US3615949A - Crossover for large scale arrays - Google Patents

Crossover for large scale arrays Download PDF

Info

Publication number
US3615949A
US3615949A US773452A US3615949DA US3615949A US 3615949 A US3615949 A US 3615949A US 773452 A US773452 A US 773452A US 3615949D A US3615949D A US 3615949DA US 3615949 A US3615949 A US 3615949A
Authority
US
United States
Prior art keywords
conductor
layer
conductor pattern
conductors
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US773452A
Inventor
Robert E Hicks
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ROBERT E HICKS
Original Assignee
ROBERT E HICKS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ROBERT E HICKS filed Critical ROBERT E HICKS
Application granted granted Critical
Publication of US3615949A publication Critical patent/US3615949A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4685Manufacturing of cross-over conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5381Crossover interconnections, e.g. bridge stepovers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.

Definitions

  • the subject invention contemplates the fabrication of crossovers by deposition of insulative material on a conductor at the point of crossover and subsequent deposition of a crossing conductor over the insulative bridge.” Additionaladvantages other than the elimination of point-to-point wiring methods include improved circuit reliability; room temperature circuit assembly; decreased manufacturing time; increased unit density; flip-chip utilization; and reduction of stray capacitance.
  • the invention relates to a method for fabricating improved crossovers for microelectronic circuits.
  • the invention also includes the article of manufacture provided by the method itself, i.e., the improved crossover useful in densely-packaged integrated circuits.
  • Prior art crossover techniques have included point-to-point wiring and interlayer connections.
  • the former method requires twice the connections, and the manufacturing time is more than doubled. Additionally, the possibility of technician error in forming point-to-point connections reduces the reliability of the method.
  • Utilization of interlayer connections requires depositing conductors on separate substrates, a problem eliminated by the present invention. Improvement exhibited by the present invention over the prior art also includes doubling the density of units accommodatable in microelectronic packages and greatly reducing stray capacitance.
  • crossovers are accomplished by depositing an insulator on the conductor at the point of crossover.
  • the crossing conductor is deposited over the insulator.
  • the entire process is accomplished by three deposition steps.
  • the present method also includes a novel masking technique developed to facilitate the process.
  • the present method offers numerous advantages including design simplicity, quick reaction time, and low cost.
  • FIG. 1 is an enlarged perspective view of a simplified first conductor pattern which comprises the first step in the fabrication of a conductor crossover;
  • FIG. 2 is an enlarged perspective view of the second major step employed to produce a conductor crossover, i.e., the provision of an insulative pad over the first conductor pattern;
  • FIG. 3 depicts the conductor crossover which has been completed by provision of a simplified second conductor pattern superimposed on the first conductor pattern and insulative pad;
  • FIGS. 4a and 4b are plan views of typical first and second conductor pattern photo masks used to produce conductor patterns
  • FIG. 5 is a plan view of a mask pattern used for depositing insulative material on the patterned substrate
  • FIG. 6 is a perspective view showing a first step in the procedure employed to deposit insulative material on the patterned substrate
  • FIG. 7 is a perspective depicting the patterned substrate fitted with a deposition mask prior to deposition of insulative material onto the substrate;
  • FIG. 8 depicts a patterned substrate onto which insulative material has been deposited at points of conductor crossover.
  • FIG. 9 is a perspective of a finished microcircuit array having crossing conductors mutually insulated according to the present invention.
  • FIG. 1 depicts a first conductor pattern shown generally at I and which, in practice, is formed ona suitable substrate.
  • the first conductor pattern I is prepared using conventional layout techniques with conductors 3 and 5 lying in the same plane. Where a crossover is to occur, such as at 7 and 9, the conductors 5 are interrupted on either side of the conductors 3, or on either side of what would be the intersection of the conductors 3 and 5 if opposing conductors 5 were joined.
  • the manner of interrupting the conductors 5 is therefore pictured in FIG. I, the two conductors 3 being continuous and the two crossing conductors 5 being interrupted.
  • FIG. 2 illustrates the design of a dielectric pad II which is deposited over the four conductor crossover pattern of FIG. I.
  • the pad 11 must be large enough to cover the central portions of the continuous conductors 3 and overlap the confronting end portions of the conductor elements 5.
  • a second conductor pattern, shown at I3 in FIG. 3, is disposed over the pad 1 I and is a duplicate of the first conductor pattern I with a single exception, i.e., conductors 6 which correspond to and overlap the conductors 5 of the first pattern 1, are continuous on the second pattern 13 continuous conductors 8 which correspond to and overlap the conductors 3 of the first pattern I, are interrupted on the second pattern 13. Extensions 12 of the conductors 8, which are deposited as part of the second conductor pattern 13, overlap confronting edge portions of the dielectric pad 11 on either side of the conductors 6. These extensions 12 are included in the deposition of conductor pattern 13 in order to protect the conductors 3 of the first conductor pattern I.
  • extensions 12 comprise an important feature of the invention. As can be seen, the method described eliminates interlayer connections, such as plated through holes, and results in higher reliability than conventional interconnect patterns.
  • FIGS. 4a and 4b illustrate typical examples of the artwork necessary to produce a common crossover pattern.
  • Conductor pattern photo masks l5 and 17 are utilized for developing the desired patterns on the aluminized substrate.
  • metal conductor deposition techniques such as silk screen, evaporation through a mask, or evaporation followed by photolithographic etching, may be used to apply a metallic conductive layer to a suitable substrate.
  • the photolithographic process is preferably used with the present invention due to achievement thereby of greater size reductions and resistor tolerances.
  • FIG. 6 shows a substrate 19 with a first conductor pattern shown generally at 21 having been etched on the surface of the substrate.
  • the metal deposition and etching process used to produce the substrate I9 and pattern 21 are well known in the art; however, a brief description of a preferred manner of producing the patterned substrate follows.
  • Substrate materials suitable to the practice of the present invention using the photolithographic process include: Corning 02H Mierosheet glass, Coming 7059 Glass, and Al-Si-Mag 772 Unglazed Alumina with 8 microinch as-fired finish.
  • the Alumina proves to be the most difficult material to work with because of surface roughness.
  • the first deposition applied to the substrate 19 is a l2,000 A. layer of aluminum.
  • the aluminized substrate is stored in a vacuum desiccator at C. in order to protect the aluminum surface from dirt and oxidation.
  • a layer of photoresist is applied to the substrate 19 as soon as practical after the metallization.
  • a positive photoresist such as Shipley AZ 1350 has provided excellent results with glass substrates.
  • a negative photoresist such as Kodak KMER, is preferable on the rough surface of Alumina.
  • the first conductor pattern mask shown in FIG. 4a is placed over the substrate E9 to develop the photoresist.
  • Etching of the aluminum conductor pattern is accomplished with a phosphoric acid etch stock solution (540 ml. deionized water, 120 ml. nitric acid, 2400 ml. phosphoric acid) at 70 F. A typical etching rate of 1,000 A. per minute can be expected, thus, etching of the first conductor pattern should be complete in 12 minutes. Before removing the photoresist, the substrate should be thoroughly inspected to verify the completion of etching.
  • a phosphoric acid etch stock solution 540 ml. deionized water, 120 ml. nitric acid, 2400 ml. phosphoric acid
  • a dielectric material preferably silicon monoxide
  • silicon monoxide is not easily deposited in the presence of aluminum conductors without destroying the conductors, the insulative pads which separate the crossing conductors are deposited through a mask.
  • a novel masking technique is herein described using the mask pattern 23 shown in FIG. 5.
  • the photoresist is exposed and developed using the mask pattern 23 and the mask is etched in ferric chloride, 36 to 42 Baume.
  • the etch time is 5 minutes for the 0.002 inch thickness and 2 minutes for the 0.001 inch thickness Kovar mask 25, it should be stored in a vacuum dessicator.
  • FIG. 6 Mask alignment is illustrated in FIG. 6.
  • the mask 25 is placed over the patterned substrate 19 which has been preferably located on a vacuum pedestal 27.
  • the mask 25 is aligned with the aid of the alignment crosses 28 etched in the corners of the mask 25 and substrate 19.
  • a stereo microscope may be used to insure proper alignment.
  • the mask 25 is held in place while tabs 29 are bent around the edges of the substrate 19 as shown in FIG. 7, which shows the metal mask 25 in proper registration and fastened to the substrate 19.
  • the expansion coefficient of the substrate materials used is greater than that of Kovar.
  • the substrate 19 when the substrate 19 is raised to the 250 C. temperature normally used during the silicon monoxide deposition, it will expand more than the mask 25, thereby pulling the mask more snugly in contact with said substrate.
  • the mask tends to sag when heated.
  • the assembled substrate is and mask 25 is placed in a conventional vacuum deposition chamber (not shown) with the mask facing a silicon monoxide evaporation source contained in said chamber.
  • Upward evaporation with a mask-to-source distance of approximately 12 inches is a convenient workable arrangement.
  • the system is held at 250 C during the evaporation.
  • a thickness of 18,000 A. provides a satisfactory insulating pad.
  • H6. 8 illustrates silicon monoxide pads 31 deposited over the patterned substrate 19.
  • FIG. 9 illustrates the appearance of the substrate 19 after the second conductor pattern 17 has been etched.
  • the conductor circuit is 24,000 A. thick everywhere except at the crossovers where it is half that value.
  • the crossovers produced by the present method have been evaluated to determine their effect on high frequency or high impedance circuits.
  • the capacitance of a typical crossover using 0.005 inch width lines is less than one picofarad; the electrical resistance of a crossover exceeds 10 megohms.
  • the breakdown voltage exceeds 200 volts.
  • a silicon monoxide layer may be deposited over these elements in order to passivate the elements. This passivation layer is deposited concurrently with the crossover layer.
  • a method for fabricating crossovers useful in microelectronic circuitry comprising the steps of depositing a conductive metallic layer on a substrate;
  • the first-mentioned conductive metallic layer is comprised of a substance selected from the group consisting of aluminum, gold, copper, and nickel.
  • the second conductive metallic layer is comprised of a substance selected from the group consisting of aluminum, gold, copper, and nickel.
  • the layer of dielectric material is comprised of a substance selected from the group consisting of silicon oxide, silicon dioxide, and quartz.
  • said second conductor pattern atpoints of conductor cros-

Abstract

The subject invention relates to a method for providing crossovers in microelectronic circuitry. More particularly, the subject invention contemplates the fabrication of crossovers by deposition of insulative material on a conductor at the point of crossover and subsequent deposition of a crossing conductor over the insulative ''''bridge.'''' Additional advantages other than the elimination of point-to-point wiring methods include improved circuit reliability; room temperature circuit assembly; decreased manufacturing time; increased unit density; ''''flip-chip'''' utilization; and reduction of stray capacitance.

Description

United States Patent 3,439,416 4/1939 Yando lnventor Robert E. Hicks Baltimore, Md. Appl. No. 773,452 Filed Nov. 5, 1968 Patented Oct. 26, 1971 U H H Assignee "i"lieiiriiteil States of America as represented by the Secretary of the Navy CROSSOVER FOR LARGE SCALE AR RAYS 6 Claims, 10 Drawing Figs.
US. Cl 156/3, 156/17, 29/625, 1 17/217, 317/101,174/68.5 lnt. Cl H051: 1/00, H05k 3/06 Field of Search 156/3, 17; 29/625; 174/685; 117/217; 317/101 CX References Cited UNITED STATES PATENTS 3,421,985 1/1969 Baker etal 204/15 3,442,701 5/1969 Liepselter 117/212 3,510,349 5/1970 Jones 117/212 Primary Examiner-Jacob H. Steinberg AttorneysR. S. Sciascia and J. A. Cooke ABSTRACT: The subject invention relates to a method for providing crossovers in microelectronic circuitry. More particularly, the subject invention contemplates the fabrication of crossovers by deposition of insulative material on a conductor at the point of crossover and subsequent deposition of a crossing conductor over the insulative bridge." Additionaladvantages other than the elimination of point-to-point wiring methods include improved circuit reliability; room temperature circuit assembly; decreased manufacturing time; increased unit density; flip-chip utilization; and reduction of stray capacitance.
PATENTEDum 2s ISTI 3,815,949
SHEET 1 BF 5 INVENTOR ROBERT E. HICKS BY C).l
ATTO HY PATENTEDUU 2819?! 3,615,949 sum 2 0F 5 M QQ INVENTOR 5 ROBERT E. HICKS PATENTEnum 26 I9?! 3,615,949
sum 3 [1F 5 INVENTOR F'](; 6 ROBERT E. HICKS PATENTEDUBT 26 I9?! 3,615,949
SHEET '4 OF 5 INVENTOR ROBERT E. HICKS PATENTEnnm 28 ml 3,615,949
sum 5 UF 5 INVENTOR ROBERT E. HICKS BACKGROUND OF THE INVENTION 1. Field of the Invention The invention relates to a method for fabricating improved crossovers for microelectronic circuits. The invention also includes the article of manufacture provided by the method itself, i.e., the improved crossover useful in densely-packaged integrated circuits.
2. Description of the Prior Art Prior art crossover techniques have included point-to-point wiring and interlayer connections. The former method requires twice the connections, and the manufacturing time is more than doubled. Additionally, the possibility of technician error in forming point-to-point connections reduces the reliability of the method. Utilization of interlayer connections requires depositing conductors on separate substrates, a problem eliminated by the present invention. Improvement exhibited by the present invention over the prior art also includes doubling the density of units accommodatable in microelectronic packages and greatly reducing stray capacitance.
SUMMARY The problem of circuit crossovers complicates any array design. According to the present invention, crossovers are accomplished by depositing an insulator on the conductor at the point of crossover. The crossing conductor is deposited over the insulator. The entire process is accomplished by three deposition steps. The present method also includes a novel masking technique developed to facilitate the process. The present method offers numerous advantages including design simplicity, quick reaction time, and low cost.
Accordingly, it is an object of the present invention to provide a simple, highly reliable method of producing crossovers for microelectronic circuits.
It is another object of the invention to provide a low-cost crossover useful in integrated circuitry and which substantially reduces fabrication time.
It is a further object of the invention to provide a reliable circuit crossover which permits increased unit density.
Further objects and attendant advantages of the present invention will become more fullyappreciated in light of the following detailed description of the preferred method and article of manufacture thereof.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an enlarged perspective view of a simplified first conductor pattern which comprises the first step in the fabrication of a conductor crossover;
FIG. 2 is an enlarged perspective view of the second major step employed to produce a conductor crossover, i.e., the provision of an insulative pad over the first conductor pattern;
FIG. 3 depicts the conductor crossover which has been completed by provision of a simplified second conductor pattern superimposed on the first conductor pattern and insulative pad;
FIGS. 4a and 4b are plan views of typical first and second conductor pattern photo masks used to produce conductor patterns;
FIG. 5 is a plan view of a mask pattern used for depositing insulative material on the patterned substrate;
FIG. 6 is a perspective view showing a first step in the procedure employed to deposit insulative material on the patterned substrate;
FIG. 7 is a perspective depicting the patterned substrate fitted with a deposition mask prior to deposition of insulative material onto the substrate;
FIG. 8 depicts a patterned substrate onto which insulative material has been deposited at points of conductor crossover; and
FIG. 9 is a perspective of a finished microcircuit array having crossing conductors mutually insulated according to the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS A simplified step-by-step illustration of the present method is provided in FIGS. 1, 2, and 3. In these views the substrate has been omitted and the conductors and insulating pad greatly enlarged, for the sake of clarity. FIG. 1 depicts a first conductor pattern shown generally at I and which, in practice, is formed ona suitable substrate. The first conductor pattern I is prepared using conventional layout techniques with conductors 3 and 5 lying in the same plane. Where a crossover is to occur, such as at 7 and 9, the conductors 5 are interrupted on either side of the conductors 3, or on either side of what would be the intersection of the conductors 3 and 5 if opposing conductors 5 were joined. The manner of interrupting the conductors 5 is therefore pictured in FIG. I, the two conductors 3 being continuous and the two crossing conductors 5 being interrupted.
FIG. 2 illustrates the design of a dielectric pad II which is deposited over the four conductor crossover pattern of FIG. I. The pad 11 must be large enough to cover the central portions of the continuous conductors 3 and overlap the confronting end portions of the conductor elements 5.
A second conductor pattern, shown at I3 in FIG. 3, is disposed over the pad 1 I and is a duplicate of the first conductor pattern I with a single exception, i.e., conductors 6 which correspond to and overlap the conductors 5 of the first pattern 1, are continuous on the second pattern 13 continuous conductors 8 which correspond to and overlap the conductors 3 of the first pattern I, are interrupted on the second pattern 13. Extensions 12 of the conductors 8, which are deposited as part of the second conductor pattern 13, overlap confronting edge portions of the dielectric pad 11 on either side of the conductors 6. These extensions 12 are included in the deposition of conductor pattern 13 in order to protect the conductors 3 of the first conductor pattern I. That is, if the extensions 12 did not extend beyond the edges of the pad II, portions of the conductors 3 of the first conductor pattern would be removed during the etching of the second conductor pattern 13. Provision of the extensions 12 comprise an important feature of the invention. As can be seen, the method described eliminates interlayer connections, such as plated through holes, and results in higher reliability than conventional interconnect patterns.
FIGS. 4a and 4b illustrate typical examples of the artwork necessary to produce a common crossover pattern. Conductor pattern photo masks l5 and 17 are utilized for developing the desired patterns on the aluminized substrate.
Any number of metal conductor deposition techniques, such as silk screen, evaporation through a mask, or evaporation followed by photolithographic etching, may be used to apply a metallic conductive layer to a suitable substrate. The photolithographic process is preferably used with the present invention due to achievement thereby of greater size reductions and resistor tolerances.
FIG. 6 shows a substrate 19 with a first conductor pattern shown generally at 21 having been etched on the surface of the substrate. The metal deposition and etching process used to produce the substrate I9 and pattern 21 are well known in the art; however, a brief description of a preferred manner of producing the patterned substrate follows.
Substrate materials suitable to the practice of the present invention using the photolithographic process include: Corning 02H Mierosheet glass, Coming 7059 Glass, and Al-Si-Mag 772 Unglazed Alumina with 8 microinch as-fired finish. The Alumina proves to be the most difficult material to work with because of surface roughness.
The first deposition applied to the substrate 19 is a l2,000 A. layer of aluminum. The aluminized substrate is stored in a vacuum desiccator at C. in order to protect the aluminum surface from dirt and oxidation.
A layer of photoresist is applied to the substrate 19 as soon as practical after the metallization. A positive photoresist such as Shipley AZ 1350 has provided excellent results with glass substrates. A negative photoresist, such as Kodak KMER, is preferable on the rough surface of Alumina. The first conductor pattern mask shown in FIG. 4a is placed over the substrate E9 to develop the photoresist.
Etching of the aluminum conductor pattern is accomplished with a phosphoric acid etch stock solution (540 ml. deionized water, 120 ml. nitric acid, 2400 ml. phosphoric acid) at 70 F. A typical etching rate of 1,000 A. per minute can be expected, thus, etching of the first conductor pattern should be complete in 12 minutes. Before removing the photoresist, the substrate should be thoroughly inspected to verify the completion of etching.
A dielectric material, preferably silicon monoxide, is employed as the insulator at the crossovers. Since silicon monoxide is not easily deposited in the presence of aluminum conductors without destroying the conductors, the insulative pads which separate the crossing conductors are deposited through a mask. A novel masking technique is herein described using the mask pattern 23 shown in FIG. 5. A Kovar metal sheet of either 0.00] or 0.002 inch thickness, depending on the size and complexity of the mask, is used to fabricate a mask 25, shown in FIG. 6. Chemical milling is used to produce the pattern in the mask. Using KMEIR as a photoresist on the Kovar sheet, the photoresist is exposed and developed using the mask pattern 23 and the mask is etched in ferric chloride, 36 to 42 Baume. The etch time is 5 minutes for the 0.002 inch thickness and 2 minutes for the 0.001 inch thickness Kovar mask 25, it should be stored in a vacuum dessicator.
Mask alignment is illustrated in FIG. 6. The mask 25 is placed over the patterned substrate 19 which has been preferably located on a vacuum pedestal 27. The mask 25 is aligned with the aid of the alignment crosses 28 etched in the corners of the mask 25 and substrate 19. A stereo microscope may be used to insure proper alignment. The mask 25 is held in place while tabs 29 are bent around the edges of the substrate 19 as shown in FIG. 7, which shows the metal mask 25 in proper registration and fastened to the substrate 19.
In the 30 C. to 400 C. temperature range, the expansion coefficient of the substrate materials used is greater than that of Kovar. As a result, when the substrate 19 is raised to the 250 C. temperature normally used during the silicon monoxide deposition, it will expand more than the mask 25, thereby pulling the mask more snugly in contact with said substrate. When using other masking techniques, the mask tends to sag when heated.
The assembled substrate is and mask 25 is placed in a conventional vacuum deposition chamber (not shown) with the mask facing a silicon monoxide evaporation source contained in said chamber. Upward evaporation with a mask-to-source distance of approximately 12 inches is a convenient workable arrangement. As previously mentioned, the system is held at 250 C during the evaporation. A thickness of 18,000 A. provides a satisfactory insulating pad. H6. 8 illustrates silicon monoxide pads 31 deposited over the patterned substrate 19. After the silicon monoxide evaporation is complete, the substrate assembly is removed from the vacuum system and the metal mask 25 is removed from the substrate 19. The mask may be stored as previously described for reuse.
The substrate 19 is then returned to the aluminum evaporation system and a layer of aluminum 12,000 A. thick is evaporated over the entire surface. Photoresist is applied over this aluminum layer and is exposed with the second conductor pattern mask 17 properly aligned over the first conductor pattern 15. After development, the aluminum is etched. FIG. 9 illustrates the appearance of the substrate 19 after the second conductor pattern 17 has been etched. The conductor circuit is 24,000 A. thick everywhere except at the crossovers where it is half that value.
The crossovers produced by the present method have been evaluated to determine their effect on high frequency or high impedance circuits. The capacitance of a typical crossover using 0.005 inch width lines is less than one picofarad; the electrical resistance of a crossover exceeds 10 megohms. The breakdown voltage exceeds 200 volts. in circuits incorporating elements such as rhenium resistors, a silicon monoxide layer may be deposited over these elements in order to passivate the elements. This passivation layer is deposited concurrently with the crossover layer.
Although vacuum evaporation and subtractive etching processes have been described in using the present method, there are no obvious reasons why the present method would not be equally successful if executed by either a silk screen thick film process or an evaporation through masks process.
It is believed apparent that the practice and use of the present invention are not confined to the specific teachings related herein. The invention is not to be limited to the particular description provided herein, said description being given as a guide to the use of the invention and not as a limitation to the scope thereof.
I claim:
1. A method for fabricating crossovers useful in microelectronic circuitry comprising the steps of depositing a conductive metallic layer on a substrate;
removing portions of the metallic layer to produce a first conductor pattern on the substrate to define a continuous first conductor and an interrupted second conductor with portions on either side of the first conductor;
placing a patterned mask etched from a thin metal sheet over the substrate and first conductor pattern;
holding the mask in place along the perimeter of the mask whereby said mask will contact the substrate assembly snugly on application of a thermal influence;
depositing a layer of dielectric material through the patterned mask at points of conductor crossing;
depositing a second conductive metallic layer over the first conductor pattern and dielectric layer; and,
removing portions of the second metallic layer to produce a second conductor pattern, whereby the first conductor is continuous below the dielectric layer and interrupted on either side of the second conductor above the dielectric layer and the second crossing conductor is interrupted on either side of the first conductor below the dielectric layer and continuous above the dielectric layer.
2. The method for producing the microcircuit array of claim 1 wherein the first conductor which is interrupted above the dielectric layer is provided with extensions which overlap portions of the dielectric layer on either side of the second conductor.
3. The method of claim 1 wherein the first-mentioned conductive metallic layer is comprised of a substance selected from the group consisting of aluminum, gold, copper, and nickel.
4. The method of claim 3 wherein the second conductive metallic layer is comprised of a substance selected from the group consisting of aluminum, gold, copper, and nickel.
5. The method of claim 4 wherein the layer of dielectric material is comprised of a substance selected from the group consisting of silicon oxide, silicon dioxide, and quartz.
6. The method of forming crossovers in a microcircuit hybrid array which consists of the steps of depositing a layer of aluminum on a substrate,
applying a layer of photoresist to the aluminized substrate,
developing portions of the photoresist through a conductor pattern mask,
etching the layer of aluminum to produce a metallic conductor pattern on the substrate, said conductor pattern at points of conductor crossover having first conductors continuous through the points of conductor crossing and second conductors interrupted on either side of the points of conductor crossing,
stripping the remaining photoresist from the patterned substrate,
depositing layers of insulative material at the points on the metallic conductor pattern where conductor crossovers are required,
depositing a second layer of aluminum over the patterned substrate,
applying a layer of photoresist to said substrate,
developing portions of the photoresist through a second conductor pattern mask,
etching the second aluminum layer to produce a second conductor pattern superimposed over the first conductor pattern and insulative layers,
said second conductor pattern atpoints of conductor cros-

Claims (5)

  1. 2. The method for producing the microcircuit array of claim 1 wherein the first conductor which is interrupted above the dielectric layer is provided with extensions which overlap portIons of the dielectric layer on either side of the second conductor.
  2. 3. The method of claim 1 wherein the first-mentioned conductive metallic layer is comprised of a substance selected from the group consisting of aluminum, gold, copper, and nickel.
  3. 4. The method of claim 3 wherein the second conductive metallic layer is comprised of a substance selected from the group consisting of aluminum, gold, copper, and nickel.
  4. 5. The method of claim 4 wherein the layer of dielectric material is comprised of a substance selected from the group consisting of silicon oxide, silicon dioxide, and quartz.
  5. 6. The method of forming crossovers in a microcircuit hybrid array which consists of the steps of depositing a layer of aluminum on a substrate, applying a layer of photoresist to the aluminized substrate, developing portions of the photoresist through a conductor pattern mask, etching the layer of aluminum to produce a metallic conductor pattern on the substrate, said conductor pattern at points of conductor crossover having first conductors continuous through the points of conductor crossing and second conductors interrupted on either side of the points of conductor crossing, stripping the remaining photoresist from the patterned substrate, depositing layers of insulative material at the points on the metallic conductor pattern where conductor crossovers are required, depositing a second layer of aluminum over the patterned substrate, applying a layer of photoresist to said substrate, developing portions of the photoresist through a second conductor pattern mask, etching the second aluminum layer to produce a second conductor pattern superimposed over the first conductor pattern and insulative layers, said second conductor pattern at points of conductor crossover having continuous conductors surmounting the insulative layers and joining the interrupted second conductors of the first conductor pattern, thereby causing said second conductors of the first conductor pattern to be continuous above the insulative layers for producing conductor crossovers, the first conductors of the crossover being continuous below the insulative layers and the second conductors of said crossovers being continuous above the insulative layers, and stripping the remaining photoresist to produce a finished array.
US773452A 1968-11-05 1968-11-05 Crossover for large scale arrays Expired - Lifetime US3615949A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US77345268A 1968-11-05 1968-11-05

Publications (1)

Publication Number Publication Date
US3615949A true US3615949A (en) 1971-10-26

Family

ID=25098313

Family Applications (1)

Application Number Title Priority Date Filing Date
US773452A Expired - Lifetime US3615949A (en) 1968-11-05 1968-11-05 Crossover for large scale arrays

Country Status (1)

Country Link
US (1) US3615949A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3729816A (en) * 1971-12-02 1973-05-01 Western Electric Co Method of forming a circuit
US3762040A (en) * 1971-10-06 1973-10-02 Western Electric Co Method of forming circuit crossovers
US3774079A (en) * 1971-06-25 1973-11-20 Ibm Monolithically fabricated tranistor circuit with multilayer conductive patterns
US3774989A (en) * 1971-10-23 1973-11-27 Ise Electronics Corp Pattern display apparatus
US3816172A (en) * 1970-11-04 1974-06-11 L Hoffman Nonreducible partially crystallized crossover dielectrics
US3856591A (en) * 1972-12-11 1974-12-24 Rca Corp Method for making beam lead device
US3876912A (en) * 1972-07-21 1975-04-08 Harris Intertype Corp Thin film resistor crossovers for integrated circuits
US3900883A (en) * 1972-10-02 1975-08-19 Matsushita Electric Ind Co Ltd Photoconductive cell matrix assembly
FR2470518A1 (en) * 1979-11-23 1981-05-29 Thomson Csf CONNECTION METHOD, FOR MULTIPLEXING ELECTRONIC MICROCIRCUITS, AND WRITTEN READING HEAD AND DISPLAY PANEL USING THE SAME
US4288840A (en) * 1978-09-26 1981-09-08 Matsushita Electric Industrial Co., Ltd. Printed circuit board
EP0317011A2 (en) * 1987-11-20 1989-05-24 Philips Electronics Uk Limited Multi-level circuits, methods for their fabrication, and display devices incorporating such circuits
US6008105A (en) * 1995-07-04 1999-12-28 Matsushita Electric Industrial Co., Ltd. Method of planarizing an insulator film using multiple etching steps
WO2005009095A1 (en) * 2003-07-12 2005-01-27 Hewlett-Packard Development Company, L.P. A cross-over of conductive interconnects and a method of crossing conductive interconnects
GB2438697A (en) * 2003-07-12 2007-12-05 Hewlett Packard Development Co A cross-over of conductive interconnects and a method of crossing conductive interconnects
US20090057000A1 (en) * 2007-08-29 2009-03-05 Osram Gesellschaft Mit Beschrankter Haftung Connecting element
US20140290982A1 (en) * 2013-03-28 2014-10-02 Samsung Electro-Mechanics Co., Ltd. Printed circuit board and method for manufacturing the same
US20190239354A1 (en) * 2017-01-06 2019-08-01 Joinset Co., Ltd. Metal pad interface

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3816172A (en) * 1970-11-04 1974-06-11 L Hoffman Nonreducible partially crystallized crossover dielectrics
US3774079A (en) * 1971-06-25 1973-11-20 Ibm Monolithically fabricated tranistor circuit with multilayer conductive patterns
US3762040A (en) * 1971-10-06 1973-10-02 Western Electric Co Method of forming circuit crossovers
US3774989A (en) * 1971-10-23 1973-11-27 Ise Electronics Corp Pattern display apparatus
US3729816A (en) * 1971-12-02 1973-05-01 Western Electric Co Method of forming a circuit
US3876912A (en) * 1972-07-21 1975-04-08 Harris Intertype Corp Thin film resistor crossovers for integrated circuits
US3900883A (en) * 1972-10-02 1975-08-19 Matsushita Electric Ind Co Ltd Photoconductive cell matrix assembly
US3856591A (en) * 1972-12-11 1974-12-24 Rca Corp Method for making beam lead device
US4288840A (en) * 1978-09-26 1981-09-08 Matsushita Electric Industrial Co., Ltd. Printed circuit board
FR2470518A1 (en) * 1979-11-23 1981-05-29 Thomson Csf CONNECTION METHOD, FOR MULTIPLEXING ELECTRONIC MICROCIRCUITS, AND WRITTEN READING HEAD AND DISPLAY PANEL USING THE SAME
EP0030167A1 (en) * 1979-11-23 1981-06-10 Thomson-Csf Connecting device for the multiplexing of electronic microcircuits, and read-write head and display panel using this method
EP0317011A3 (en) * 1987-11-20 1990-06-20 Philips Electronics Uk Limited Multi-level circuits, methods for their fabrication, and display devices incorporating such circuits
EP0317011A2 (en) * 1987-11-20 1989-05-24 Philips Electronics Uk Limited Multi-level circuits, methods for their fabrication, and display devices incorporating such circuits
US6008105A (en) * 1995-07-04 1999-12-28 Matsushita Electric Industrial Co., Ltd. Method of planarizing an insulator film using multiple etching steps
GB2438697A (en) * 2003-07-12 2007-12-05 Hewlett Packard Development Co A cross-over of conductive interconnects and a method of crossing conductive interconnects
GB2423194A (en) * 2003-07-12 2006-08-16 Hewlett Packard Development Co A Cross-Over Of Conductive Interconnects And A Method Of Crossing Conductive Interconnects
US20070033796A1 (en) * 2003-07-12 2007-02-15 Hewlett-Packard Development Company, L.P. Cross-over of conductive interconnects and a method of crossing conductive interconnects
GB2423194B (en) * 2003-07-12 2007-11-14 Hewlett Packard Development Co A Cross-Over Of Conductive Interconnects And A Method Of Crossing Conductive Interconnects
WO2005009095A1 (en) * 2003-07-12 2005-01-27 Hewlett-Packard Development Company, L.P. A cross-over of conductive interconnects and a method of crossing conductive interconnects
GB2438697B (en) * 2003-07-12 2008-04-16 Hewlett Packard Development Co A cross-over of conductive interconnects and a method of crossing conductive interconnects
US7745735B2 (en) 2003-07-12 2010-06-29 Hewlett-Packard Development Company, L.P. Cross-over of conductive interconnects and a method of crossing conductive interconnects
US20090057000A1 (en) * 2007-08-29 2009-03-05 Osram Gesellschaft Mit Beschrankter Haftung Connecting element
US8344267B2 (en) * 2007-08-29 2013-01-01 OsramGesellschaft mit beschraenkter Haftung LED luminous module with crossover connecting element
US20140290982A1 (en) * 2013-03-28 2014-10-02 Samsung Electro-Mechanics Co., Ltd. Printed circuit board and method for manufacturing the same
US20190239354A1 (en) * 2017-01-06 2019-08-01 Joinset Co., Ltd. Metal pad interface

Similar Documents

Publication Publication Date Title
US3615949A (en) Crossover for large scale arrays
US3290753A (en) Method of making semiconductor integrated circuit elements
US3335338A (en) Integrated circuit device and method
US4770897A (en) Multilayer interconnection system for multichip high performance semiconductor packaging
US3423260A (en) Method of making a thin film circuit having a resistor-conductor pattern
US3876912A (en) Thin film resistor crossovers for integrated circuits
JPH0226392B2 (en)
JPH0213949B2 (en)
US3681134A (en) Microelectronic conductor configurations and methods of making the same
US4172758A (en) Magnetic bubble domain device fabrication technique
GB1285525A (en) Masking techniques for use in fabricating microelectronic components and articles produced thereby
US3222173A (en) Method of making an electrical unit
US3693251A (en) Method of forming closely spaced conductive layers
US5200300A (en) Methods for forming high density multi-chip carriers
GB2221353A (en) Manufacturing electrical circuits
US4317700A (en) Method of fabrication of planar bubble domain device structures
JPH05502138A (en) Interconnects in multilayer wiring and methods of forming them
US3700445A (en) Photoresist processing method for fabricating etched microcircuits
US3783056A (en) Technique for the fabrication of an air isolated crossover
US3447038A (en) Method and apparatus for interconnecting microelectronic circuit wafers
GB1187916A (en) Multilayer Printed Circuit Board and Method for Manufacturing Same.
JPS5928990B2 (en) semiconductor equipment
US3779841A (en) Fabrication of thin film resistor crossovers for integrated circuits
JPH07297590A (en) Method of forming wiring of coaxial structure
US4358339A (en) Method of fabrication of bubble domain device structures