US3643459A - Timer-controlled refrigeration system - Google Patents

Timer-controlled refrigeration system Download PDF

Info

Publication number
US3643459A
US3643459A US23913A US3643459DA US3643459A US 3643459 A US3643459 A US 3643459A US 23913 A US23913 A US 23913A US 3643459D A US3643459D A US 3643459DA US 3643459 A US3643459 A US 3643459A
Authority
US
United States
Prior art keywords
valve
operator assembly
cycle
controlling
preselected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US23913A
Inventor
Alan A Matthies
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eaton Corp
Original Assignee
Controls Company of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Controls Company of America filed Critical Controls Company of America
Application granted granted Critical
Publication of US3643459A publication Critical patent/US3643459A/en
Assigned to CONTROLS COMPANY OF AMERICA, 9655 W. SORENG AVENUE, SCHILLER PARK, IL., A CORP. OF DE. reassignment CONTROLS COMPANY OF AMERICA, 9655 W. SORENG AVENUE, SCHILLER PARK, IL., A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SINGER COMPANY, THE
Assigned to EATON CORPORATION, A CORP. OF OH. reassignment EATON CORPORATION, A CORP. OF OH. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CONTROLS COMPANY OF AMERICA
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/355Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by electric heating of bimetal elements, shape memory elements or heat expanding elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • An expansion valve in a refrigeration system has an electrically energized operator assembly which controls the opera- [52] US. Cl ..62/ 157, 62/223, 62/231 fi t t f th valv 011 the basis of the electrical input to the [51] lnLCl ..F25b41/04i operator a embly.
  • This invention relates to refrigeration systems and, more particularly, to such systems as include electrically energized expansion valves.
  • Expansion valves are generally controlled on the basis of a sensed system condition, for example pressure within the system, temperature, or sensing presence of liquid refrigerant in the system.
  • objects of this invention are to provide a simplified and effective refrigeration system the operation of which is controlled on the basis of the predictable characteristics of the installations.
  • a refrigeration system is provided with an electrically energized expan sion valve and the energization of the valve is controlled by a timer mechanism.
  • the timer mechanism is programmed to modulate the valve to supply refrigerant in accordance with the predictable demand on the system. For example, in an environment where the system requires a prescribed pull down to achieve a holding temperature and the holding temperature can then be held by maintaining a relatively constant flow of refrigerant, the timer is programmed to meet these particular demands on the system.
  • This type of arrangement provides, in a relatively simple manner, satisfactory refrigeration system operation.
  • a refrigeration system includes evaporator it), condenser 1l2, compressor M, expansion valve l6, and suitable conduit connecting these elements to form a closed refrigeration system.
  • the system is generally conventional and hence will not be described in any further detail.
  • Expansion valve 16 includes body llli having an internal flow passage communicating with the system conduit.
  • the in ternal flow passage includes inlet 20, outlet 22, and restricted orifice 2d between the inlet and outlet.
  • a needle valve as is supported in a bore 23 and is free to move relative to orifice 24 for controlling the volume of refrigerant flow through the expansion valve to evaporator ill.
  • the expansion valve includes an electrically energized operator assembly contained in upper portion fill of the valve body.
  • the operator assembly includes a temperature sensitive member, a bimetal 32, connected to needle valve 26.
  • An electric heater M is positioned in heat transfer relationship with the bimetal.
  • the heater-bimetal arrangement is illustrated schematically and, for example, the heater may be wrapped on the bimetal. but electrically insulated from the bimetal while still being in heat transfer relationship therewith.
  • the combination heater and bimetal are disposed in chamber as in valve body portion 36'.
  • a suitable sealing arrangement (not shown) can be provided between the needle valve and the bore walls to isolate chamber 36 from refrigerant flow so that the operator assembly is not affected by the refrigerant.
  • the position of needle valve 26 relative to orifice 2-3 is determined by the condition or position of bimetal 32.
  • the bimetal will assume a normal position when cold, for example holding the needle valve closed on orifice 2d, but by energizing heater 341 can be made to bow and move needle valve 26 away from orifice 24 to open the expansion valve to flow.
  • the bimetal is mounted in chamber as in a suitable manner and used with a spring, if necessary, to bias the bimetal and valve toward or away from the cold position.
  • valves of this type be controlled on the basis of some sensed condition within the refrigeration system, for example temperature, pressure, or the presence of refrigerant in a liquid state in the flowing refrigerant.
  • Some sensed condition within the refrigeration system for example temperature, pressure, or the presence of refrigerant in a liquid state in the flowing refrigerant.
  • An example of one type of such controls can be found in US. Pat. No. 3,478,534, of Alan A. lvlatthies assigned to the assignee of this application.
  • the sensed condition was indicative of the load or demand on the system and hence was an accurate and reliable control parameter.
  • these types of control are adequate but they do in some instances result in an undesirable hunt characteristic.
  • the arrangement disclosed in the above-identified patent does have the advantage of generally minimizing this hunt characteristic.
  • the hunt characteristic is introduced into the control system where a sensed condition is being used as the control parame ter because of the necessity to sense the particular condition and then to translate that condition into an operable signal which can be used to vary the valve setting. This also requires continual sensing of the system condition to tell the valve when the necessary condition has been met. With these types of arrangements there is a tendency for the system to hover about the desired point by either overshooting or undershooting that point before it ultimately settles on the desired point, this is the hunt characteristic.
  • the input to the electrically energized operator for an expansion valve can be controlled in a manner to meet the predictable system demand.
  • the refrigeration system can thus be made to operate without control on the basis of any sensed internal or external system condition.
  • the input to heater M is controlled through a variable impedance 38 which is in turn controlled by a suitable timer W.
  • the control circuit for heater 34 also includes the secondary 42 of a transformer M connected to a suitable AC input 416. By varying the position of slider id on impedance 50, the current in heater 341 can be varied.
  • timer ill includes a screw 52 driven by a timer motor 5 2i.
  • Screw 52 has a threaded engagement with slider td and, when the screw is rotated by timer motor 5d, slider db moves either to the right or the left relative to impedance 50 to thereby vary the value of the impedance in the control circuit for heater 34.
  • Timer motor 54 is connected to a suitable timer input 56,
  • timer 40 can be programmed to position slider 48 so as to activate heater 34 sufficiently to open the valve the amount necessary to pulldown to the holding temperature in a particular given time.
  • the demand for cooling during the pulldown cycle may be decreased as the system approaches the holding temperature.
  • the timer can be further programmed to modulate the valve toward a closed position in accordance with this decreasing demand as the system approaches the holding temperature.
  • This arrangement provides effective system operation and with a simplified control arrangement. Furthermore, since the control does not depend on sensing a system condition, the control and system do not experience any hunt.
  • a refrigeration system having a preselected refrigeration cycle and comprising in combination,
  • expansion valve controlling flow of refrigerant to said evaporator, said expansion valve including an electrically energized operator assembly controlling the operative state of said valve to thereby modulate said valve and vary refrigerant flow therethrough,
  • timer means connected in said control circuit and being the sole control for said operator assembly, said timer means controlling the electrical input to said operator assembly and being operative to produce manipulation of said expansion valve to achieve said preselected operational cycle so that said refrigeration system is operated through said preselected refrigeration cycle under the sole control of said timer means.
  • a refrigeration installation having a holding cycle during which said installation exhibits predictable heat loss and having a predictable pulldown cycle to arrive at said holding cycle, said system including an evaporator,
  • an operator assembly operative on the basis of an electrical input and connected to and controlling the operative state of said valve to modulate said valve and refrigerant flow therethrough,
  • timer means connected in said control circuit and being the sole control for said operator assembly, said timer means operative to control the electrical input to said operator assembly to manipulate said valve to provide said pulldown and holding cycles.
  • a refrigeration system having a preselected refrigeration cycle and comprising in combination
  • expansion valve controlling flow of refrigerant to said evaporator, said expansion valve including an electrically energized operator assembly controlling the operative state of said valve to thereby modulate said valve and vary refrigerant flow therethrough,
  • said operator assembly including a temperature responsive member and an electrical heater in heat transfer relation with said temperature responsive member
  • control circuit including variable circuit means in circuit with and operable upon adjustment thereof to vary the electrical input to said heater,
  • timer means connected to and controlling said variable circuit means to control the electrical input to said operator assembly, said timer means operative to produce manipulation of said expansion valve to achieve said preselected operational cycle so that said refrigeration system is operated through said preselected refrigeration cycle under the control of said timer means.
  • a refrigeration system having a preselected refrigeration cycle and comprising in combination
  • expansion valve controlling flow of refrigerant to said evaporator, said expansion valve including an electrically energized operator assembly controlling the operative state of said valve to thereby modulate said valve and vary refrigerant flow therethrough,
  • timer means connected in said control circuit and controlling the electrical input to said operator assembly, said timer means operative to produce manipulation of said expansion valve to achieve said preselected operational cycle so that said refrigeration system is operated through said preselected refrigeration cycle under the control of said timer means,
  • timer means being operative to vary the input to said operator assembly during a pulldown portion of said cycle to modulate said valve to gradually reduce flow of refrigerant through said valve and to maintain a valve position for a holding portion of said cycle to maintain a preselected generally constant condition of said refrigerant system.
  • control circuit includes variable circuit means in circuit with and operable upon adjustment thereof to vary the electrical input to said heater,
  • a refrigeration installation having a holding cycle during which said installation exhibits predictable heat loss and having a predictable pulldown cycle to arrive at said holding cycle, said system including an evaporator,
  • an expansion valve connected to and controlling flow of refrigerant to said evaporator
  • timer means connected in said control circuit and operative to control the electrical input to said operator assembly to manipulate said valve to provide said pulldown and holding cycles, said timer means modulating said valve to gradually reduce the refrigerant flow at a preselected rate during said pulldown cycle as said installation progresses through said pulldown cycle toward said

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

An expansion valve in a refrigeration system has an electrically energized operator assembly which controls the operative state of the valve on the basis of the electrical input to the operator assembly. The electrical input to the operator assembly is timer controlled and the system is taken through a preselected refrigeration cycle under control of the timer.

Description

11; aim
[151 miwn sa Matthies 51 lFeh. 22,, W72
[54] TlMER-UDNTROLLEB 3,324,674 6/1967 Finnegan ..62/223 REFRHQERATHUN gYSTEM 2,095,834 10/1937 Rodman ..62/ I57 [72] Inventor: Alan A. Matthias, Milwaukee, Wis. Primary Examiner-Meyer Perlin Attorney-John W. Michael, Gerrit 1D. Foster, Bayard H. [73] Asslgnee' E232 Campmy M Ammw Melrose Michael, Paul R. Puerner, Joseph A. Gemignani, Andrew 0.
Riteris, Daniel Van Dyke and Spencer B. Michael [22] Filed: r. 30, 1970 57 r WSTRACT [21] Appl. No.: 23,9l3 1 An expansion valve in a refrigeration system has an electrically energized operator assembly which controls the opera- [52] US. Cl ..62/ 157, 62/223, 62/231 fi t t f th valv 011 the basis of the electrical input to the [51] lnLCl ..F25b41/04i operator a embly. The electrical input to the operator as- [58] Field of Search ..62/157, 158, 231, 222, 223 sembly is timer controlled and the system is taken through a preselected refrigeration cycle under control of the timer. [56] References Cited 8 Claims, 11 Drawing Figure UNITED STATES PATENTS I 3,537,272 11/1970 Hales ..62/l57 l 1 W J0 1% 71/\?O M /@e @z a Z fl APoe/rroe, z Z2 Canoe/wa e,
TIlMlEIlt-CONTRULLED lltlllll ttlGlElltA'llllON SYSTEM This invention relates to refrigeration systems and, more particularly, to such systems as include electrically energized expansion valves.
Expansion valves are generally controlled on the basis of a sensed system condition, for example pressure within the system, temperature, or sensing presence of liquid refrigerant in the system.
it has been observed that some refrigeration installations exhibit predictable operating characteristics. That is, the amount of heat loss and/or the requisite pull down to reach a particular operation level can be predicted and, correspondingly the refrigerant flow in the system necessary to fulfill these requirements can be predicted.
In accordance with this invention, this observation and electrically energized expansion valves are combined to achieve an effective and simplified refrigeration system which will provide efficient operation in these predictable environments.
Accordingly, among the genera] objects of this invention are to provide a simplified and effective refrigeration system the operation of which is controlled on the basis of the predictable characteristics of the installations.
For the achievement of these and other objects, a refrigeration system is provided with an electrically energized expan sion valve and the energization of the valve is controlled by a timer mechanism. The timer mechanism is programmed to modulate the valve to supply refrigerant in accordance with the predictable demand on the system. For example, in an environment where the system requires a prescribed pull down to achieve a holding temperature and the holding temperature can then be held by maintaining a relatively constant flow of refrigerant, the timer is programmed to meet these particular demands on the system. This type of arrangement provides, in a relatively simple manner, satisfactory refrigeration system operation.
Other objects and advantages will be pointed out in, or be apparent from, the specification and claims, as will be obvious modifications of the embodiment shown in the drawing, which is a generally schematic illustration of a system in accordance with this invention.
With particular reference to the drawing, a refrigeration system includes evaporator it), condenser 1l2, compressor M, expansion valve l6, and suitable conduit connecting these elements to form a closed refrigeration system. The system is generally conventional and hence will not be described in any further detail.
Expansion valve 16 includes body llli having an internal flow passage communicating with the system conduit. The in ternal flow passage includes inlet 20, outlet 22, and restricted orifice 2d between the inlet and outlet. A needle valve as is supported in a bore 23 and is free to move relative to orifice 24 for controlling the volume of refrigerant flow through the expansion valve to evaporator ill.
The expansion valve includes an electrically energized operator assembly contained in upper portion fill of the valve body. Structurally, the operator assembly includes a temperature sensitive member, a bimetal 32, connected to needle valve 26. An electric heater M is positioned in heat transfer relationship with the bimetal. The heater-bimetal arrangement is illustrated schematically and, for example, the heater may be wrapped on the bimetal. but electrically insulated from the bimetal while still being in heat transfer relationship therewith. The combination heater and bimetal are disposed in chamber as in valve body portion 36'. A suitable sealing arrangement (not shown) can be provided between the needle valve and the bore walls to isolate chamber 36 from refrigerant flow so that the operator assembly is not affected by the refrigerant.
With this type of electric expansion valve, the position of needle valve 26 relative to orifice 2-3 is determined by the condition or position of bimetal 32. Only a general description of the operator assembly is necessary to an understanding of the invention and for that reason it will not be described in detail. The bimetal will assume a normal position when cold, for example holding the needle valve closed on orifice 2d, but by energizing heater 341 can be made to bow and move needle valve 26 away from orifice 24 to open the expansion valve to flow. By varying the amount of current in heater 2 1 the operative state of the bimetal and correspondingly the position of the needle valve relative to the orifice can be varied precisely. it will be appreciated that the bimetal is mounted in chamber as in a suitable manner and used with a spring, if necessary, to bias the bimetal and valve toward or away from the cold position.
It has been proposed that valves of this type be controlled on the basis of some sensed condition within the refrigeration system, for example temperature, pressure, or the presence of refrigerant in a liquid state in the flowing refrigerant. An example of one type of such controls can be found in US. Pat. No. 3,478,534, of Alan A. lvlatthies assigned to the assignee of this application. in these types of prior control, it was generally assumed that the sensed condition was indicative of the load or demand on the system and hence was an accurate and reliable control parameter. For many applications these types of control are adequate but they do in some instances result in an undesirable hunt characteristic. The arrangement disclosed in the above-identified patent, however, does have the advantage of generally minimizing this hunt characteristic. The hunt characteristic is introduced into the control system where a sensed condition is being used as the control parame ter because of the necessity to sense the particular condition and then to translate that condition into an operable signal which can be used to vary the valve setting. This also requires continual sensing of the system condition to tell the valve when the necessary condition has been met. With these types of arrangements there is a tendency for the system to hover about the desired point by either overshooting or undershooting that point before it ultimately settles on the desired point, this is the hunt characteristic.
in many refrigeration applications it has been observed that in a particular environment the system will experience a pre dictable amount of heat loss when being held at a constant or desired temperature level (holding temperature); and, furthermore, that a predictable amount of heat energy must he removed by the system to bring the system down to the holding temperature. An example of such an application is a refrigerated storage room or cooler. The cooler must be brought down to a given holding temperature and the amount of heat to be removed can be readily predicted and calculated. Once at the holding temperature, the cooler will experience a predictable amount of heat loss in a given environment. The cooler may be periodically defrosted but the above pulldown and holding cycles will always be repeated. Other examples of applications of this type are refrigerated trucks or railroad cars, food display cases, and ice cube makers.
Having observed these predictable operating characteristics in certain types of refrigeration installations, it was further discovered that the input to the electrically energized operator for an expansion valve, such as valve to, can be controlled in a manner to meet the predictable system demand. The refrigeration system can thus be made to operate without control on the basis of any sensed internal or external system condition. With this end in mind, the input to heater M is controlled through a variable impedance 38 which is in turn controlled by a suitable timer W. In addition to the timer and impedance 38, the control circuit for heater 34 also includes the secondary 42 of a transformer M connected to a suitable AC input 416. By varying the position of slider id on impedance 50, the current in heater 341 can be varied.
The details of construction of timer it)? and its connection to slider 4i} are not necessary to a complete understanding of this invention and, accordingly, the timer and its connection have been shown in a generally schematic manner. As schematically illustrated, timer ill includes a screw 52 driven by a timer motor 5 2i. Screw 52 has a threaded engagement with slider td and, when the screw is rotated by timer motor 5d, slider db moves either to the right or the left relative to impedance 50 to thereby vary the value of the impedance in the control circuit for heater 34. Timer motor 54 is connected to a suitable timer input 56,
in a typical refrigeration installation and assuming a pulldown to a holding temperature and subsequent maintenance of the system in a condition to maintain that holding temperature, heater 34 is activated to bow bimetal 32 and open valve 16 to flow. Timer 40 can be programmed to position slider 48 so as to activate heater 34 sufficiently to open the valve the amount necessary to pulldown to the holding temperature in a particular given time. At this point it should be noted that in some installations the demand for cooling during the pulldown cycle may be decreased as the system approaches the holding temperature. In that type of installation the timer can be further programmed to modulate the valve toward a closed position in accordance with this decreasing demand as the system approaches the holding temperature. This is accomplished by moving slider 48 relative to impedance 50 to decrease the current in or input to heater 34 in accordance with the decrease in system demand. When the desired holding temperature is reached, the amount of heat loss which the installation will experience in a given ambient can be pre dicted and the timer programmed to set needle valve 26 at that position which will provide sufficient refrigerant flow to meet that heat loss. Again, the needle valve is positioned by locating slider 48 on impedance 50 at that point which establishes the energization of heater 34 necessary to provide the required holding position of needle valve 26 relative to orifice 24. It is also possible to program the timer to meet a varying demand during the holding cycle.
This arrangement provides effective system operation and with a simplified control arrangement. Furthermore, since the control does not depend on sensing a system condition, the control and system do not experience any hunt.
Although but one embodiment of the present invention has been illustrated and described, it will be apparent to those skilled in the art that various changes and modifications may be made therein without departing from the spirit of the invention or from the scope of the appended claims.
Iclaim:
l. A refrigeration system having a preselected refrigeration cycle and comprising in combination,
an evaporator,
an expansion valve controlling flow of refrigerant to said evaporator, said expansion valve including an electrically energized operator assembly controlling the operative state of said valve to thereby modulate said valve and vary refrigerant flow therethrough,
means defining an electrical control circuit connected to and controlling the operative state of said operator assembly,
and timer means connected in said control circuit and being the sole control for said operator assembly, said timer means controlling the electrical input to said operator assembly and being operative to produce manipulation of said expansion valve to achieve said preselected operational cycle so that said refrigeration system is operated through said preselected refrigeration cycle under the sole control of said timer means.
2. A refrigeration installation having a holding cycle during which said installation exhibits predictable heat loss and having a predictable pulldown cycle to arrive at said holding cycle, said system including an evaporator,
an expansion valve connected to and controlling fiow of refrigerant to said evaporator,
an operator assembly operative on the basis of an electrical input and connected to and controlling the operative state of said valve to modulate said valve and refrigerant flow therethrough,
means defining an electrical control circuit connected to said operator assembly and providing the electrical input thereto,
and timer means connected in said control circuit and being the sole control for said operator assembly, said timer means operative to control the electrical input to said operator assembly to manipulate said valve to provide said pulldown and holding cycles.
3. A refrigeration system having a preselected refrigeration cycle and comprising in combination,
an evaporator,
an expansion valve controlling flow of refrigerant to said evaporator, said expansion valve including an electrically energized operator assembly controlling the operative state of said valve to thereby modulate said valve and vary refrigerant flow therethrough,
said operator assembly including a temperature responsive member and an electrical heater in heat transfer relation with said temperature responsive member,
means defining an electrical control circuit connected to and controlling the operative state of said operator assembly,
said control circuit including variable circuit means in circuit with and operable upon adjustment thereof to vary the electrical input to said heater,
and timer means connected to and controlling said variable circuit means to control the electrical input to said operator assembly, said timer means operative to produce manipulation of said expansion valve to achieve said preselected operational cycle so that said refrigeration system is operated through said preselected refrigeration cycle under the control of said timer means.
4. A refrigeration system having a preselected refrigeration cycle and comprising in combination,
an evaporator,
an expansion valve controlling flow of refrigerant to said evaporator, said expansion valve including an electrically energized operator assembly controlling the operative state of said valve to thereby modulate said valve and vary refrigerant flow therethrough,
means defining an electrical control circuit connected to and controlling the operative state of said operator assembly,
and timer means connected in said control circuit and controlling the electrical input to said operator assembly, said timer means operative to produce manipulation of said expansion valve to achieve said preselected operational cycle so that said refrigeration system is operated through said preselected refrigeration cycle under the control of said timer means,
said timer means being operative to vary the input to said operator assembly during a pulldown portion of said cycle to modulate said valve to gradually reduce flow of refrigerant through said valve and to maintain a valve position for a holding portion of said cycle to maintain a preselected generally constant condition of said refrigerant system.
5. The system of claim 4 wherein said operator assembly includes a temperature responsive member and an electrical heater in heat transfer relation with said temperature responsive member,
said control circuit includes variable circuit means in circuit with and operable upon adjustment thereof to vary the electrical input to said heater,
and said timer means connected to and controlling said variable circuit means.
6. The system of claim 5 wherein said circuit means comprises a variable resistance.
7 A refrigeration installation having a holding cycle during which said installation exhibits predictable heat loss and having a predictable pulldown cycle to arrive at said holding cycle, said system including an evaporator,
an expansion valve connected to and controlling flow of refrigerant to said evaporator,
un 1A an operator assembly operative on the basis of an electrical input and connected to and controlling the operative state of said valve to modulate said valve and refrigerant flow therethrough,
means defining an electrical control circuit connected to said operator assembly and providing the electrical input thereto,
and timer means connected in said control circuit and operative to control the electrical input to said operator assembly to manipulate said valve to provide said pulldown and holding cycles, said timer means modulating said valve to gradually reduce the refrigerant flow at a preselected rate during said pulldown cycle as said installation progresses through said pulldown cycle toward said

Claims (8)

1. A refrigeration system having a preselected refrigeration cycle and comprising in combination, an evaporator, an expansion valve controlling flow of refrigerant to said evaporator, said expansion valve including an electrically eneRgized operator assembly controlling the operative state of said valve to thereby modulate said valve and vary refrigerant flow therethrough, means defining an electrical control circuit connected to and controlling the operative state of said operator assembly, and timer means connected in said control circuit and being the sole control for said operator assembly, said timer means controlling the electrical input to said operator assembly and being operative to produce manipulation of said expansion valve to achieve said preselected operational cycle so that said refrigeration system is operated through said preselected refrigeration cycle under the sole control of said timer means.
2. A refrigeration installation having a holding cycle during which said installation exhibits predictable heat loss and having a predictable pulldown cycle to arrive at said holding cycle, said system including an evaporator, an expansion valve connected to and controlling flow of refrigerant to said evaporator, an operator assembly operative on the basis of an electrical input and connected to and controlling the operative state of said valve to modulate said valve and refrigerant flow therethrough, means defining an electrical control circuit connected to said operator assembly and providing the electrical input thereto, and timer means connected in said control circuit and being the sole control for said operator assembly, said timer means operative to control the electrical input to said operator assembly to manipulate said valve to provide said pulldown and holding cycles.
3. A refrigeration system having a preselected refrigeration cycle and comprising in combination, an evaporator, an expansion valve controlling flow of refrigerant to said evaporator, said expansion valve including an electrically energized operator assembly controlling the operative state of said valve to thereby modulate said valve and vary refrigerant flow therethrough, said operator assembly including a temperature responsive member and an electrical heater in heat transfer relation with said temperature responsive member, means defining an electrical control circuit connected to and controlling the operative state of said operator assembly, said control circuit including variable circuit means in circuit with and operable upon adjustment thereof to vary the electrical input to said heater, and timer means connected to and controlling said variable circuit means to control the electrical input to said operator assembly, said timer means operative to produce manipulation of said expansion valve to achieve said preselected operational cycle so that said refrigeration system is operated through said preselected refrigeration cycle under the control of said timer means.
4. A refrigeration system having a preselected refrigeration cycle and comprising in combination, an evaporator, an expansion valve controlling flow of refrigerant to said evaporator, said expansion valve including an electrically energized operator assembly controlling the operative state of said valve to thereby modulate said valve and vary refrigerant flow therethrough, means defining an electrical control circuit connected to and controlling the operative state of said operator assembly, and timer means connected in said control circuit and controlling the electrical input to said operator assembly, said timer means operative to produce manipulation of said expansion valve to achieve said preselected operational cycle so that said refrigeration system is operated through said preselected refrigeration cycle under the control of said timer means, said timer means being operative to vary the input to said operator assembly during a pulldown portion of said cycle to modulate said valve to gradually reduce flow of refrigerant through said valve and to maintain a valve position for a holding portion of said cycle to maintain a preselected generally constant coNdition of said refrigerant system.
5. The system of claim 4 wherein said operator assembly includes a temperature responsive member and an electrical heater in heat transfer relation with said temperature responsive member, said control circuit includes variable circuit means in circuit with and operable upon adjustment thereof to vary the electrical input to said heater, and said timer means connected to and controlling said variable circuit means.
6. The system of claim 5 wherein said circuit means comprises a variable resistance.
7. A refrigeration installation having a holding cycle during which said installation exhibits predictable heat loss and having a predictable pulldown cycle to arrive at said holding cycle, said system including an evaporator, an expansion valve connected to and controlling flow of refrigerant to said evaporator, an operator assembly operative on the basis of an electrical input and connected to and controlling the operative state of said valve to modulate said valve and refrigerant flow therethrough, means defining an electrical control circuit connected to said operator assembly and providing the electrical input thereto, and timer means connected in said control circuit and operative to control the electrical input to said operator assembly to manipulate said valve to provide said pulldown and holding cycles, said timer means modulating said valve to gradually reduce the refrigerant flow at a preselected rate during said pulldown cycle as said installation progresses through said pulldown cycle toward said holding cycle and maintaining, during said holding cycle, a relatively constant operative state of said valve and constant flow through said valve at a preselected rate corresponding to said heat loss.
8. The system of claim 7 wherein said operator assembly includes a temperature responsive member and an electrical heater in heat transfer relation with said temperature responsive member, said control circuit includes variable circuit means in circuit with and operable upon adjustment thereof to vary the electrical input to said heater, and said timer means connected to and controlling said variable circuit means.
US23913A 1970-03-30 1970-03-30 Timer-controlled refrigeration system Expired - Lifetime US3643459A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US2391370A 1970-03-30 1970-03-30

Publications (1)

Publication Number Publication Date
US3643459A true US3643459A (en) 1972-02-22

Family

ID=21817888

Family Applications (1)

Application Number Title Priority Date Filing Date
US23913A Expired - Lifetime US3643459A (en) 1970-03-30 1970-03-30 Timer-controlled refrigeration system

Country Status (1)

Country Link
US (1) US3643459A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5682756A (en) * 1996-06-21 1997-11-04 Lehmiller; Robert G. Apparatus and method for controlling the operation of a refrigeration system
US6009838A (en) * 1998-06-29 2000-01-04 Carver; Jae Hibernation enclosure for reptiles
US20070017237A1 (en) * 2005-07-19 2007-01-25 Rieck David A Air conditioner compressor bypass
US10012418B1 (en) 2014-10-08 2018-07-03 Felix Storch, Inc. Eliminating compressor-generated noise within a predetermined interval during operation of a refrigeration system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2095834A (en) * 1935-05-31 1937-10-12 John B Tanner Refrigerating apparatus
US3324674A (en) * 1966-01-03 1967-06-13 Texas Instruments Inc Refrigeration control apparatus
US3537272A (en) * 1968-08-22 1970-11-03 Hall Thermotank Intern Ltd Expansion valve control including plural sensors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2095834A (en) * 1935-05-31 1937-10-12 John B Tanner Refrigerating apparatus
US3324674A (en) * 1966-01-03 1967-06-13 Texas Instruments Inc Refrigeration control apparatus
US3537272A (en) * 1968-08-22 1970-11-03 Hall Thermotank Intern Ltd Expansion valve control including plural sensors

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5682756A (en) * 1996-06-21 1997-11-04 Lehmiller; Robert G. Apparatus and method for controlling the operation of a refrigeration system
WO1997048955A1 (en) * 1996-06-21 1997-12-24 Lehmiller Robert G Apparatus and method for controlling the operation of a refrigeration system
US6009838A (en) * 1998-06-29 2000-01-04 Carver; Jae Hibernation enclosure for reptiles
US20070017237A1 (en) * 2005-07-19 2007-01-25 Rieck David A Air conditioner compressor bypass
US10012418B1 (en) 2014-10-08 2018-07-03 Felix Storch, Inc. Eliminating compressor-generated noise within a predetermined interval during operation of a refrigeration system

Similar Documents

Publication Publication Date Title
US3349840A (en) Fluid flow control apparatus
US4120173A (en) Head pressure control system for refrigeration apparatus
US3786648A (en) Cooling system with multiple evaporators
US2001028A (en) Defrosting system
US3359749A (en) Differential control device
US3125867A (en) Refrigeration system connector apparatus
US2372307A (en) Temperature control
US3643459A (en) Timer-controlled refrigeration system
US2781979A (en) Thermo-magnetic refrigerant valve
US2471137A (en) Two-temperature refrigerating system
US3735603A (en) Liquid refrigerant feed control
US2722108A (en) Refrigeration control service
US2081883A (en) Refrigerating apparatus
US2504435A (en) System for controlling refrigeration
US2969959A (en) Refrigerating apparatus
US3205675A (en) Valve with bimetal means for refrigeration system
US2453439A (en) Refrigeration control system
US2047827A (en) Control mechanism
US2299404A (en) Automatically operated valve
US3350896A (en) Multiple evaporator refrigeration systems
US3637005A (en) Refrigeration defrost system with constant pressure heated receiver
US2237261A (en) Refrigeration control system
US2322714A (en) Refrigerating apparatus
US2769312A (en) Refrigerant expansion control
US2001027A (en) Defrosting system

Legal Events

Date Code Title Description
AS Assignment

Owner name: CONTROLS COMPANY OF AMERICA, 9655 W. SORENG AVENUE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SINGER COMPANY, THE;REEL/FRAME:004505/0515

Effective date: 19860110

AS Assignment

Owner name: EATON CORPORATION, EATON CENTER, 1111 SUPERIOR AVE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CONTROLS COMPANY OF AMERICA;REEL/FRAME:004614/0433

Effective date: 19861002