US3631370A - High-current, hot wire relay and flasher - Google Patents

High-current, hot wire relay and flasher Download PDF

Info

Publication number
US3631370A
US3631370A US862812A US3631370DA US3631370A US 3631370 A US3631370 A US 3631370A US 862812 A US862812 A US 862812A US 3631370D A US3631370D A US 3631370DA US 3631370 A US3631370 A US 3631370A
Authority
US
United States
Prior art keywords
vane
shunt
contact
terminal
ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US862812A
Inventor
Arthur J Hollis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GTE Sylvania Inc
Original Assignee
Sylvania Electric Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sylvania Electric Products Inc filed Critical Sylvania Electric Products Inc
Application granted granted Critical
Publication of US3631370A publication Critical patent/US3631370A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H61/00Electrothermal relays
    • H01H61/06Self-interrupters, i.e. with periodic or other repetitive opening and closing of contacts
    • H01H61/066Self-interrupters, i.e. with periodic or other repetitive opening and closing of contacts making use of an extensible wire, rod or strips

Definitions

  • the ribbon Upon the passage of electric current through a resistance wire wrapped around the ribbon, the ribbon thermally expands, thereby permitting the vane to snap to a closed contact position and shorting out the current flow to the resistance wire. Cooling of the ribbon causes the vane to snap back to its open contact position.
  • This invention relates to the field of electrical control devices, such as relays and automotive flashers, and particularly to such devices wherein an electrical circuit is opened and/or closed by the movement of a resilient, snap-acting vane.
  • flashers for energizing directional signal lamps.
  • flashers are generally of the snap-acting vane type, an example of which is shown in US. Pat. No. 2,861,149 issued on Nov. I8, 1958 to Hollis et al.
  • Such flashers generally flash all the directional signal lamps of an automobile and must flash a minimum of four directional lamps.
  • the electrical load, then, of a hazard flasher is about double that of a directional flasher.
  • the snap-acting vanes of the prior art flashers were generally made of high carbon steel. Because of variations in the metal structure, such vanes had to be aged or operated for at least 1 hour in order to obtain uniformity in the flashing cycle. In addition such vanes did not have adequate resistance to work hardening to provide the desired reliability and life for the high-current hazard flashers of the instant invention.
  • a relay or flasher in accordance with this invention includes a substantially rectangular monostable snap vane.
  • An expansion ribbon is disposed on one face of the vane, substantially diagonally thereto, the ends of the ribbon being fastened to the ends of the vane.
  • the intermediate portions of the ribbon and the vane are free to move or flex relative to each other.
  • a shunt Disposed on the opposite face of the vane is a shunt made of a highly electrically conductive material, such as copper. Only the ends of the shunt are connected to the vane and the shunt has a loop at about its center in order to not inhibit the snap action of the vane.
  • One end of the shunt and vane assembly is fastened to a rigid blade terminal which, in turn, is mounted on an insulated base.
  • the other end of the shunt and vane assembly is movable and, in the monostable position of the vane, is in contact with a contact terminal supported in the insulated base.
  • Preferably electrical contact therebetween is established through an arcresistant contact mounted on the shunt and a similar contact mounted on the contact terminal.
  • a heater in the form of an insulated resistance wire is wrapped around the expansion ribbon along the length thereof.
  • One end of the heater is electrically connected to the blade terminal and the other end of the resistance wire is electrically and flexibly connected to the contact terminal.
  • the device can be housed in a suitable protective container having means for externally connecting the terminals in an electrical circuit.
  • the expansion ribbon maintains the vane in an open contact position, that is to say, the contact on the shunt is spaced slightly from the contact on the contact terminal.
  • the contact terminal Upon electrical energization of the device through its terminals, current flows through the contact terminal, the flexible heater connection, the heater and the blade terminal.
  • the heater rapidly heats the expansion ribbon, causing it to expand sufficiently to release its constraint of the vane and permitting the vane to snap to a closed contact position. In this position the low-resistance shunt shorts out the heater, thereby permitting the expansion ribbon to cool and contract and snap the vane back into its open contact position.
  • Current then immediately flows through the heater again thereby repeating the cycle, which continues as long as electrical power is supplied to the device.
  • the device For use as a hazard flasher, the device is placed directly between an automobile power supply and the lamps to be flashed. When a suitable external switch is closed, current initially flows through the heater as mentioned above and the circuit is completed through the lamps. However the resistance of the heater is so high that the current flow through the lamps is insufficient to light them.
  • FIG. 1 is a perspective view of a flasher in accordance with this invention, showing the container in phantom.
  • FIG. 2 is a side elevational view of the flasher showing the vane in an open contact position.
  • FIG. 3 is the same view showing the contacts closed.
  • FIGS. 4 and 5 are front and back elevational views, respectively.
  • FIG. 6 is a top view of the flasher.
  • a hazard flasher I in accordance with this invention comprises an electrically insulating base 2 holding blade terminal 3 and contact terminal 4 in fixed relationship to each other.
  • base 2 is molded around terminals 3 and 4 which extend completely therethrough.
  • An electrical contact 5 is connected to the inner end of terminal 4.
  • Vane 6 Fastened to the inner end of terminal 3 is an assembly comprising snap vane 6, shunt 7 and expansion ribbon 8.
  • Vane 6 is a rectangular strip of 6 mil stainless steel having dimensions of about W4 inch by one-half inch.
  • a 3/32-inch diameter hole ll extends through the center of vane 6.
  • Preset deformations extend along the longitudinal center line of vane 6 from the edge of the vane to within about three thirty-seconds inch of hole 11. Similar deformations may extend along the minor axis of vane 6 for the purpose of increasing the snap differential of the vane.
  • Shut 7 is a flexible rectangular strip of 4 mil copper, threesixteenths inch wide by I inch long, and is positioned along a longitudinal edge of vane 6. Shunt 7 is disposed on the face of vane 6 wherein the above-mentioned preset deformations are concave.
  • Vane 6 and shunt 7 are spot welded to a protruding tab 9 of terminal 3, one end of shunt 7 being sandwiched between tab 9 and vane 6.
  • Tab 9 is about one-fourth inch square and covers one end of shunt 7.
  • a backup pad 10 is fastened to the opposing surface of vane 6, in line with tab 9, at the time of welding. The purpose of pad I is to strengthen the welded area of relatively thin vane 6 in the event that weld brittleness occurs.
  • shunt 7 The ends, only, of shunt 7 are fastened to vane 6; therefore the shunt does not substantially inhibit the snapping movement of vane 6.
  • a 3/32-inch loop l2 at the center of shunt 7 further decreases the possibility of shunt 7 interfering with the snapping movement of vane 6.
  • a contact 13 is fastened to the opposite end of shunt 7 which, in turn, is welded to vane 6 and contact 13 is in alignment with contact on terminal 4.
  • contacts l3 and 5 are in electrical contact with each other, and when vane 6 is in its secondary restrained position, contacts 13 and 5 are spaced apart from each other.
  • Expansion ribbon 8 is tautly secured to diagonally opposite comers of vane 6 on the face thereof opposite that on which shunt 7 is disposed.
  • the corners of vane 6 to which the ends of ribbon 8 are welded are bent slightly away from ribbon 8 in order to insure that the tensile force on the ribbon welds is parallel to the blade surface. This orients the welds in their strongest position.
  • ribbon 8 is not part of an electrical circuit and, therefore, need not satisfy any particular electricalconductivity requirement.
  • ribbon 8 should have a high hot tensile strength.
  • ribbon 8 should have a high temperature coefficient of expansion and very little creep.
  • the mass of ribbon 8 should be small in order to provide a fast cycle rate. I have found that a supersteel alloy, so called, which is a steel alloy containing chromium, nickel, molybdenum and titanium, was satisfactory for this purpose. In the example described, ribbon 8 was 4 mils thick by 0.025 inch wide by 1% long.
  • heater l4 Wrapped around ribbon 8 is heater l4 consisting of a length of glass-insulated, lifi-mil, iron-nickel-chromium resistance wire having a resistance of 46 ohms.
  • heater 14 One end of heater 14 is electrically connected to pad and the other end is electrically connected to terminal 4 by means of a flexible connector 15.
  • the flexibility of connector 15 permits the heater to move in conjunction with vane 6 without mechanical or electrical disruption of the heater connections.
  • An aluminum container 16 shown in phantom in FIG. 1, is attached to base 2 and encloses the flasher assembly for environmental protection thereof.
  • shunt 7 with vane 6 dispenses with the need of selecting the vane material for its electrical conductivity.
  • the high electrical conductivity of shunt 7 reduces the voltage drop across the flasher to an extremely low level, even at currents as high as amperes.
  • the relatively large surface area of shunt 7 effectively cools contact 13, which is mounted thereon, and permits the use of a smaller vane contact.
  • contacts 5 and I3 are preferably polarized and made of dissimilar materials to produce optimum contact life.
  • the load is resistive, such as automobile lamps
  • the positive contact can be a high melting point material, such as palladium
  • the negative contact can be a low electrical resistance material, such as silver.
  • the flasher was tested in a circuit comprising a l3 volt DC supply and eight automotive lamps, each rated at 2.l amperes. With vane 6 in the closed contact position, the voltage drop across the flasher was under 0.4 volts, and in the open contact position, the voltage drop across the flasher was 12.9 volts.
  • flashers in accordance with this invention successfully flashed a 17 ampere lamp load at l4 volts DC at selected rates between 60 and cycles per second for l to 2 million cycles.
  • Prior art flashers when tested under the same conditions, failed at less than z-million cycles.
  • one end of heater 14 can be isolated from the load contact circuit.
  • connector l5 could be directly connected to a third terminal instead of the terminal 4, and for use as a four-terminal relay, each end of heater 14 could be connected to separate terminals.
  • a control device comprising: an insulating base; a monostable snap vane; a first terminal supporting said vane in spaced relation with said base; an expansion ribbon disposed on one face of said vane and connected thereto at the ends of said ribbon only; a shunt of highly electrically conductive material disposed on the opposite surface of said vane and connected thereto at the ends of said shunt only; a resistance heater disposed on said expansion ribbon and electrically insulated therefrom; a second terminal supported in said base; a flexible electrical connection between one end of said heater and said second terminal; and a welding tab, the point of connection between said shunt and said vane being sandwiched between said first terminal and said welding tab.
  • said vane consists of a strip of stainless steel having a stress relief temperature higher than the normal operating temperature of said vane.
  • said shunt comprises an elongated strip of copper having a loop at its center.
  • the device of claim 1 comprising, in addition, a first and a second contact, said first contact being disposed on said shunt, said second contact being disposed on said second terminal, said contacts being in electrical engagement with each other only when said vane is in its monostable position.
  • said vane comprises a substantially rectangular strip of stainless steel having a central circular opening therethrough and having preset deformations extending longitudinally from each short edge of said strip to within about one diameter of said opening.
  • a control device comprising: an insulating base; a monostable snap vane; a first terminal supporting said vane in spaced relation with said base; an expansion ribbon disposed on one face of said vane and connected thereto at the ends of said ribbon only; a shunt of highly electrically conductive material disposed on the opposite surface of said vane and connected thereto at the ends of said shunt only; a resistance heater disposed on said expansion ribbon and electrically insulated therefrom; a second terminal supported in said base; a flexible electrical connection between one end of said heater and said second terminal; and a first and a second contact, said first contact being disposed on said shunt, said second contact being disposed on said second terminal, said contacts being in electrical engagement with each other only when said vane is in its monostable position, said shunt having a large surface area to effectively cool said first contact, thereby permitting the use ofa smaller contact.

Landscapes

  • Thermally Actuated Switches (AREA)

Abstract

A monostable snap vane of a high-current flasher is held just beyond its snap point in an open contact position by an expansion ribbon fastened to opposite corners of the vane. Upon the passage of electric current through a resistance wire wrapped around the ribbon, the ribbon thermally expands, thereby permitting the vane to snap to a closed contact position and shorting out the current flow to the resistance wire. Cooling of the ribbon causes the vane to snap back to its open contact position.

Description

United States Patent 3,218,415 11/1965 Voorman 337/136 3,246,181 4/1966 Bleiweiss 337/135 3,225,165 12/1965 Bleiweiss et al.... 337/138 3,505,642 4/1970 Siiberg 337/136 FOREIGN PATENTS 605,950 8/1948 Great Britain 337/101 Primary Examiner-Bernard A. Gilheany Assistant Examiner-F. E. Bell Attorneys-Norman J. OMalley and James Theodosopoulos ABSTRACT: A monostable snap vane of a high-current flasher is held just beyond its snap point in an open contact position by an expansion ribbon fastened to opposite corners of the vane. Upon the passage of electric current through a resistance wire wrapped around the ribbon, the ribbon thermally expands, thereby permitting the vane to snap to a closed contact position and shorting out the current flow to the resistance wire. Cooling of the ribbon causes the vane to snap back to its open contact position.
PATENTEnniczsnan ARTHUR J. HOLLIS INVENTOR BY TWO,
AGE NT 1 HIGH-CURRENT, IIOT WIRE RELAY AND FLASHER BACKGROUND OF THE INVENTION l. Field of the Invention This invention relates to the field of electrical control devices, such as relays and automotive flashers, and particularly to such devices wherein an electrical circuit is opened and/or closed by the movement of a resilient, snap-acting vane.
2. Description of the Prior Art For the past decade or two, automobiles have been equipped with flashers for energizing directional signal lamps. Such flashers are generally of the snap-acting vane type, an example of which is shown in US. Pat. No. 2,861,149 issued on Nov. I8, 1958 to Hollis et al.
Recently the automotive industry has been required to supply all road vehicles with hazard warning signal flashers. Such flashers generally flash all the directional signal lamps of an automobile and must flash a minimum of four directional lamps. The electrical load, then, of a hazard flasher is about double that of a directional flasher.
Most hazard flashers currently in use are simply modified directional flashers. The higher electrical load on these flashers substantially limits their reliability and life. There are other devices, such as electromagnetic flashers, which will provide adequate reliability and life under a high electrical load, but they are quite expensive. It is an object of this invention to provide a reliable, low-cost, high-current flasher.
Directional flashe'rs of the type shown in US Pat. No. 2,86 I ,l49 have several disadvantages when adapted to handle the high current of a hazard flasher. First, the flasher is sensitive to the amount of current drawn by the load and the flashing rate can vary if the load current changes, such as by, for example, one lamp being burned out. The reason for this is that all the load current passes directly through the expansion ribbon and controls the rate at which the ribbon is heated and expanded. If one lamp is burned out, less current will pass through the ribbon and the ribbon will require more time to heat up and expand, thereby increasing the cycle time of the flasher.
Another disadvantage of the prior art flasher is that the metal comprising the expansion ribbon must be selected to have sufficient electrical resistivity to insure proper operation of the flasher. Such a requirement precluded the use of metals that have higher tensile strength and faster thermal response than the commonly used metals.
Also, the snap-acting vanes of the prior art flashers were generally made of high carbon steel. Because of variations in the metal structure, such vanes had to be aged or operated for at least 1 hour in order to obtain uniformity in the flashing cycle. In addition such vanes did not have adequate resistance to work hardening to provide the desired reliability and life for the high-current hazard flashers of the instant invention.
SUMMARY OF THE INVENTION A relay or flasher in accordance with this invention includes a substantially rectangular monostable snap vane. An expansion ribbon is disposed on one face of the vane, substantially diagonally thereto, the ends of the ribbon being fastened to the ends of the vane. The intermediate portions of the ribbon and the vane are free to move or flex relative to each other.
Disposed on the opposite face of the vane is a shunt made of a highly electrically conductive material, such as copper. Only the ends of the shunt are connected to the vane and the shunt has a loop at about its center in order to not inhibit the snap action of the vane.
One end of the shunt and vane assembly is fastened to a rigid blade terminal which, in turn, is mounted on an insulated base. The other end of the shunt and vane assembly is movable and, in the monostable position of the vane, is in contact with a contact terminal supported in the insulated base. Preferably electrical contact therebetween is established through an arcresistant contact mounted on the shunt and a similar contact mounted on the contact terminal.
A heater in the form of an insulated resistance wire is wrapped around the expansion ribbon along the length thereof. One end of the heater is electrically connected to the blade terminal and the other end of the resistance wire is electrically and flexibly connected to the contact terminal.
The device can be housed in a suitable protective container having means for externally connecting the terminals in an electrical circuit.
As normally assembled, the expansion ribbon maintains the vane in an open contact position, that is to say, the contact on the shunt is spaced slightly from the contact on the contact terminal. Upon electrical energization of the device through its terminals, current flows through the contact terminal, the flexible heater connection, the heater and the blade terminal. The heater rapidly heats the expansion ribbon, causing it to expand sufficiently to release its constraint of the vane and permitting the vane to snap to a closed contact position. In this position the low-resistance shunt shorts out the heater, thereby permitting the expansion ribbon to cool and contract and snap the vane back into its open contact position. Current then immediately flows through the heater again thereby repeating the cycle, which continues as long as electrical power is supplied to the device.
For use as a hazard flasher, the device is placed directly between an automobile power supply and the lamps to be flashed. When a suitable external switch is closed, current initially flows through the heater as mentioned above and the circuit is completed through the lamps. However the resistance of the heater is so high that the current flow through the lamps is insufficient to light them.
When the contacts of the flasher close, the shunt resistance thereof is so low that the lamps become the only effective load across the power supply and, consequently, they light up. The lamps will flash in this manner as long as the external switch is closed.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view ofa flasher in accordance with this invention, showing the container in phantom.
FIG. 2 is a side elevational view of the flasher showing the vane in an open contact position.
FIG. 3 is the same view showing the contacts closed.
FIGS. 4 and 5 are front and back elevational views, respectively.
FIG. 6 is a top view of the flasher.
DESCRIPTION OF THE PREFERRED EMBODIMENT As shown in the drawings a hazard flasher I in accordance with this invention comprises an electrically insulating base 2 holding blade terminal 3 and contact terminal 4 in fixed relationship to each other. In the example shown base 2 is molded around terminals 3 and 4 which extend completely therethrough. An electrical contact 5 is connected to the inner end of terminal 4.
Fastened to the inner end of terminal 3 is an assembly comprising snap vane 6, shunt 7 and expansion ribbon 8. Vane 6 is a rectangular strip of 6 mil stainless steel having dimensions of about W4 inch by one-half inch. A 3/32-inch diameter hole ll extends through the center of vane 6. Preset deformations extend along the longitudinal center line of vane 6 from the edge of the vane to within about three thirty-seconds inch of hole 11. Similar deformations may extend along the minor axis of vane 6 for the purpose of increasing the snap differential of the vane.
Shut 7 is a flexible rectangular strip of 4 mil copper, threesixteenths inch wide by I inch long, and is positioned along a longitudinal edge of vane 6. Shunt 7 is disposed on the face of vane 6 wherein the above-mentioned preset deformations are concave.
Vane 6 and shunt 7 are spot welded to a protruding tab 9 of terminal 3, one end of shunt 7 being sandwiched between tab 9 and vane 6. Tab 9 is about one-fourth inch square and covers one end of shunt 7. A backup pad 10 is fastened to the opposing surface of vane 6, in line with tab 9, at the time of welding. The purpose of pad I is to strengthen the welded area of relatively thin vane 6 in the event that weld brittleness occurs.
The ends, only, of shunt 7 are fastened to vane 6; therefore the shunt does not substantially inhibit the snapping movement of vane 6. A 3/32-inch loop l2 at the center of shunt 7 further decreases the possibility of shunt 7 interfering with the snapping movement of vane 6.
A contact 13 is fastened to the opposite end of shunt 7 which, in turn, is welded to vane 6 and contact 13 is in alignment with contact on terminal 4. When vane 6 is in its monostable position, contacts l3 and 5 are in electrical contact with each other, and when vane 6 is in its secondary restrained position, contacts 13 and 5 are spaced apart from each other.
Expansion ribbon 8 is tautly secured to diagonally opposite comers of vane 6 on the face thereof opposite that on which shunt 7 is disposed. The corners of vane 6 to which the ends of ribbon 8 are welded are bent slightly away from ribbon 8 in order to insure that the tensile force on the ribbon welds is parallel to the blade surface. This orients the welds in their strongest position.
In operation, ribbon 8 is not part of an electrical circuit and, therefore, need not satisfy any particular electricalconductivity requirement. However, because of the high stored energy level in stainless steel vane 6, ribbon 8 should have a high hot tensile strength. In addition, ribbon 8 should have a high temperature coefficient of expansion and very little creep. Also, the mass of ribbon 8 should be small in order to provide a fast cycle rate. I have found that a supersteel alloy, so called, which is a steel alloy containing chromium, nickel, molybdenum and titanium, was satisfactory for this purpose. In the example described, ribbon 8 was 4 mils thick by 0.025 inch wide by 1% long.
Wrapped around ribbon 8 is heater l4 consisting of a length of glass-insulated, lifi-mil, iron-nickel-chromium resistance wire having a resistance of 46 ohms. One end of heater 14 is electrically connected to pad and the other end is electrically connected to terminal 4 by means of a flexible connector 15. The flexibility of connector 15 permits the heater to move in conjunction with vane 6 without mechanical or electrical disruption of the heater connections.
An aluminum container 16, shown in phantom in FIG. 1, is attached to base 2 and encloses the flasher assembly for environmental protection thereof.
The use of a stainless steel vane eliminates the need of aging the flasher, as was commonly required in prior art flashers having the usual high carbon steel vane, since stainless steel can be stress-relieved at a temperature higher than the normal operating temperature of the vane. in addition the lower thermal conductivity of the stainless steel vane results in less heat being lost from expansion ribbon 8 to vane 6, thereby producing a faster initial cycle.
The use of shunt 7 with vane 6 dispenses with the need of selecting the vane material for its electrical conductivity. The high electrical conductivity of shunt 7 reduces the voltage drop across the flasher to an extremely low level, even at currents as high as amperes. And the relatively large surface area of shunt 7 effectively cools contact 13, which is mounted thereon, and permits the use of a smaller vane contact.
I have found it desirable to match the thermal coefficients of expansion of the base and the terminal materials to prevent relative movement between the terminals because of varying ambient temperatures. The combination of a mineral-filled phenolic resin base with a 70-30 brass terminal which has an offset equal to the distance between the two terminals was satisfactory in this respect.
For DC current applications, contacts 5 and I3 are preferably polarized and made of dissimilar materials to produce optimum contact life. Where the load is resistive, such as automobile lamps, the positive contact can be a high melting point material, such as palladium, and the negative contact can be a low electrical resistance material, such as silver.
The flasher was tested in a circuit comprising a l3 volt DC supply and eight automotive lamps, each rated at 2.l amperes. With vane 6 in the closed contact position, the voltage drop across the flasher was under 0.4 volts, and in the open contact position, the voltage drop across the flasher was 12.9 volts.
In performance testing, flashers in accordance with this invention successfully flashed a 17 ampere lamp load at l4 volts DC at selected rates between 60 and cycles per second for l to 2 million cycles. Prior art flashers, when tested under the same conditions, failed at less than z-million cycles.
For use of the device as a three-terminal relay, one end of heater 14 can be isolated from the load contact circuit. For example, connector l5 could be directly connected to a third terminal instead of the terminal 4, and for use as a four-terminal relay, each end of heater 14 could be connected to separate terminals.
lclaim: 1
' l. A control device comprising: an insulating base; a monostable snap vane; a first terminal supporting said vane in spaced relation with said base; an expansion ribbon disposed on one face of said vane and connected thereto at the ends of said ribbon only; a shunt of highly electrically conductive material disposed on the opposite surface of said vane and connected thereto at the ends of said shunt only; a resistance heater disposed on said expansion ribbon and electrically insulated therefrom; a second terminal supported in said base; a flexible electrical connection between one end of said heater and said second terminal; and a welding tab, the point of connection between said shunt and said vane being sandwiched between said first terminal and said welding tab.
2. The device of claim 1 wherein said vane consists ofa strip of stainless steel having a stress relief temperature higher than the normal operating temperature of said vane.
3. The device of claim l wherein said shunt comprises an elongated strip of copper having a loop at its center.
4. The device of claim 1 comprising, in addition, a first and a second contact, said first contact being disposed on said shunt, said second contact being disposed on said second terminal, said contacts being in electrical engagement with each other only when said vane is in its monostable position.
5. The device of claim I wherein said vane comprises a substantially rectangular strip of stainless steel having a central circular opening therethrough and having preset deformations extending longitudinally from each short edge of said strip to within about one diameter of said opening.
6. A control device comprising: an insulating base; a monostable snap vane; a first terminal supporting said vane in spaced relation with said base; an expansion ribbon disposed on one face of said vane and connected thereto at the ends of said ribbon only; a shunt of highly electrically conductive material disposed on the opposite surface of said vane and connected thereto at the ends of said shunt only; a resistance heater disposed on said expansion ribbon and electrically insulated therefrom; a second terminal supported in said base; a flexible electrical connection between one end of said heater and said second terminal; and a first and a second contact, said first contact being disposed on said shunt, said second contact being disposed on said second terminal, said contacts being in electrical engagement with each other only when said vane is in its monostable position, said shunt having a large surface area to effectively cool said first contact, thereby permitting the use ofa smaller contact.

Claims (6)

1. A control device comprising: an insulating base; a monostable snap vane; a first terminal supporting said vane in spaced relation with said base; an expansion ribbon disposed on one face of said vane and connected thereto at the ends of said ribbon only; a shunt of highly electrically conductive material disposed on the opposite surface of said vane and connected thereto at the ends of said shunt only; a resistance heater disposed on said expansion ribbon and electrically insulated therefrom; a second terminal supported in said base; a flexible electrical connection between one end of said heater and said second terminal; and a welding tab, the point of connection between said shunt and said vane being sandwiched between said first terminal and said welding tab.
2. The device of claim 1 wherein said vane consists of a strip of stainless steel having a stress relief temperature higher than the normal operating temperature of said vane.
3. The device of claim 1 wherein said shunt comprises an elongated strip of copper having a loop at its center.
4. The device of claim 1 comprising, in addition, a first and a second contact, said first contact being disposed on said shunt, said second contact being disposed on said second terminal, said contacts being in electrical engagement with each other only when said vane is in its monostable position.
5. The device of claim 1 wherein said vane comprises a substantially rectangular strip of stainless steel having a central circular opening therethrough and having preset deformAtions extending longitudinally from each short edge of said strip to within about one diameter of said opening.
6. A control device comprising: an insulating base; a monostable snap vane; a first terminal supporting said vane in spaced relation with said base; an expansion ribbon disposed on one face of said vane and connected thereto at the ends of said ribbon only; a shunt of highly electrically conductive material disposed on the opposite surface of said vane and connected thereto at the ends of said shunt only; a resistance heater disposed on said expansion ribbon and electrically insulated therefrom; a second terminal supported in said base; a flexible electrical connection between one end of said heater and said second terminal; and a first and a second contact, said first contact being disposed on said shunt, said second contact being disposed on said second terminal, said contacts being in electrical engagement with each other only when said vane is in its monostable position, said shunt having a large surface area to effectively cool said first contact, thereby permitting the use of a smaller contact.
US862812A 1969-10-01 1969-10-01 High-current, hot wire relay and flasher Expired - Lifetime US3631370A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US86281269A 1969-10-01 1969-10-01

Publications (1)

Publication Number Publication Date
US3631370A true US3631370A (en) 1971-12-28

Family

ID=25339428

Family Applications (1)

Application Number Title Priority Date Filing Date
US862812A Expired - Lifetime US3631370A (en) 1969-10-01 1969-10-01 High-current, hot wire relay and flasher

Country Status (2)

Country Link
US (1) US3631370A (en)
AU (1) AU2051870A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959662A (en) * 1973-07-25 1976-05-25 The Lucas Electrical Company Limited Engine starting systems
US5420561A (en) * 1994-01-21 1995-05-30 Littlefuse, Inc. Breaker or resettable fuse device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB605950A (en) * 1944-08-19 1948-08-04 Ets Bresson Compensated thermal relay, principally for use in remotely controlled circuits
US3122620A (en) * 1961-06-20 1964-02-25 Signal Stat Corp Voltage and temperature compensated vane flasher
US3218415A (en) * 1960-12-20 1965-11-16 Tung Sol Electric Inc Thermally actuated snap action device
US3225165A (en) * 1962-08-17 1965-12-21 Signal Stat Corp 2-vane voltage compensated shunt flasher
US3246181A (en) * 1962-10-12 1966-04-12 Signal Stat Corp Load insensitive series thermomotive flasher
US3505642A (en) * 1966-04-29 1970-04-07 Wagner Electric Corp Series type time delay relay

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB605950A (en) * 1944-08-19 1948-08-04 Ets Bresson Compensated thermal relay, principally for use in remotely controlled circuits
US3218415A (en) * 1960-12-20 1965-11-16 Tung Sol Electric Inc Thermally actuated snap action device
US3122620A (en) * 1961-06-20 1964-02-25 Signal Stat Corp Voltage and temperature compensated vane flasher
US3225165A (en) * 1962-08-17 1965-12-21 Signal Stat Corp 2-vane voltage compensated shunt flasher
US3246181A (en) * 1962-10-12 1966-04-12 Signal Stat Corp Load insensitive series thermomotive flasher
US3505642A (en) * 1966-04-29 1970-04-07 Wagner Electric Corp Series type time delay relay

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959662A (en) * 1973-07-25 1976-05-25 The Lucas Electrical Company Limited Engine starting systems
US5420561A (en) * 1994-01-21 1995-05-30 Littlefuse, Inc. Breaker or resettable fuse device

Also Published As

Publication number Publication date
AU2051870A (en) 1972-04-13

Similar Documents

Publication Publication Date Title
US5770993A (en) Thermal fuse
US3629766A (en) Fusible link circuit protective device
US4319126A (en) Temperature dependent electric current-regulator-or-limiting switching element for electrical appliances: especially electrically heated devices
US9691576B2 (en) Temperature-dependent switch
US20110140827A1 (en) Circuit protection device
JPS62268030A (en) Protector
US3707694A (en) Thermally sensitive circuit control apparatus
US6456476B1 (en) Circuit protection relay having bimetal wiper
US5107241A (en) Thermally responsive switch
US4434411A (en) Temperature-sensitive switch
US4219793A (en) Fuse with planar fuse element
US2822444A (en) Flashers
US3631370A (en) High-current, hot wire relay and flasher
JPS60232630A (en) Bimetal protection switch
JPS61203515A (en) Contactor for relay
CN111599659A (en) Fuse wire
US3746838A (en) Electric heating elements
US3316374A (en) Thermostat with an improved heat anticipation means
JPH04345724A (en) Non-destructive fuse
US3629765A (en) Circuit breaker
WO2005078756A1 (en) Safety device
CA1121412A (en) Circuit breaker with parallel shorting element
US5889453A (en) Relay with overload protection
US3962664A (en) Current protector
US3153125A (en) Snap-action switches having booily shifting of the line of tension of the strand portion