent film support material such as poly(ethylene terephthalate) with a layer containing a semiconductor dispersed in a resin. A suitable conducting coating can be dispersed in a resin. A suitable conducting coating can be prepared from the sodium salt of a carboxyester lactone of a maleic anhydn'de-vinyl acetate copolymer, cuprous iodide and the like. Such conducting layers and methods for their optimum preparation and use are disclosed in U.S. Pat. Nos. 3,007,901, 3,245,833 and 3,267,807.
The compositions of the present invention can be employed in photoconductive elements useful in any of the well known electrophotographic processes which require photoconductive layers. One such process is the xerographic process. In a process of this type, an electrophotographic element held in the dark, is given a blanket electrostatic charge by placing it under a corona discharge to give a uniform charge to the surface of the photoconductive layer. This charge is retained by the layer owing to the substantial dark insulating property of the layer, i.e., the low conductivity of the layer in the dark. The electrostatic charge formed on the surface of the photoconductive layer is then selectively dissipated from the surface of the layer by imagewise exposure to light by means of a conventional exposure operation such as for example, by a contact-printing technique, or by lens projection of an image, or reflex or bireflex techniques and the like, to thereby form a latent electrostatic image in the photoconductive layer. Exposing the surface in this manner forms a pattern of electrostatic charge by virtue of the fact that light energy striking the photoconductor causes the electrostatic charge in the light struck areas to be conducted away from the surface in proportion to the intensity of the illumination in a particular area.
The charge pattern produced by exposure is then developed or transferred to another surface and developed there, i.e., either the charge or uncharged areas rendered visible, by treatment with a medium comprising electrostatically responsive particles having optical density. The developing electrostatically responsive particles can be in the form of a dust, or powder and generally comprise a pigment in a resinous carrier called a toner. A preferred method of applying such a toner to a latent electrostatic image for solid area development is by the use of a magnetic brush. Methods of forming and using a magnetic brush toner applicator are described in the following U.S. Pat. Nos. 2,786,439; 2,786,440, 2,786,441; 2,811,465; 2,874,063; 2,984,163; 3,040,704; 3,117,884 and reissue Re. 25,779. Liquid development of the latent electrostatic image may also be used. In liquid development the developing particles are carried to the image-bearing surface in an electrically insulating liquid carrier. Methods of development of this type are widely known and have been described in the patent literature, for example, U.S. Pat. No. 2,297,691 and in Australian Pat. No. 212,315. In dry developing processes the most widely used method of obtaining a permanent record is achieved by selecting a developing particle which has as one of its components a low-melting resin. Heating the powder image then causes the resin to melt or fuse into or on the element. The powder is, therefore, caused to adhere permanently to the surface of the photoconductive layer. In other cases, a transfer of the charge image or powder image formed on the photocon-.
ductive layer can be made to a second support such as paper which would then become the final print after developing and fusing or fusing respectively. Techniques of the type indicated are well known in the art and have been described in a number of U.S. and foreign patents, such as U.S. Pat. Nos. 2,297,691 and 2,551,582, and in RCA Review, vol. (1954) pages 469-484.
The compositions of the present invention can be used in electrophotographic elements having many structural variations. For example, the photoconductive composition can be coated in the form of single layers or multiple layers on a suitable opaque or transparent conducting support. Likewise, the layers can be contiguous or spaced having layers of insulating material or other photoconductive material between layers or overcoated or interposed between the photoconductive layer or sensitizing layer and the conducting layer. It is also possible to adjust the position of the support and the conducting layer by placing a photoconductor layer over a support and coating the exposed face of the support or the exposed or overcoated face of the photoconductor with a conducting layer. Configurations difierfing from those contained in the examples can be useful or even preferred for the same or different application for the electrophotographic element.
The following examples are included for a further understanding of this invention.
EXAMPLE 1 A composition in the form of a dope consisting of the following materials is coated at a wet thickness of 0.004 inch on a poly(ethylene terephthalate) film support containing a conducting layer of the sodium salt of a carboxyester resin lactone:
Photoconductor 0.25 g. Polymeric binder [Vitel 101, 1.00 g. a polyester resin sold by Goodyear Tire and Rubber Co.
comprising poly(4,4'-isopropylidenebisphenoxyethylcoethylene terephthalate)] Sensitizer-Rhodamine B 0.01 g. Dichloromethane 9.60 g.
in a darkened room, the surface of the photoconductive layer so prepared is charged to potential of about +600 volts under a corona charger. The layer is then covered with a transparent sheet bearing a pattern of opaque and light-transmitting areas and exposed to the radiation from an incandescent lamp with an illumination intensity of about meter-candles for 12 seconds. The resulting electrostatic latent image is developed by cascading over the surface of the layer negatively charged black thermoplastic toner particles on glass bead carriers. The quality of the image reproduced using the various photoconductors described herein are set forth in the following table.
Example 1 is repeated except the sensitizer employed is 2,4,7-trinitro-9-fluorenone. The photoconductors used and the quality of the image obtained are set forth in Table 111.
TABLE I11 Photoconductor image Quality Vl good X good Xll good XIV good XV good EXAMPLE 3 Example 1 is repeated using 2,6-bis(4-ethylphenyl)-4-(4-namyloxyphenyl)thiapyrylium perchlorate as the sensitizer. The photoconductors used and image quality obtained are set forth in the following Table IV.
TABLE IV Photoconductor Image Quality 111 good V11 good EXAMPLE 4 The following composition is sheared in a Waring Blendor for 30 minutes at room temperature.
Binder Lexan 145 [trade name of General Electric Company for a poly(4,4'-
isopropylidenediphenylcarbonate)]. 1.0 g. Sensitizer-l2,6-diphenyl4-(4-dimethylaminophenyl)1th iapyrylium perchlorate 0.025 g. Dichloromethane 9.6 g.
Photoconductor 1 (0.025 g.) is then dissolved in the resultant mixture which is then coated at 0.04 inch wet thickness on a poly(ethylene terephthalate) support which has been precoated with an evaporated nickel conducting layer. The
element is then dried at F. The element is charged, ex-
posed and developed in the manner described in Example 1. A good reproduction is obtained.
The photoconducting compounds of this invention can generally be prepared by synthesis familiar to those skilled in the art. Typical preparations are set forth in the following Examples.
EXAMPLE Preparation of 3,3-Diphenylallylidene-4,4'-bis(N,N-diethylm-toluidine) A solution of 25.0 g. of 3,3-diphenylacrolein, 39.2 g. of N,N-diethyl-m-toluidine, ml. of concentrated hydrochloric acid, and 7.2 g. of urea in 250 ml. of methanol is refluxed with stirring for 72 hours. The reaction mixture is cooled. The white crystalline solid that separates is collected and air dried.
This product is recrystallized twice from acetonitrile to yield 27.3 g. of product, m.p. l45-l47 C.
Anal. Calcd. for C,,l-l N,(5l6.8): C, 86.0; H, 8.60;
N. 5.40. Found: C, 86.3; H, 8.3;
' EXAMPLE 6 Preparation of 3-Phenyl-2-propynylidene-4,4'-bis(N,N- diethyl-m-toluidine) By the procedure of Example 5, 24.7 g. of phenylpropargyl aldehyde, 62.0 g. of N,N-diethyl-m-toluidine, 11.4 g. of urea and 15.8 ml. of concentrated hydrochloric acid in 200 ml. of methanol are reacted to form 26.0 g. of the subject compound as a tan crystalline solid, mp. ll22C.
Anal. Calcd. for C,,H,,,N,(438.7): C, 84.9; H, 8.75; N, 6.40.
Found: C, 85.4; H, 9.2;
The invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
1 claim:
1. An electrophotographic element comprising a support having coated thereon a photoconductive composition comprising a polymeric film-forming binder and an organic photoconductor having the formula:
X X 1\ l I /Rn R2 Fifi R1 Y i H Y 21H L.. .Jr
R5 .Ra
wherein R,, R R and R are each selected from the group consisting of an alkyl group and hydrogen;
X is selected from the group consisting of an alkyl group, an
alkoxy group, a hydroxy group and a halogen atom;
Y is selected from the group consisting of an alkyl group, an alkoxy group, a hydroxy group, a halogen atom and .a hydrogen atom;
R is selected from the group consisting of an aryl group and a heterocyclic group containing five to six members in the hetero nucleus and including at least one hetero atom selected from sulfur, selenium, oxygen and nitrogen;
R is selected from the group consisting of an aryl group, a heterocyclic group containing five to six members in the hetero nucleus and including at least one hetero atom selected from sulfur, selenium, oxygen and nitrogen and, when taken with R a covalent bond;
R is selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and, when taken with R a covalent bond; and
n is 0 or 1 when R is an aryl group, and n is 0 when R, and
R form a covalent bond.
2. The electrophotographic element of claim 1 wherein said photoconductive composition contains a sensitizer for said photoconductor.
3. The electrophotographic element of claim I wherein n#) and R, and R are aryl groups.
4. The electrophotographic element of claim 1 wherein n=l and R, and R are aryl groups.
5. The electrophotographic element of claim 1 wherein n is 0 and R and R are phenyl groups.
6. The electrophotographic element of claim 1 wherein n is 0, and R is a phenyl group and R and R, taken together are a covalent bond.
7. An electrophotographic element comprising a support having coated thereon a photoconductive composition comprising a. from about 10 to about 60 percent by weight based on said photoconductive composition of 3,3-diphenylallylidene-4,4-bis(N,N-diethyl-m-toluidine),
b. a film-forming polymeric binder for said photoconductor and c. 0.005 percent to about 5 percent by weight based on said photoconductive composition of a sensitizer for said photoconductive composition.
8. An electrophotographic element comprising a support having coated thereon a photoconductive composition comprising a. from about 10 to about 60 percent by weight based on said photoconductive composition of 3-phenyl-2- propynylidene 4,4'-bis(N,N-diethyl-m-toluidine),
b. a film-forming polymeric binder for said photoconductor and c. 0.005 percent to about 5 percent by weight based on said photoconductive composition of a sensitizer for said photoconductive composition.
9. A photoconductive composition comprising a polymeric film-forming binder and an organic photoconductor having the formula:
wherein R R R and R are each selected from the group consisting of an alkyl group and hydrogen;
X is selected from the group consisting of an alkyl group, an
alkoxy group, a hydroxy group and a halogen atom;
Y is selected from the group consisting of an alkyl group, an alkoxy group, a hydroxy group, a halogen atom and a hydrogen atom;
R is selected from the group consisting of an aryl group and a heterocyclic group containing five to six members in the hetero nucleus and including at least one hetero atom selected from sulfur, selenium, oxygen and nitrogen;
R is selected from the group consisting of an aryl group, a heterocyclic group containing five to six members in the hetero nucleus and including at least one hetero atom selected from sulfur, selenium, oxygen and nitrogen, and when taken with R a covalent bond;
R is selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and, when taken with R, a covalent bond; and
n is 0 or 1 when R, is an aryl group, and n is 0 when R and R form a covalent bond.
10. In an electrophotographic process where an electrostatic charge pattern is formed on an electrophotographic ele-

Claims (9)

  1. 2. The electrophotographic element of claim 1 wherein said photoconductive composition contains a sensitizer for said photoconductor.
  2. 3. The electrophotographic element of claim 1 wherein n 0 and R3 and R4 are aryl groups.
  3. 4. The electrophotographic element of claim 1 wherein n 1 and R3 and R4 are aryl groups.
  4. 5. The electrophotographic element of claim 1 wherein n is 0 and R4 and R3 are phenyl groups.
  5. 6. The electrophotographic element of claim 1 wherein n is 0, and R3 is a phenyl group and R4 and R5 taken together are a covalent bond.
  6. 7. An electrophotographic element comprising a support having coated thereon a photoconductive composition comprising a. from about 10 to about 60 percent by weight based on said photoconductive composition of 3,3-diphenylallylidene-4,4''-bis(N,N-diethyl-m-toluidine), b. a film-forming polymeric binder for said photoconductor and c. 0.005 percent to about 5 percent by weight based on said photoconductive composition of a sensitizer for said photoconductive composition.
  7. 8. An electrophotographic element comprising a support having coated thereon a photoconductive composition comprising a. from about 10 to about 60 percent by weight based on said photoconductive composition of 3-phenyl-2-propynylidene 4,4''-bis(N,N-diethyl-m-toluidine), b. a film-forming polymeric binder for said photoconductor and c. 0.005 percent to about 5 percent by weight based on said photoconductive composition of a sensitizer for said photoconductive composition.
  8. 9. A photoconductive composition comprising a polymeric film-forming binder and an organic photoconductor having the formula:
  9. 10. In an electrophotographic process where an electrostatic charge pattern is formed on an electrophotographic element, the improvement characterized in that said electrophotographic element has a photoconductive layer comprising the composition of claim 9.
US862923A 1969-10-01 1969-10-01 Substituted bis(p-diakylaminophenyl) methane photoconductors Expired - Lifetime US3647431A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US86292369A 1969-10-01 1969-10-01

Publications (1)

Publication Number Publication Date
US3647431A true US3647431A (en) 1972-03-07

Family

ID=25339748

Family Applications (1)

Application Number Title Priority Date Filing Date
US862923A Expired - Lifetime US3647431A (en) 1969-10-01 1969-10-01 Substituted bis(p-diakylaminophenyl) methane photoconductors

Country Status (8)

Country Link
US (1) US3647431A (en)
JP (1) JPS504153B1 (en)
AU (1) AU2054370A (en)
BE (1) BE756941A (en)
CA (1) CA939386A (en)
DE (1) DE2048135C3 (en)
FR (1) FR2064851A5 (en)
GB (1) GB1329581A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3767393A (en) * 1971-11-11 1973-10-23 Kodak Park Division Alkylaminoaromatic organic photoconductors
US4115450A (en) * 1975-01-27 1978-09-19 Ciba-Geigy Corporation Bis-aminoarylethane amide compounds
US4140529A (en) * 1977-09-22 1979-02-20 Xerox Corporation Charge transport overlayer in photoconductive element and method of use
US4304829A (en) * 1977-09-22 1981-12-08 Xerox Corporation Imaging system with amino substituted phenyl methane charge transport layer
US4922020A (en) * 1987-03-27 1990-05-01 Imperial Chemical Industries Plc 1,1,5,5-tetra(4-aminophenyl)-pentadi-1,4-ene compounds
US5780194A (en) * 1995-04-18 1998-07-14 Mita Industrial Co., Ltd. Electrophotosensitive material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721646B2 (en) * 1986-06-05 1995-03-08 高砂香料工業株式会社 Electrophotographic photoreceptor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1285486A (en) * 1960-02-19 1962-02-23 Gevaert Photo Prod Nv Electrophotographic material
US3140948A (en) * 1961-10-18 1964-07-14 Horizons Inc Photography
US3232755A (en) * 1959-07-01 1966-02-01 Azoplate Corp Photoconductive layers for electrophotographic purposes
US3310401A (en) * 1963-08-28 1967-03-21 Rca Corp Electrophotographic member and process utilizing polyarylmethane dye intermediates
US3317315A (en) * 1962-04-30 1967-05-02 Rca Corp Electrostatic printing method and element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3232755A (en) * 1959-07-01 1966-02-01 Azoplate Corp Photoconductive layers for electrophotographic purposes
FR1285486A (en) * 1960-02-19 1962-02-23 Gevaert Photo Prod Nv Electrophotographic material
US3140948A (en) * 1961-10-18 1964-07-14 Horizons Inc Photography
US3317315A (en) * 1962-04-30 1967-05-02 Rca Corp Electrostatic printing method and element
US3310401A (en) * 1963-08-28 1967-03-21 Rca Corp Electrophotographic member and process utilizing polyarylmethane dye intermediates

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3767393A (en) * 1971-11-11 1973-10-23 Kodak Park Division Alkylaminoaromatic organic photoconductors
US4115450A (en) * 1975-01-27 1978-09-19 Ciba-Geigy Corporation Bis-aminoarylethane amide compounds
US4140529A (en) * 1977-09-22 1979-02-20 Xerox Corporation Charge transport overlayer in photoconductive element and method of use
US4304829A (en) * 1977-09-22 1981-12-08 Xerox Corporation Imaging system with amino substituted phenyl methane charge transport layer
US4922020A (en) * 1987-03-27 1990-05-01 Imperial Chemical Industries Plc 1,1,5,5-tetra(4-aminophenyl)-pentadi-1,4-ene compounds
US5780194A (en) * 1995-04-18 1998-07-14 Mita Industrial Co., Ltd. Electrophotosensitive material
US6187493B1 (en) 1995-04-18 2001-02-13 Kyocera Mita Corporation Electrophotosensitive material

Also Published As

Publication number Publication date
JPS504153B1 (en) 1975-02-15
CA939386A (en) 1974-01-01
BE756941A (en) 1971-03-16
DE2048135C3 (en) 1974-11-14
FR2064851A5 (en) 1971-07-23
GB1329581A (en) 1973-09-12
DE2048135B2 (en) 1974-04-11
AU2054370A (en) 1972-04-13
DE2048135A1 (en) 1971-04-08

Similar Documents

Publication Publication Date Title
US3873312A (en) Photoconductive composition and elements containing a styryl amino group containing photoconductor
US3820989A (en) Tri-substituted methanes as organic photoconductors
US3567450A (en) Photoconductive elements containing substituted triarylamine photoconductors
US4127412A (en) Photoconductive compositions and elements
US3615402A (en) Tetra-substituted methanes as organic photoconductors
US3488705A (en) Thermally unstable organic acid salts of triarylmethane dyes as sensitizers for organic photoconductors
US3677752A (en) Bis(dialkylaminoaryl)ethylene photoconductors
US3647433A (en) Dinitroarylmethine dyes as sensitizers in electrophotographic layers
US3719480A (en) Electrophotographic compositions and elements
US3684548A (en) Method of preparing a homogeneous dye-sensitized electrophotographic element
US3938994A (en) Pyrylium dyes for electrophotographic composition and element
US3765884A (en) 1-substituted-2-indoline hydrazone photoconductors
US3655378A (en) Charge-transfer complexes of dibenzofuran-formaldehyde or dibenzothiophene-formaldehyde resins as photoconductive materials
US4365016A (en) Benzotelluropyrylium diketonate electron accepting dye sensitizers for electron donating photoconductive compositions
US3533783A (en) Light adapted photoconductive elements
US3647432A (en) Carbazolylmethane dye salts as sensitizers for photoconductor compositions
US3647431A (en) Substituted bis(p-diakylaminophenyl) methane photoconductors
US3542546A (en) Organic photoconductors containing the >n-n< nucleus
US3705913A (en) Electrophotographic sensitizers
US3586500A (en) Electrophotographic composition and element
US3719486A (en) Photoconductive elements containing organo-metallic photoconductors
US3652269A (en) Photoconductive elements containing halogenated polyethylene binders
US3784376A (en) Photoconductive element containing furans, indoles, or thiophenes
US3653887A (en) Novel {60 ,{60 {40 -bis(aminobenzylidene) aryldiacetonitrile photoconductors
US3767393A (en) Alkylaminoaromatic organic photoconductors