US3641325A - Method of computer control of rolling mills - Google Patents

Method of computer control of rolling mills Download PDF

Info

Publication number
US3641325A
US3641325A US12775A US3641325DA US3641325A US 3641325 A US3641325 A US 3641325A US 12775 A US12775 A US 12775A US 3641325D A US3641325D A US 3641325DA US 3641325 A US3641325 A US 3641325A
Authority
US
United States
Prior art keywords
rolling mill
rolling
mill
stands
control signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US12775A
Inventor
Tohru Arimura
Masamoto Kamata
Masaru Okado
Takarokuro Ichimaru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Application granted granted Critical
Publication of US3641325A publication Critical patent/US3641325A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/48Analogue computers for specific processes, systems or devices, e.g. simulators
    • G06G7/64Analogue computers for specific processes, systems or devices, e.g. simulators for non-electric machines, e.g. turbine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions

Definitions

  • a curve representing the power required for reducing steel stock from a blank to the desired gauge is plotted by utilizing rolling data to suitably distribute the driving power to respective stands of a tandem rolling mill with due consideration of the capacity of the. driving motors of respective stands.
  • the output plate gauge of each stand is then determined from a power curve depicted in FIG. 1. Once the gauge is determined, the volume feed rate as well as the rolling speed of each stand can be determined under a fixed condition, and the rolling load can be calculated from the gauge and the speed.
  • This prior art method is characterized in that, when programming a proper schedule for each gauge rolled by the rolling mill, the rolling load, the driving power, gauge at each stand, rolling speed, etc., can be obtained in terms of their absolute values.
  • the rolling load, the driving power, gauge at each stand, rolling speed, etc. can be obtained in terms of their absolute values.
  • computing equations are very complicated.
  • the accuracy of the operation can not be assured using the prior art method.
  • Another object of this invention is to provide an improved computer control method of a rolling mill which can not only preset the mill to produce the desired product but also dynamically correct the preset values during operation.
  • the above-mentioned objects can be accomplished by providing a novel computer method wherein various operating parameters of the mill are respectively divided into a number of groups (or ranges), and the deviation of a parameter from the mean value in each group (or range) corresponding to that parameter is utilized to correct the operation of the rolling mill.
  • the deviation is com- LII puted in accordance with linear equations to increase the accuracy and speed of calculation.
  • FIG. 1 shows a plot of a power curve to explain a conventional method of determining the plate gauge at the exit of each mill stand
  • FIG. 2 is a diagram of a six-stand tandem hot mill employed to carry out this invention.
  • FIG. 2 there is shown a six-stand hot 'tandem mill comprising a final roughening rolling mill 12, a load cell 2 mounted on the roughening rolling mill 12, a temperature measuring device 13 and a series of finishing mill stands 5 including six stands 6 through 11.
  • a computer shown generally at 14 receives data from load cell 2 and from temperature-measuring device 13 operates on this data and controls the screw down of stands 6-1 1 via screw down controller 15. The computer controls the speed of the rolls at stands 6-11 via a speed controller 16.
  • the roll gap and roll speed of each stand should be set first.
  • the setting of the roll gap is determined dependent upon the plate gauge, the rolling load and stiffness of particular mill stand.
  • the roll speed can be determined from a condition that volume feed rate is constant.
  • these parameters are determined in the following manner.
  • equation (7) gives the plate gauge at each stand and equation (10) gives the rolling load at each stand.
  • the mill stiffness is determined by experiment or theoretical calculation as a function of the width of the material
  • this invention is characterized in that both the set values of the roll gap Sr, and roll speed V are obtained by adding linear correction values caused by minute changes (Ah AT AC etc.) to mean values (Sr V so that even when the record of the correction factor (a,,,,-) is not absolutely correct, the schedule finally obtained is extremely accurate.
  • the following diagram illustrates a flow chart of calculating and controlling a rolling mill when the invention is actually applied to preset the same.
  • FIG. 2 shows a computer connected in a mill.
  • Product specifications h T and B are fed into the computer 14 and the computer 14 calculates the nearest possible mean value (h 'Tr- 'P -i'V 'HP 'G B to 1116 said specification, and derives x -01 from out of a memory device therein.
  • the computer calculates first Ah -AC- -AT -b by equations (3) to (ol and computes the values of h -T -Pi-HP -M by equations (7) to (12).
  • this invention is also applicable to the dynamic control for correcting the error of the preset during the rolling operation.
  • One such application to the rolling mill shown in FIG. 2 is as follows.
  • Sr is computed by equation (13).
  • the computer further checks that these values obtained are within the range of the mill capacity and presets the screw downs and the roll speed of the each stand by means of controllers l5 and 16, respectively.
  • the temperature and the gauge of the plate at the exit of the roughening mill 12 are measured directly or indirectly by a suitable gauge meter (not shown) and the thermometer 13 shown in FIG. 2. Further. the rolling load of the final stand of the roughening mill 12 is measured by the load cell 2.
  • the plate gauge at the exit of roughening mill 12 can also he calculated from the output from load cell 2 according to equation 1 in which case, the equation is modified as follows.
  • equations (20) and (21) give the correction value for the preset value so that it is possible to calculate and control the deviation from the mean value by a linear correction.
  • Dynamic change in the preset is effected when the leading end of the material arrives at a point 4 shown in FIG. 2 to the calculation and control of the dynamic control is performed by means of a computer coupled to the roll stands to adjust same in accordance with the correction signals derived as above.
  • the actual control of the roll stands by the output signals from the computer may be implemented by one ordinarily skilled in the steel making and processing art.
  • the computer is also coupled to load cell 2, to thennometer 13 and to a gauge meter (not shown) at the output of toughening mill 12.
  • the invention can be applied to computer control of various mills such as a blooming mill, slab mill, cold tandem mill, cold reversible mill, tamper mill and the like. Further, since all controls are performed in accordance with primary equations, it is possible to perform the calculations in a short period of time so that the invention is most suitable for an online computer control.
  • the mean value (reference value) of each group or range of values for respective operating parameters of the rolling mill is calculated in accordance with simpleprimary equations to correct deviations alone so that control of the rolling mill is provided at high accuracies.
  • a method of controlling a plural stand rolling mill by means of a computer comprising:
  • correction factors predetermining and storing in a storage means a plurality of correction factors, the correction factors being stored as a function of the desired characteristics of the output of said rolling mill and as a function of the properties of the input material to said rolling mill;
  • control signals are calculated and applied to said stands prior to feeding in of the input material, thereby presetting said rolling mill to obtain a predetermined output product for a given input material.
  • control signals are further calculated and applied to said stands during operation of said rolling mill to dynamically vary said preset values.
  • said operating parameters of said rolling mill comprise plate gauge, temperature of the 5 material, rolling load, mill stiffness and roll gap.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Metal Rolling (AREA)
  • Sheets, Magazines, And Separation Thereof (AREA)
  • Control By Computers (AREA)

Abstract

In a method of computer control of a rolling mill, various operating parameters thereof are divided into a number of groups, the mean value of each group is determined and deviations of the parameters from the respective mean value are corrected in accordance with linear equations.

Description

United States Patent Arimura et al.
[ 5] Feb. 8, 1972 [54] METHOD OF COMPUTER CONTROL OF ROLLING MILLS [73] Assignee: Nippon Kokan Kabushiki Kaisha, Tokyo,
Japan 221 Filed: Feb. 19, 1970 [21] AppL No.: 12,775
Schurr et al.., ..235/1Sl.ll X
3,169,424 2/l965 Branscom et al. ...235/151.11 x 3,204,440 9/1965 Thompson", ...235/151.11 x
3,248,9l6 5/1966 Kenyon et al. ..235/151.11 ux OTHER PUBLICATIONS Determination of A Mathematical Model for Rolling Mill Controlff: Schultz etal 1 7211 and Steel Engineer-May- Theoretical Aspects of Hot Mill Automation-Mc- Kenzie Steel international January 1968.
[30] Foreign Application Priority Data Pnmary ExammerJoseph F. Rugg1ero Feb. 2l, 1969 Japan ..44/1257l Atmmey flynn & F i h f [52] US. Cl ..235/l51.l, 72/8 TI [51] ..G05d 5/02, B21b 37/12 [57] ABS CT Field 0f Search ..235/15l.1, 151.11, 151, 150.1, In a method of computer control of a rolling mill, various 235/150; 72/8, 28, 29 operating parameters thereof are divided into a number of groups, the mean value of each group is determined and devia- [56] References cued tions of the parameters from the respective mean value are UNITED STATES PATENTS corrected in accordance with linear equations.
3,096,670 7/ 1963 Stringer ..235/l5 I .11 X 8 Claims, 2 Drawing Figures 3,478,551 l1/l969 Alsop ..72/8 3,015,974 1/1962 Orborr1 e t al .,.,..23 5 151.11 x 4 C 0 MP U TER 5 L L SCREW DOWN CONTROLLER I 6 9 10 ll (5 POSITION i 12 ROLL SPEED CONTROLLER METHOD OF COMPUTER CONTROL OF ROLLING MILLS BACKGROUND OF THE INVENTION This invention relates to a method of computer control of a rolling mill wherein operating parameters thereof are divided into a number of groups (or ranges) and the derivation of the parameter from a mean value in each group (or range) is corrected by primary equations, thus providing a rapid and accurate control of the rolling mill.
Heretofore, a method of controlling a rolling mill, according to a power curve, has been generally used.
According to this prior art method, a curve representing the power required for reducing steel stock from a blank to the desired gauge is plotted by utilizing rolling data to suitably distribute the driving power to respective stands of a tandem rolling mill with due consideration of the capacity of the. driving motors of respective stands. After distributing the driving powder among various stands in this manner, the output plate gauge of each stand is then determined from a power curve depicted in FIG. 1. Once the gauge is determined, the volume feed rate as well as the rolling speed of each stand can be determined under a fixed condition, and the rolling load can be calculated from the gauge and the speed. Thus, for example, by denoting a set value of a roll gap by Sr, the output gauge of the plate by h, the rolling load by P, stiffness of the mill by M (a proportionally constant representing the proportion of the increase in the roll gap caused by the rolling load, where the rolling mill is assumed to comprise a spring system), the set value of the down screw of each stand can be expressed by an equation Sr=h-P/ M Thus, it is possible to determine the set value of the roll gap of each stand by subtracting the increment in the roll gap from the output gauge.
This prior art method is characterized in that, when programming a proper schedule for each gauge rolled by the rolling mill, the rolling load, the driving power, gauge at each stand, rolling speed, etc., can be obtained in terms of their absolute values. However, as it is necessary to individually determine absolute values of the roll gap and roll speed for each one of different gauges, computing equations are very complicated. On the other hand, with simplified equations the accuracy of the operation can not be assured using the prior art method.
In addition to the power curve method described above, various methods have been proposed. In any one of these prior methods, absolute values of the rolling power and rolling load are independently determined for each size of the product in order to determine required set values of a rolling mill.
In this manner, accurate and complicated calculations are required for conventional methods because according to them, absolute values of the rolling power and driving power are required. Accordingly, online calculations are also extremely complicated.
SUMMARY OF THE INVENTION It is, therefore, an object of this invention to provide a novel method of computer control of a rolling mill which can readily and quickly maintain the operating parameters of the rolling mill in accordance with linear equations without the necessity of complicated calculations.
Another object of this invention is to provide an improved computer control method of a rolling mill which can not only preset the mill to produce the desired product but also dynamically correct the preset values during operation.
According to this invention, the above-mentioned objects can be accomplished by providing a novel computer method wherein various operating parameters of the mill are respectively divided into a number of groups (or ranges), and the deviation of a parameter from the mean value in each group (or range) corresponding to that parameter is utilized to correct the operation of the rolling mill. The deviation is com- LII puted in accordance with linear equations to increase the accuracy and speed of calculation.
BRIEF DESCRIPTION OF THE DRAWING This invention can be more fully understood from the following detailed description taken in conjunction with the accompanying drawing in which:
FIG. 1 shows a plot of a power curve to explain a conventional method of determining the plate gauge at the exit of each mill stand, and
FIG. 2 is a diagram of a six-stand tandem hot mill employed to carry out this invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to FIG. 2, there is shown a six-stand hot 'tandem mill comprising a final roughening rolling mill 12, a load cell 2 mounted on the roughening rolling mill 12, a temperature measuring device 13 and a series of finishing mill stands 5 including six stands 6 through 11. A computer shown generally at 14 receives data from load cell 2 and from temperature-measuring device 13 operates on this data and controls the screw down of stands 6-1 1 via screw down controller 15. The computer controls the speed of the rolls at stands 6-11 via a speed controller 16.
When presetting a rolling mill, the roll gap and roll speed of each stand should be set first. The setting of the roll gap is determined dependent upon the plate gauge, the rolling load and stiffness of particular mill stand.
Denoting the plate gauge at the exit between rolls by h, the stand number of the finishing mill by i, set value of the roll gap by Sr, rolling load by P and the stiffness of the mill by M, the following relation holds.
The roll speed can be determined from a condition that volume feed rate is constant. Thus,
i F (2) where v represents the speed of the material and U the volume feed rate.
As can be understood from equations 1 and 2, in order to determine operating parameters of a rolling mill, it is necessary to determine the plate gauge, rolling load and the stiffness of each mill stand.
In accordance with this invention, these parameters are determined in the following manner.
Assuming a gauge of the product of h,, the following mean values are specified to obtain a gauge close to the set value.
l'late gauge at respective stands h i=l Load at respective stands P, i=l -6 Temperature at respective stands 'l' i=l-6 Roll speed at respective stands V i=l6 Set gap at respective stands Sr i=l6 Power for respective stands HP i=l-6 Mean width of the plate 8,, Carbon equivalent of compounds contributing to mean resistance for deformation of the material (C CTR Mill stiffness. a function of the width of the material M=M (B) Thickness of the finished product h. Carbon equivalent of the finished product C Finishing temperature T, Width of the material 8 Then, deviations from these mean values are: F rF ks (3) AC =Cr-C 4 (S) b=B/B 0 Although it is necessary to vary the rolling schedule of respective stands according to these deviations from mean values represented by equations (3), (4), (5) and (6), such variations may be considered as small variations around .mean values which can be determined according to linear graphs. As a consequence, the following relations hold:
Plate gauge at each stand Temperature at each stand Roll speed at each stand V =V +a Ah +a AT 9 It is easy to determine the plate gauge, temperature of the material and roll speed from equations (7), (8) and (9).
Based upon the plate thickness and the temperature thus obtained, the load and power at each stand can be obtained according to the following equations.
Rolling load at each stand Power at each stand in this manner, equation (7) gives the plate gauge at each stand and equation (10) gives the rolling load at each stand. Further, the mill stiffness is determined by experiment or theoretical calculation as a function of the width of the material Thus, by substituting these equations in equation (1), the set value of the roll gap at each stand can be readily determined.
l ill" While the roll speed can be determined by equation (9), it is necessary to derive equation (9) to satisfy the condition of constant volume feed rate.
As is clear from equations (9) and (13), this invention is characterized in that both the set values of the roll gap Sr, and roll speed V are obtained by adding linear correction values caused by minute changes (Ah AT AC etc.) to mean values (Sr V so that even when the record of the correction factor (a,,,,-) is not absolutely correct, the schedule finally obtained is extremely accurate.
Since the data employed to obtain the mean values of Sr, and V are derived by the analysis of rolling theory and the actual operation of the rolling mill in question, they are extremely accurate.
in dividing all parameters into several groups or ranges of values within the overall range of values of the respective parameters, and in determining the groups or ranges for the mean values which are to be set, it is necessary to pay due consideration to certain factors. Too small a number of groups or ranges of values whose mean values are to be set results in an increase in the width of the sections which are required to be corrected linearly, so that the result of the computation is not accurate unless the value of the correction factor is sufficiently accurate.
On the other hand, too large a number of groups whose mean values are to be set results in difficulty in applying adequate linear correction. For this reason, the number of the groups or ranges should be minimum so long as accurate linear correction can be assured. Under these conditions, once a pass schedule is determined for a product of particular size in accordance with above described equations (3) through l3 it is possible to obtain the result of computation at a high accuracy by an easy method of calculation such as a linear calculation.
The following diagram illustrates a flow chart of calculating and controlling a rolling mill when the invention is actually applied to preset the same.
Writing of the specification of the product (ha. T.-,, B, composition) Writing of product specification Extraction of mean values Calculations of deviations Check whether values n HP, Vt, etc. are reasonable or not Calculation of corrections Calculate again T in, V; and T Yes Out l This preset is performed at position 1 shown in FIG. 2, that is prior to the issue of the material from the toughening mill according to a card specifying the rolling operation.
FIG. 2 shows a computer connected in a mill. Product specifications h T and B are fed into the computer 14 and the computer 14 calculates the nearest possible mean value (h 'Tr- 'P -i'V 'HP 'G B to 1116 said specification, and derives x -01 from out of a memory device therein. The computer calculates first Ah -AC- -AT -b by equations (3) to (ol and computes the values of h -T -Pi-HP -M by equations (7) to (12).
In addition to such a preset, this invention .is also applicable to the dynamic control for correcting the error of the preset during the rolling operation. One such application to the rolling mill shown in FIG. 2 is as follows.
While there are a number of methods of dynamic control, in one example wherein the above-described flow chart for presetting is employed, after completion of the preset, the gauge and the temperature of the plate at the exit of the final pass of the toughening mill 12 are measured, and information regarding these measured parameters are utilized to correct the value of the previous preset. The specific manner of adjusting the preset of the rolls is apparent to those ordinarily skilled in the art, and is not shown herein so as not to unduly complicate the present disclosure. The details ofthe operation of this invention applied to this dynamic control are as follows.
Sr, is computed by equation (13). The computer further checks that these values obtained are within the range of the mill capacity and presets the screw downs and the roll speed of the each stand by means of controllers l5 and 16, respectively.
First the temperature and the gauge of the plate at the exit of the roughening mill 12 are measured directly or indirectly by a suitable gauge meter (not shown) and the thermometer 13 shown in FIG. 2. Further. the rolling load of the final stand of the roughening mill 12 is measured by the load cell 2. The plate gauge at the exit of roughening mill 12 can also he calculated from the output from load cell 2 according to equation 1 in which case, the equation is modified as follows.
o o+ R/ H (t4) Denoting the material temperature by T mean value (reference value) of the plate gauge at the entrance of finishing stands by h and the mean value of the material at the exit of the roughening mill 12 by T then their deviations are expressed by Ah,,=h,,h 1 5) AT =T T (16) In this case, the value of the previously calculated preset is corrected beforehand by distributing the error of the plate gauge expressed by equation among various stands of the finishing mill and by anticipating the variations in the temperature drop at respective stands of the finishing mill caused by the error in the material temperature at the exit of the roughening mill. More particularly,
FBIi o+B2i R FBat J 'Bu R FBsl u 'Bsl n A FBw o' 'Bai a hence In this manner, equations (20) and (21) give the correction value for the preset value so that it is possible to calculate and control the deviation from the mean value by a linear correction.
Dynamic change in the preset is effected when the leading end of the material arrives at a point 4 shown in FIG. 2 to the calculation and control of the dynamic control is performed by means of a computer coupled to the roll stands to adjust same in accordance with the correction signals derived as above. The actual control of the roll stands by the output signals from the computer may be implemented by one ordinarily skilled in the steel making and processing art. The computer is also coupled to load cell 2, to thennometer 13 and to a gauge meter (not shown) at the output of toughening mill 12. The dynamic control can be summarized as follows:
EXAMPLE OF DYNAMIC CONTROL Material temperature T", and is measured Measurement of at point 3 in FIG. 2. Rolling load Pu and rolling roll gap 8,, are measured at point 2 in parameters FIG. 2.
Calculation of the gauge at the entrance of the finishing mill Calculations of the deviation of the gauge at the entrance of the finishing mill and the deviation of the tempera ture of the roughening mill Calculations of deviations Calculations of correction values AN; AH/rrlh.
ML. Corrections of preset values Sn, nnd NI;
- Corrections of Sn S rPi SH preset values N r N P, AN,
l Out As above described, in accordance with this invention since it is possible to readily derive and correct equations in addition to the preset and dynamic control of rolling mills, the invention can be applied to computer control of various mills such as a blooming mill, slab mill, cold tandem mill, cold reversible mill, tamper mill and the like. Further, since all controls are performed in accordance with primary equations, it is possible to perform the calculations in a short period of time so that the invention is most suitable for an online computer control. The mean value (reference value) of each group or range of values for respective operating parameters of the rolling mill is calculated in accordance with simpleprimary equations to correct deviations alone so that control of the rolling mill is provided at high accuracies.
While the invention has been shown and described in terms of a preferred embodiment thereof, many changes and modifications will be obvious to those skilled in the art without departing from the true spirit and scope of the invention as defined in the appended claims.
What is claimed is:
1. A method of controlling a plural stand rolling mill by means of a computer comprising:
predetermining a plurality of ranges for each of a plurality of operating parameters of said rolling mill;
predetermining and storing in a storage means a respective mean value for each of said ranges of values;
predetermining and storing in a storage means a plurality of correction factors, the correction factors being stored as a function of the desired characteristics of the output of said rolling mill and as a function of the properties of the input material to said rolling mill; and
calculating and applying control signals to a plurality of stands of said rolling mill to simultaneously control at least one of the screw down and roll speed at said plurality of stands as a function of mean values and correction factors corresponding to a plurality of said operating parameters, said mean values and correction factors being at least a function of the properties of the input material to said rolling mill and of the desired characteristics of the output of said rolling mill.
2. The method of claim 1 wherein said control signals are calculated and applied to said stands prior to feeding in of the input material, thereby presetting said rolling mill to obtain a predetermined output product for a given input material.
3. The method of claim 1 wherein said control signals are calculated and applied to said stands during operation of said rolling mill. 7
4. The method of claim 1 wherein deviations in a plurality of said operating parameters are detected during operation of said rolling mill, and said control signals are further calculated in response to said detected deviations.
5. The method of claim 2 wherein said control signals are further calculated and applied to said stands during operation of said rolling mill to dynamically vary said preset values.
6. The method of claim 5 wherein deviations in a plurality of said operating parameters are detected during operation of said rolling mill, and said control signals are further calculated in response to said detected deviations.
8. The method of claim 1 wherein said operating parameters of said rolling mill comprise plate gauge, temperature of the 5 material, rolling load, mill stiffness and roll gap.

Claims (8)

1. A method of controlling a plural stand rolling mill by means of a computer comprising: predetermining a plurality of ranges for each of a plurality of operating parameters of said rolling mill; predeterminiNg and storing in a storage means a respective mean value for each of said ranges of values; predetermining and storing in a storage means a plurality of correction factors, the correction factors being stored as a function of the desired characteristics of the output of said rolling mill and as a function of the properties of the input material to said rolling mill; and calculating and applying control signals to a plurality of stands of said rolling mill to simultaneously control at least one of the screw down and roll speed at said plurality of stands as a function of mean values and correction factors corresponding to a plurality of said operating parameters, said mean values and correction factors being at least a function of the properties of the input material to said rolling mill and of the desired characteristics of the output of said rolling mill.
2. The method of claim 1 wherein said control signals are calculated and applied to said stands prior to feeding in of the input material, thereby presetting said rolling mill to obtain a predetermined output product for a given input material.
3. The method of claim 1 wherein said control signals are calculated and applied to said stands during operation of said rolling mill.
4. The method of claim 1 wherein deviations in a plurality of said operating parameters are detected during operation of said rolling mill, and said control signals are further calculated in response to said detected deviations.
5. The method of claim 2 wherein said control signals are further calculated and applied to said stands during operation of said rolling mill to dynamically vary said preset values.
6. The method of claim 5 wherein deviations in a plurality of said operating parameters are detected during operation of said rolling mill, and said control signals are further calculated in response to said detected deviations.
7. The method of claim 6 wherein the gauge and temperature are detected at the output of a rolling stand during operation of said rolling mill, said control signals being calculated and fed forward to rolling stands downstream of the stand at which said parameters are detected.
8. The method of claim 1 wherein said operating parameters of said rolling mill comprise plate gauge, temperature of the material, rolling load, mill stiffness and roll gap.
US12775A 1969-02-21 1970-02-19 Method of computer control of rolling mills Expired - Lifetime US3641325A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP44012571A JPS4814300B1 (en) 1969-02-21 1969-02-21

Publications (1)

Publication Number Publication Date
US3641325A true US3641325A (en) 1972-02-08

Family

ID=11809029

Family Applications (1)

Application Number Title Priority Date Filing Date
US12775A Expired - Lifetime US3641325A (en) 1969-02-21 1970-02-19 Method of computer control of rolling mills

Country Status (10)

Country Link
US (1) US3641325A (en)
JP (1) JPS4814300B1 (en)
AU (1) AU1165170A (en)
BE (1) BE746320A (en)
CA (1) CA922794A (en)
DE (1) DE2008014A1 (en)
FR (1) FR2031585A1 (en)
GB (1) GB1293872A (en)
NL (1) NL7002483A (en)
SE (1) SE383690B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3713313A (en) * 1971-11-19 1973-01-30 Gen Electric Computer controlled rolling mill
FR2383719A1 (en) * 1977-03-17 1978-10-13 Bethlehem Steel Corp BAR ROLLER CHECK
DE3026229A1 (en) * 1979-07-11 1981-02-19 Hoogovens Ijmuiden Bv Automatic adjustment of multiple roll cold strip mill - ensuring max. output by controlling roll slip, speed and deflection
US4485497A (en) * 1979-12-27 1984-12-04 Mitsubishi Denki Kabushiki Kaisha Apparatus for controlling re-distribution of load on continuous rolling mill
US4928097A (en) * 1988-06-10 1990-05-22 Westinghouse Electric Corp. Real time process control using multiple communication networks
CN102513371A (en) * 2011-12-23 2012-06-27 首钢总公司 Pickling and rolling target thickness setting method for ensuring thickness precision of continuous annealing finished products

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3545769C2 (en) * 1985-12-20 1994-01-13 Licentia Gmbh Procedure for predicting the optimal thickness distribution

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3015974A (en) * 1958-09-18 1962-01-09 Gen Electric Automatic control system for rolling mills and adjustable dies
US3096670A (en) * 1957-07-16 1963-07-09 Westinghouse Electric Corp Apparatus and method for workpiece thickness control
US3104566A (en) * 1958-10-16 1963-09-24 Square D Co Rolling mill control
US3169424A (en) * 1962-01-30 1965-02-16 Gen Electric Automatic control system for rolling mills and adjustable dies
US3204440A (en) * 1963-03-01 1965-09-07 Gen Electric Automatic zeroing for a rolling mill position regulator
US3248916A (en) * 1962-09-21 1966-05-03 Westinghouse Electric Corp Workpiece shape control with a rolling mill
US3478551A (en) * 1966-05-06 1969-11-18 Davy & United Instr Ltd Control systems

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3096670A (en) * 1957-07-16 1963-07-09 Westinghouse Electric Corp Apparatus and method for workpiece thickness control
US3015974A (en) * 1958-09-18 1962-01-09 Gen Electric Automatic control system for rolling mills and adjustable dies
US3104566A (en) * 1958-10-16 1963-09-24 Square D Co Rolling mill control
US3169424A (en) * 1962-01-30 1965-02-16 Gen Electric Automatic control system for rolling mills and adjustable dies
US3248916A (en) * 1962-09-21 1966-05-03 Westinghouse Electric Corp Workpiece shape control with a rolling mill
US3204440A (en) * 1963-03-01 1965-09-07 Gen Electric Automatic zeroing for a rolling mill position regulator
US3478551A (en) * 1966-05-06 1969-11-18 Davy & United Instr Ltd Control systems

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Determination of a Mathematical Model for Rolling Mill Control Schultz et al., Iron and Steel Engineer, May 1965. *
Theoretical Aspects of Hot Mill Automation McKenzie, Steel International, January 1968. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3713313A (en) * 1971-11-19 1973-01-30 Gen Electric Computer controlled rolling mill
FR2383719A1 (en) * 1977-03-17 1978-10-13 Bethlehem Steel Corp BAR ROLLER CHECK
DE3026229A1 (en) * 1979-07-11 1981-02-19 Hoogovens Ijmuiden Bv Automatic adjustment of multiple roll cold strip mill - ensuring max. output by controlling roll slip, speed and deflection
US4485497A (en) * 1979-12-27 1984-12-04 Mitsubishi Denki Kabushiki Kaisha Apparatus for controlling re-distribution of load on continuous rolling mill
US4928097A (en) * 1988-06-10 1990-05-22 Westinghouse Electric Corp. Real time process control using multiple communication networks
CN102513371A (en) * 2011-12-23 2012-06-27 首钢总公司 Pickling and rolling target thickness setting method for ensuring thickness precision of continuous annealing finished products
CN102513371B (en) * 2011-12-23 2014-05-28 首钢总公司 Pickling and rolling target thickness setting method for ensuring thickness precision of continuous annealing finished products

Also Published As

Publication number Publication date
DE2008014A1 (en) 1970-11-26
FR2031585A1 (en) 1970-11-20
AU1165170A (en) 1971-08-26
SE383690B (en) 1976-03-29
GB1293872A (en) 1972-10-25
JPS4814300B1 (en) 1973-05-07
CA922794A (en) 1973-03-13
NL7002483A (en) 1970-08-25
BE746320A (en) 1970-07-31

Similar Documents

Publication Publication Date Title
US3253438A (en) Automatic strip gauge control for a rolling mill
US3694636A (en) Digital computer process control with operational learning procedure
CN100369683C (en) Method for automatic controlling thickness in fast high precision plate strip rolling process
US3713313A (en) Computer controlled rolling mill
US3641325A (en) Method of computer control of rolling mills
JPS595364B2 (en) Tension control method
US4244025A (en) Rolling mill gauge control system
US3934438A (en) Method of long-edge shape control for tandem rolling mill
US3938360A (en) Shape control method and system for a rolling mill
US3841123A (en) Rolling mill gauge control method and apparatus including entry gauge correction
JPS59101212A (en) Controlling method of rolling mill
US4137741A (en) Workpiece shape control
US3802236A (en) Gauge control method and apparatus including workpiece gauge deviation correction for metal rolling mills
US3568637A (en) Tandem mill force feed forward adaptive system
US3631697A (en) Rolling mill workpiece delivery thickness control
US3648494A (en) System for applying pilot control to the roll gap adjustment of a gauge-controlled cold rolling stand
US3600920A (en) Screwdown offset system and method for improved gauge control
CA1111934A (en) Method and apparatus for providing improved automatic gage control setup in a rolling mill
JPS5922604B2 (en) Finishing temperature predictive control rolling method for hot strips
US3820366A (en) Rolling mill gauge control method and apparatus including temperatureand hardness correction
JPS6224809A (en) Method for controlling sheet width in hot rolling
US3552162A (en) Rolling mill control system
SU865460A1 (en) System of automatic control of rolled strip thickness
US3635059A (en) Calibration of rolling mill screwdown position regulator
US3813908A (en) Method of adaptive thread