US3600904A - Control for refrigeration system - Google Patents

Control for refrigeration system Download PDF

Info

Publication number
US3600904A
US3600904A US828249A US3600904DA US3600904A US 3600904 A US3600904 A US 3600904A US 828249 A US828249 A US 828249A US 3600904D A US3600904D A US 3600904DA US 3600904 A US3600904 A US 3600904A
Authority
US
United States
Prior art keywords
sump
liquid
evaporator
refrigerant
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US828249A
Inventor
Ralph B Tilney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emerson Electric Co
Original Assignee
Emerson Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emerson Electric Co filed Critical Emerson Electric Co
Application granted granted Critical
Publication of US3600904A publication Critical patent/US3600904A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/315Expansion valves actuated by floats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure

Definitions

  • CONTROL FOR REFRIGERATHON SYSTEM ABSTRACT A control in a refrigeration system to control the acmmstsnmwing 22L rate of flovv of refrigerant to the evaporator In response to variations in rate of flow of liquid refrigerant from the [52] US. Cl. 62/196, evap0mmr A sump in the Suction line between the evaporator 62/22l- 62/503,62/D1G- 2 and compressor for collecting liquid discharged with vapor [51] Int. Cl. F25b41/00 f the evaporaton A pump f pumping liquid at a [50] Field of Search 4. ..62/l96.
  • a liquid level sensor for sensing changes in the level of liquid within the [56] References (med sump and for controlling operation of an expansion valve on UNITED STATES PATENTS the inlet side of the evaporator in response to variations of 2,032,286 2/1936 Kitzmiller 62/498 liquid within the sump.
  • This control regulates operation of an expansion valve in a refrigeration system.
  • the expansion valve is connected between the condenser and the evaporator of the refrigeration system with the compressor having its suction side supplied from the evaporator and having its discharge side connected to the condenser.
  • the control includes a sump connected on the outlet side of the evaporator. Refrigerant flowing from the evaporator is discharged into the upper end of the sump to permit liquid refrigerant to fall to the lower end of the sump while refrigerant vapor remains in the upper end of the sump.
  • a tube leads from the suction side of the compressor so that when the compressor operates, it draws refrigerant vapor from the upper end of the sump.
  • a pump delivers liquid refrigerant from the lower end of the sump at a controlled rate into mixture with the vapor being supplied to the compressor.
  • the level of liquid within the sump tends to vary with the rates of evaporation of refrigerant in the evaporator and, of course, with the rate of supply of refrigerant to the evaporator as set by the expansion valve.
  • FIG. 1 is a schematic diagram of a refrigeration system having the control of this invention and utilizing a mechanical P p
  • FIG. 2 is a schematic diagram showing the use of an aspirating pump in the control system
  • FIG. 3 is an enlarged sectional view of a venturi-type aspirating pump used in the control illustrated in FIG. 2;
  • FIG. 4 is a schematic section view of a combination sump and head pump replacing the sump and pump of FIG. 1 or FIG. 2;
  • FIG. 5 is a schematic diagram of one form of control of the expansion valve according to liquid level within the sump.
  • FIG. 6 is a schematic sectional view of another form of control of the expansion valve according to the liquid level in the sump.
  • the system 10 has a compressor 11, a condenser 12, an expansion valve 13, and an evaporator 14.
  • the discharge side of the compressor 11 is connected by a tube 15 to the inlet to the condenser 12.
  • the condenser outlet is connected by a tube 16 to the inlet to the expansion valve 13.
  • the outlet from the expansion valve 13 is connected by a tube 17 to the inlet to the evaporator 14.
  • a tube 18 leads from the outlet of the evaporator 14 to a sump 19.
  • the tube 18 is connected through an opening 20 in a sidewall of the sump 19 adjacent the upper end of the sump 19.
  • Another tube 21 extends through an opening in a wall adjacent the upper end of the sump 19 and leads to a tube 22 connected to the suction side of the compressor 11.
  • a tube 23 extends through an opening 24 in a wall adjacent the bottom of the sump l9 and leads to a pump 25, such as a conventional mechanical pump.
  • the discharge side of the pump25 is connected by a tube 26 to the juncture between the tubes 21 and 22.
  • the sump 19 is vapor tight and has a suitable liquid level sensor 27 within it.
  • a control means 28 of any desired kind is connected from the liquid level sensor 27 to the valve 13 for controlling operation of the valve 13 in response to variations ofthe liquid level within the sump 19.
  • FIG. 1 OPERATION OF THE CONTROL SYSTE MOF
  • the refrigeration system operates in the usual manner with the compressor 11 receiving low pressure vapor from the tube 22 and discharging high pressure vapor through the tube 15 to the condenser 12 where the vapor is condensed to liquid.
  • the liquid is supplied from the condenser 12 through the tube 16 to the expansion valve 13.
  • The-expansion valve 13 regulates the rate of supply of the liquid to the evaporator 14 and also lowers the pressure of the liquid that is supplied to the evaporator.
  • the vapor or gas with a small amount of liquid travels through the tube 18 and the opening 20 to the sump 19.
  • the liquid level sensor 27 and its means for delivering a controlled signal through the connection 28 may be of any suitable design.
  • the pump 25 may be of any suitable design.
  • Liquid is collected in the sump 19 as liquid is discharged with the vapor from the evaporator 14.
  • the purpose of the sump 19 is to control operation of the expansion valve 13 to regulate the flow of liquid to the evaporator 14 in response to the rate of flow of liquid from the evaporator 14 to the sump 19.
  • the refrigerant discharged from the evaporator primarily constitutes vapor with only a very small percentage of liquid.
  • This liquid is admitted with the vapor through the opening 20 to the sump l9, and the liquid falls by gravity to the lower portion of the sump l9.
  • the inlet 20 may be tangential to the sidewall of the sump 19 to facilitate downward separation of the liquid as the refrigerant swirls in a vortex at the upper end of the sump.
  • the pump 25 is avery low capacity pump, having only a small fraction of the flow capacity of the compressor 11.
  • the pump 25 draws liquid at a low but controlled rate from the sump l9 and discharges the liquid through the tube 26 into the tube 22 that supplies refrigerant to the compressor 11. This small amount of liquid will normally be vaporized by heat generated by operation of the compressor 11 and the compressor motor.
  • the small and controlled rate of flow of liquid refrigerant to the compressor 11 helps cool the compre: w motor.
  • the refrigerant flowing through the tube 18 from the evaporator 14 will contain more than the normal amount of liquid.
  • this greater amount of liquid enters the sump 19, it raises the level of liquid within the sump 19 since the pump 25 is always withdrawing liquid at a constant rate.
  • the liquid level sensor 27 transmits a signal through the control means 28 to the expansion valve 13 to either throttle or close the expansion valve 13.
  • control of this invention improves the efficiency of the evaporator 14 by reducing the required heat exchange surface in the evaporator which would otherwise be required for superheating the refrigerant before the refrigerant emerges from the evaporator.
  • a small but controlled rate of flow of liquid is supplied to the compressor 11. This small and controlled amount of liquid provides some cooling for the compressor motor.
  • FIG. 2 illustrates a modification of the control system wherein all the components are identical to those shown and described in connection with FIG. 1 except that, in place of the mechanical pump 25, the control system of FIG. 2 has an aspirating pump 31 located at the juncture of the tubes 21, 22 and 23.
  • the aspirating pump 31 is shown in further detail in FIG. 3.
  • the tube 21 leads to a converging section 32 and the tube 22 leads from a diverging section 33. Between the converging section 31 and the diverging section 33, there is a short restricted venturi passage 34. The tube 23 leading from the lower end of the sump 19 is connected into the short restricted passage 34.
  • the venturi pump 31 as illustrated in FIG.
  • venturi pump 21 depends upon the flow of refrigerant vapor to create the pumping suction flow of liquid refrigerant, no liquid refrigerant flows through the compressor when the compressor 11 stops during an off cycle.
  • FIG. 4 illustrates a combined sump and head pump 36 that may be substituted. for .both the sump 19 and the pump 25 of FIG. 1.
  • the tube ISI'eading from the evaporator is connected through an openirrgz37 at the upper end of the combined sump and head pump 36.
  • the tube 23 is connected directly to the suction side ofthe compressor 11 and it has a vertical section 38 that extends through an opening 39 in the bottom of the combined sump and head pump 36 and thence upwardly.
  • the upper end 40 of the tube section 38 is open and is well above the level of liquid within the sump and head pump 36 so that only vapor can enter the Openend 40.
  • the small orifice 41 is positioned below the level of liquid within the sump and head pump 36.
  • the orifice 41 is sized to meter a desired constant rate of flow of liquid into the tube section 38 to be mixed with the vapor therein.
  • the rate of flow of liquid through the small orifice 41 is a function of the size of the orifice, and flow is produced by virtue of the liquid head within the sump and head pump 36.
  • the liquid level sensor 27 senses variations in the level of liquid within the sump and head pump 36 and transmits these sensed variations by the control means 28 to control operation of the expansion valve 13.
  • FIGS. and 6 illustrate two ways in which the expansion valve 13 may be controlled by a liquid level sensor.
  • the liquid level sensor 27 includes a high electrical contact probe 44 that is located within the sump 19 to be contacted by the liquid within the sump only when the liquid has risen to a predetermined high value. and a low electrical contact probe 45 that is submerged within the bath of liquid within the sump I9 and is always in contact with the liquid.
  • the high probe 44 is connected by a conductor 46 through a solenoid coil 47 to one side 48 ofa power supply.
  • the low probe 45 is connected through a conductor 49 to the other side 50 of the power supply.
  • the solenoid coil 47 has the usual connection 51 to alternately open and close the expansion valve 13.
  • the circuit that includes the solenoid coil 47 is open and the coil 47 is deenergized.
  • the valve 13 is open to permit refrigerant to circulate through the evaporator 14.
  • the circuit to the solenoid coil 47 is closed.
  • the valve 13 closes, interrupting the flow of refrigerant to the evaporator 14.
  • liquid from the sump 19 is gradually pumped by the pump 25 at a controlled rate of flow for mixture with the vapor that flows from the upper end of the sump through the tube 21.
  • the circuit to the solenoid coil 47 is again broken, and the expansion valve 13 is again opened to admit refrigerant to the evaporator 14.
  • FIG. 6 illustrates another form of liquid level sensor 27 for controlling operation of the expansion valve 13.
  • the expansion valve 13 has a housing 54 with an internal wall 55 separating the interior housing into an inlet chamber 56 and an outlet chamber 57.
  • a valve passage 58 through the wall 55 establishes communication between the inlet chamber 56 and the outlet chamber 57.
  • the tube 16 extends through the housing 54 to deliver refrigerant to the inlet chamber 56.
  • the tube 17 extends through the housing 57 to withdraw refrigerant from the outlet chamber 57.
  • a valve member 59 is movable toward and away from the valve passage 58 to block or vary the rate of flow of refrigerant through the valve passage 58.
  • the housing 54 is mounted to and extends upwardly from the sump 19.
  • a float 60 within the sump 19 rises and falls with rising and falling of the liquid level within the sump 19.
  • a rod 61 is connected between the float 60 and the valve member 59 to cause the valve member 59 to follow movement of the float 60.
  • the sidewalls of the bellows 63 are parallel to maintain a constant cross-sectional area the same as that of the valve passage 58.
  • valve member 59 is so positioned that refrigerant flows from the tube 16 to the valve opening 58 to the tube 17 and to the evaporator at a ratesuch that the rate of liquid refrigerant flowing from the evaporator to the sump via tube 18 is equal to the rate that liquid refrigerant is being pumped out of the bottom of the sump by the pump.
  • the load on the evaporator varies, varying the rate of evaporation of liquid, the amount of liquid remaining within the sump 19 will vary, causing the level of liquid within the sump 19 to change.
  • the float 60 drops, drawing the valve member 59 further from the valve opening 58 and permitting more refrigerant to flow to the evaporator 14.
  • the valve member 59 moves toward the valve opening 58, throttling the flow of refrigerant through the valve. If the liquid level within the sump 19 rises sufficiently high because of reduced load in the evaporator 14, the valve member 59 moves into contact with the wall 55, completely blocking the flow of refrigerant to the evaporator 14.
  • FIGS. 5 and 6 are examples of liquid level sensors for operating an expansion valve 13 in either open or closed positions or operating an expansion valve 13 through throttling positions between wide open and closed positions.
  • the expansion valve is operated to control the rate of flow of refrigerant to the evaporator in response to and as a function of the rate of withdrawal of liquid from the sump 19.
  • other controls for accomplishing the results of the controls of FIGS. 5 and 6 may be used.
  • a control for controlling the expansion valve to regulate the rate of flow of refrigerant to the evaporator comprising, a sump, tube means leading from the outlet side of the evaporator to the sump, the tube means being connected into the sump at a point to permit liquid refrigerant to fall to the lower end of the sump with vapor remaining in the upper end of the sump above the liquid level therein, tube means for supplying vapor from the upper end of the sump to the suction side of the compressor, a head pump for withdrawing liquid from the sump at a predetermined rate of flow, the pump comprising a tube having an open upper end positioned above the liquid level within the sump, the tube extending downwardly through the sump and having its other end connected to the suction side of the compressor, and a metering hole in the side of the tube
  • the means to vary the size of the expansion valve opening includes an element for alternately throttling and enlarging the expansion valve opening in response to rising and falling of liquid within the sump.
  • a control for controlling the expansion valve to regulate the rate of flow of refrigerant to the evaporator comprising, a sump, tube means leading from the outlet side of the evaporator to the sump, the tube means being connected into the sump at a point to permit liquid refrigerant to fall to the lower end of the sump with vapor remaining in the upper end of the sump above the liquid level therein, tube means for supplying vapor from the upper end of the sump to the suction side of the compressor, an aspirating pump for withdrawing liquid from the sump at a predetermined rate of flow, the aspirating pump including a venturi section in the tube means for supplying vapor from the upper end of the sump to the compressor, and tube means leading from the lower end of the sump to the venturi section, and means to vary the size of the expansion valve

Abstract

A control in a refrigeration system to control the rate of flow of refrigerant to the evaporator in response to variations in rate of flow of liquid refrigerant from the evaporator. A sump in the suction line between the evaporator and compressor for collecting liquid discharged with vapor from the evaporator. A pump for pumping liquid at a controlled rate from the sump for mixture with the vapor supplied from the upper end of the sump to the compressor. A liquid level sensor for sensing changes in the level of liquid within the sump and for controlling operation of an expansion valve on the inlet side of the evaporator in response to variations of liquid within the sump.

Description

T i Uite States t 1 mosses [72] Inventor Ralph Bflimey 2,892,320 6/1959 Quick 62/471 X Saint Louis, Mo. 2,953,906 9/1960 Quick 62/503 5:3 1969 Primary ExaminerMeyer Perlin 1e w 1 Patented g 1971 Attorney Kingsland, Rogers, Ezell, Ellers & Robbins [73] Assignee Emerson Electric Co.
54] CONTROL FOR REFRIGERATHON SYSTEM ABSTRACT: A control in a refrigeration system to control the acmmstsnmwing 22L rate of flovv of refrigerant to the evaporator In response to variations in rate of flow of liquid refrigerant from the [52] US. Cl. 62/196, evap0mmr A sump in the Suction line between the evaporator 62/22l- 62/503,62/D1G- 2 and compressor for collecting liquid discharged with vapor [51] Int. Cl. F25b41/00 f the evaporaton A pump f pumping liquid at a [50] Field of Search 4. ..62/l96. 498 troued rate f the Sump f mixture with the vapor Supplied 220, 471 from the upper end of the sump to the compressor. A liquid level sensor for sensing changes in the level of liquid within the [56] References (med sump and for controlling operation of an expansion valve on UNITED STATES PATENTS the inlet side of the evaporator in response to variations of 2,032,286 2/1936 Kitzmiller 62/498 liquid within the sump.
I? l w I i l U10 LE VEQ, l4 Fem/Treat 5 IGNA 1.
(22 CONDENS ff 70 L/Q 0/0 4 EVEL M25 com /e55 0, EVAPORATOR I 26 .J
CONTROL FOR REFRIGERATION SYSTEM BRIEF DESCRIPTION OF THE INVENTION This control regulates operation of an expansion valve in a refrigeration system. The expansion valve is connected between the condenser and the evaporator of the refrigeration system with the compressor having its suction side supplied from the evaporator and having its discharge side connected to the condenser. The control includes a sump connected on the outlet side of the evaporator. Refrigerant flowing from the evaporator is discharged into the upper end of the sump to permit liquid refrigerant to fall to the lower end of the sump while refrigerant vapor remains in the upper end of the sump. A tube leads from the suction side of the compressor so that when the compressor operates, it draws refrigerant vapor from the upper end of the sump. A pump delivers liquid refrigerant from the lower end of the sump at a controlled rate into mixture with the vapor being supplied to the compressor.
The level of liquid within the sump tends to vary with the rates of evaporation of refrigerant in the evaporator and, of course, with the rate of supply of refrigerant to the evaporator as set by the expansion valve. There is a liquid level sensor within the sump to sense these variations in liquid level with a means for controlling operation of the expansion valve in response to variations in the level of liquid within the sump. In this manner, the control regulates operation of the expansion valve to cause the rate of supply of liquid refrigerant to the evaporator to be varied in direct response to variations in the rate of flow of liquid from the evaporator.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a refrigeration system having the control of this invention and utilizing a mechanical P p FIG. 2 is a schematic diagram showing the use of an aspirating pump in the control system;
FIG. 3 is an enlarged sectional view of a venturi-type aspirating pump used in the control illustrated in FIG. 2;
FIG. 4 is a schematic section view of a combination sump and head pump replacing the sump and pump of FIG. 1 or FIG. 2;
FIG. 5 is a schematic diagram of one form of control of the expansion valve according to liquid level within the sump; and
FIG. 6 is a schematic sectional view of another form of control of the expansion valve according to the liquid level in the sump.
DETAILED DESCRIPTION OF THE INVENTION As shown in FIG. 1, the system 10 has a compressor 11, a condenser 12, an expansion valve 13, and an evaporator 14. The discharge side of the compressor 11 is connected by a tube 15 to the inlet to the condenser 12. The condenser outlet is connected by a tube 16 to the inlet to the expansion valve 13. The outlet from the expansion valve 13 is connected by a tube 17 to the inlet to the evaporator 14. A tube 18 leads from the outlet of the evaporator 14 to a sump 19. The tube 18 is connected through an opening 20 in a sidewall of the sump 19 adjacent the upper end of the sump 19. Another tube 21 extends through an opening in a wall adjacent the upper end of the sump 19 and leads to a tube 22 connected to the suction side of the compressor 11. A tube 23 extends through an opening 24 in a wall adjacent the bottom of the sump l9 and leads to a pump 25, such as a conventional mechanical pump. The discharge side of the pump25 is connected by a tube 26 to the juncture between the tubes 21 and 22.
The sump 19 is vapor tight and has a suitable liquid level sensor 27 within it. A control means 28 of any desired kind is connected from the liquid level sensor 27 to the valve 13 for controlling operation of the valve 13 in response to variations ofthe liquid level within the sump 19.
OPERATION OF THE CONTROL SYSTE MOF FIG. 1
The refrigeration system operates in the usual manner with the compressor 11 receiving low pressure vapor from the tube 22 and discharging high pressure vapor through the tube 15 to the condenser 12 where the vapor is condensed to liquid. The liquid is supplied from the condenser 12 through the tube 16 to the expansion valve 13. The-expansion valve 13 regulates the rate of supply of the liquid to the evaporator 14 and also lowers the pressure of the liquid that is supplied to the evaporator. As the liquid refrigerant circulates through the evaporator 14, it absorbs heat from the medium surrounding the evaporator 14, changing the state of most of the refrigerant from liquid to vapor or gas. The vapor or gas with a small amount of liquid travels through the tube 18 and the opening 20 to the sump 19. Since the opening 20 is adjacent the upper end of the sump l9, liquid refrigerant entering from the tube 18 can fall toward the lower end of the sump 19 while the vapor occupies the space above the liquid level within the sump 19. Since the tube 21 is connected through an opening adjacent the upper end of the sump l9 and above the liquid level therein, no liquid will flow through the tube 21, and vapor from the sump 19 can flow through the tube 21 and the tube 22 to the suction side of the compressor 1 1.
The liquid level sensor 27 and its means for delivering a controlled signal through the connection 28 may be of any suitable design. Likewise, the pump 25 may be of any suitable design.
Liquid is collected in the sump 19 as liquid is discharged with the vapor from the evaporator 14. The purpose of the sump 19 is to control operation of the expansion valve 13 to regulate the flow of liquid to the evaporator 14 in response to the rate of flow of liquid from the evaporator 14 to the sump 19. Under ideal operating conditions, the refrigerant discharged from the evaporator primarily constitutes vapor with only a very small percentage of liquid. This liquid is admitted with the vapor through the opening 20 to the sump l9, and the liquid falls by gravity to the lower portion of the sump l9. lfdesired, the inlet 20 may be tangential to the sidewall of the sump 19 to facilitate downward separation of the liquid as the refrigerant swirls in a vortex at the upper end of the sump.
The pump 25 is avery low capacity pump, having only a small fraction of the flow capacity of the compressor 11. The pump 25 draws liquid at a low but controlled rate from the sump l9 and discharges the liquid through the tube 26 into the tube 22 that supplies refrigerant to the compressor 11. This small amount of liquid will normally be vaporized by heat generated by operation of the compressor 11 and the compressor motor. The small and controlled rate of flow of liquid refrigerant to the compressor 11 helps cool the compre: w motor.
If the load on the evaporator 14 is reduced, or if the rate of supply of refrigerant to the evaporator 14 is too high for any other reason, less than the optimum rate of evaporation of the refrigerant will take place. Consequently, the refrigerant flowing through the tube 18 from the evaporator 14 will contain more than the normal amount of liquid. When this greater amount of liquid enters the sump 19, it raises the level of liquid within the sump 19 since the pump 25 is always withdrawing liquid at a constant rate. When the liquid level within the sump 19 rises, the rising level is sensed by the liquid level sensor 27. The sensor 27 transmits a signal through the control means 28 to the expansion valve 13 to either throttle or close the expansion valve 13. This reduces or stops the flow of refrigerant through the evaporator so that less liquid refrigerant is available in the evaporator for absorption of heat from the surrounding medium. Consequently, a greater proportion of the refrigerant will be evaporated in the evaporator, decreasing the rate of supply of liquid from the evaporator 14 to the sump 19. As the rate of liquid supplied to the sump 19 decreases, due to reduced or wholly interrupted supply of refrigerant to the evaporator 14, the liquid level within the sump 19 drops, inasmuch as the pump 25 continues to pump liquid from the sump 19 at its normal rate. As the liquid level within the sump 19 drops, the lowered liquid level is sensed by the liquid level sensor 27 and it transmits a signal through the control means 28 to the valve 13 to open the valve.
Thus the control of this invention improves the efficiency of the evaporator 14 by reducing the required heat exchange surface in the evaporator which would otherwise be required for superheating the refrigerant before the refrigerant emerges from the evaporator. In addition, a small but controlled rate of flow of liquid is supplied to the compressor 11. This small and controlled amount of liquid provides some cooling for the compressor motor.
FIG. 2 illustrates a modification of the control system wherein all the components are identical to those shown and described in connection with FIG. 1 except that, in place of the mechanical pump 25, the control system of FIG. 2 has an aspirating pump 31 located at the juncture of the tubes 21, 22 and 23. The aspirating pump 31 is shown in further detail in FIG. 3. In this aspirating pump 31, the tube 21 leads to a converging section 32 and the tube 22 leads from a diverging section 33. Between the converging section 31 and the diverging section 33, there is a short restricted venturi passage 34. The tube 23 leading from the lower end of the sump 19 is connected into the short restricted passage 34. Thus, the venturi pump 31, as illustrated in FIG. 3, creates a venturi effect in the known manner, with the reduction in pressure of the refrigeragt; vapor that flows through the restricted passage 34 creating a suction that draws liquid refrigerant from the sump 19 through the tube 23. Since the venturi pump 21 depends upon the flow of refrigerant vapor to create the pumping suction flow of liquid refrigerant, no liquid refrigerant flows through the compressor when the compressor 11 stops during an off cycle.
FIG. 4 illustrates a combined sump and head pump 36 that may be substituted. for .both the sump 19 and the pump 25 of FIG. 1. The tube ISI'eading from the evaporator is connected through an openirrgz37 at the upper end of the combined sump and head pump 36. The tube 23 is connected directly to the suction side ofthe compressor 11 and it has a vertical section 38 that extends through an opening 39 in the bottom of the combined sump and head pump 36 and thence upwardly. The upper end 40 of the tube section 38 is open and is well above the level of liquid within the sump and head pump 36 so that only vapor can enter the Openend 40. There is a small orifice 41 through the side of the tube section 38. The small orifice 41 is positioned below the level of liquid within the sump and head pump 36. The orifice 41 is sized to meter a desired constant rate of flow of liquid into the tube section 38 to be mixed with the vapor therein. Hence, the rate of flow of liquid through the small orifice 41 is a function of the size of the orifice, and flow is produced by virtue of the liquid head within the sump and head pump 36. As before, the liquid level sensor 27 senses variations in the level of liquid within the sump and head pump 36 and transmits these sensed variations by the control means 28 to control operation of the expansion valve 13.
FIGS. and 6 illustrate two ways in which the expansion valve 13 may be controlled by a liquid level sensor. In FIG. 5, the liquid level sensor 27 includes a high electrical contact probe 44 that is located within the sump 19 to be contacted by the liquid within the sump only when the liquid has risen to a predetermined high value. and a low electrical contact probe 45 that is submerged within the bath of liquid within the sump I9 and is always in contact with the liquid. The high probe 44 is connected by a conductor 46 through a solenoid coil 47 to one side 48 ofa power supply. The low probe 45 is connected through a conductor 49 to the other side 50 of the power supply. The solenoid coil 47 has the usual connection 51 to alternately open and close the expansion valve 13.
When the liquid level within the sump 19 is below the high probe 44, the circuit that includes the solenoid coil 47 is open and the coil 47 is deenergized. When the coil 47 is deenergized, the valve 13 is open to permit refrigerant to circulate through the evaporator 14. When the liquid level within the sump 19 rises to contact the probe 44, as a result of excess supply of refrigerant to the evaporator 14, the circuit to the solenoid coil 47 is closed. When the coil 47 closes, the valve 13 closes, interrupting the flow of refrigerant to the evaporator 14. With the flow of refrigerant to the evaporator 14 interrupted, liquid from the sump 19 is gradually pumped by the pump 25 at a controlled rate of flow for mixture with the vapor that flows from the upper end of the sump through the tube 21. When the liquid level again drops below the upper probe 44, the circuit to the solenoid coil 47 is again broken, and the expansion valve 13 is again opened to admit refrigerant to the evaporator 14.
FIG. 6 illustrates another form of liquid level sensor 27 for controlling operation of the expansion valve 13. In FIG. 6, the expansion valve 13 has a housing 54 with an internal wall 55 separating the interior housing into an inlet chamber 56 and an outlet chamber 57. A valve passage 58 through the wall 55 establishes communication between the inlet chamber 56 and the outlet chamber 57. The tube 16 extends through the housing 54 to deliver refrigerant to the inlet chamber 56. The tube 17 extends through the housing 57 to withdraw refrigerant from the outlet chamber 57. A valve member 59 is movable toward and away from the valve passage 58 to block or vary the rate of flow of refrigerant through the valve passage 58. The housing 54 is mounted to and extends upwardly from the sump 19.
A float 60 within the sump 19 rises and falls with rising and falling of the liquid level within the sump 19. A rod 61 is connected between the float 60 and the valve member 59 to cause the valve member 59 to follow movement of the float 60. There may be a suitable bellows 63 connected to the sump l9 and to the rod 61 to provide a liquid seal and reduce the friction of movement of the rod 61. The sidewalls of the bellows 63 are parallel to maintain a constant cross-sectional area the same as that of the valve passage 58. As a result, high pressure in the liquid inlet cavity 56 pushes upward on the valve member 59 and downward on the bellows 63 with the same force so upward and downward forces are balanced.
Normally, the valve member 59 is so positioned that refrigerant flows from the tube 16 to the valve opening 58 to the tube 17 and to the evaporator at a ratesuch that the rate of liquid refrigerant flowing from the evaporator to the sump via tube 18 is equal to the rate that liquid refrigerant is being pumped out of the bottom of the sump by the pump. However, if the load on the evaporator varies, varying the rate of evaporation of liquid, the amount of liquid remaining within the sump 19 will vary, causing the level of liquid within the sump 19 to change.
When the liquid level drops within the sump, the float 60 drops, drawing the valve member 59 further from the valve opening 58 and permitting more refrigerant to flow to the evaporator 14. When the liquid level within the sump l9 rises because of reduced load on the evaporator 14, the valve member 59 moves toward the valve opening 58, throttling the flow of refrigerant through the valve. If the liquid level within the sump 19 rises sufficiently high because of reduced load in the evaporator 14, the valve member 59 moves into contact with the wall 55, completely blocking the flow of refrigerant to the evaporator 14.
Thus, the systems shown in FIGS. 5 and 6 are examples of liquid level sensors for operating an expansion valve 13 in either open or closed positions or operating an expansion valve 13 through throttling positions between wide open and closed positions. In either case, the expansion valve is operated to control the rate of flow of refrigerant to the evaporator in response to and as a function of the rate of withdrawal of liquid from the sump 19. Of course, other controls for accomplishing the results of the controls of FIGS. 5 and 6 may be used.
What I claim is:
1. In a refrigeration system having a compressor, a condenser, an expansion valve and an evaporator connected in series by tube means, the expansion valve having an opening for the passage of refrigerant, a control for controlling the expansion valve to regulate the rate of flow of refrigerant to the evaporator comprising, a sump, tube means leading from the outlet side of the evaporator to the sump, the tube means being connected into the sump at a point to permit liquid refrigerant to fall to the lower end of the sump with vapor remaining in the upper end of the sump above the liquid level therein, tube means for supplying vapor from the upper end of the sump to the suction side of the compressor, a head pump for withdrawing liquid from the sump at a predetermined rate of flow, the pump comprising a tube having an open upper end positioned above the liquid level within the sump, the tube extending downwardly through the sump and having its other end connected to the suction side of the compressor, and a metering hole in the side of the tube, the metering hole being positioned within the sump below the liquid level therein, and means to vary the size of the expansion valve opening in response to variations in liquid level within the sump to control the rate of flow of refrigerant through the expansion valve.
2. The system of claim 1 wherein the means to vary the size of the expansion valve opening includes an element for alternately throttling and enlarging the expansion valve opening in response to rising and falling of liquid within the sump.
3. In a refrigeration system having a compressor, a condenser, an expansion valve and an evaporator connected in series by tube means, the expansion valve having an opening for the passage of refrigerant, a control for controlling the expansion valve to regulate the rate of flow of refrigerant to the evaporator comprising, a sump, tube means leading from the outlet side of the evaporator to the sump, the tube means being connected into the sump at a point to permit liquid refrigerant to fall to the lower end of the sump with vapor remaining in the upper end of the sump above the liquid level therein, tube means for supplying vapor from the upper end of the sump to the suction side of the compressor, an aspirating pump for withdrawing liquid from the sump at a predetermined rate of flow, the aspirating pump including a venturi section in the tube means for supplying vapor from the upper end of the sump to the compressor, and tube means leading from the lower end of the sump to the venturi section, and means to vary the size of the expansion valve opening in response to variations in liquid level within the sump to control the rate of flow of refrigerant through the expansion valve.

Claims (3)

1. In a refrigeration system having a compressor, a condenser, an expansion valve and an evaporator connected in series by tube means, the expansion valve having an opening for the passage of refrigerant, a control for controlling the expansion valve to regulate the rate of flow of refrigerant to the evaporator comprising, a sump, tube means leading from the outlet side of the evaporator to the sump, the tube means being connected into the sump at a point to permit liquid refrigerant to fall to the lower end of the sump with vapor remaining in the upper end of the sump above the liquid level therein, tube means for supplying vapor from the upper end of the sump to the suction side of the compressor, a head pump for withdrawing liquid from the sump at a predetermined rate of flow, the pump comprising a tube having an open upper end positioned above the liquid level within the sump, the tube extending downwardly through the sump and having its other end connected to the suction side of the compressor, and a metering hole in the side of the tube, the metering hole being positioned within the sump below the liquid level therein, and means to vary the size of the expansion valve opening in response to variations in liquid level within the sump to control the rate of flow of refrigerant through the expansion valve.
2. The system of claim 1 wherein the means to vary the size of the expansion valve opening includes an element for alternately throttling and enlarging the expansion valve opening in response to rising and falling of liquid within the sump.
3. In a refrigeration system having a compressor, a condenser, an expansion valve and an evaporator connected in series by tube means, the expansion valve having an opening for the passage of refrigerant, a control for controlling the expansion valve to regulate the rate of flow of refrigerant to the evaporator comprising, a sump, tube means leading from the outlet side of the evaporator to the sump, the tube means being connected into the sump at a point to permit liquid refrigerant to fall to the lower end of the sump with vapor remaining in the upper end of the sump above the liquid level therein, tube means for supplying vapor from the upper end of the sump to the suction side of the compressor, an aspirating pump for withdrawing liquid from the sump at a predetermined rate of flow, the aspirating pump including a venturi section in the tube means for supplying vapor from the upper eNd of the sump to the compressor, and tube means leading from the lower end of the sump to the venturi section, and means to vary the size of the expansion valve opening in response to variations in liquid level within the sump to control the rate of flow of refrigerant through the expansion valve.
US828249A 1969-05-27 1969-05-27 Control for refrigeration system Expired - Lifetime US3600904A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US82824969A 1969-05-27 1969-05-27

Publications (1)

Publication Number Publication Date
US3600904A true US3600904A (en) 1971-08-24

Family

ID=25251268

Family Applications (1)

Application Number Title Priority Date Filing Date
US828249A Expired - Lifetime US3600904A (en) 1969-05-27 1969-05-27 Control for refrigeration system

Country Status (1)

Country Link
US (1) US3600904A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2432692A1 (en) * 1978-08-03 1980-02-29 Audi Ag COMPRESSION HEAT PUMP
US4217765A (en) * 1979-06-04 1980-08-19 Atlantic Richfield Company Heat exchanger-accumulator
EP0038374A1 (en) * 1980-04-18 1981-10-28 Monseol Limited A compression refrigerator unit adjustable in accordance with the liquid flowing out from the evaporator
US4474034A (en) * 1982-09-23 1984-10-02 Avery Jr Richard J Refrigerant accumulator and charging apparatus and method for vapor-compression refrigeration system
US4528826A (en) * 1982-09-23 1985-07-16 Avery Jr Richard J Refrigerant accumulator and charging apparatus and method for vapor-compression refrigeration system
US4593752A (en) * 1984-08-10 1986-06-10 Hussmann Corporation Combined refrigerated and heated food service table
EP0217605A2 (en) * 1985-09-20 1987-04-08 Sanden Corporation Air conditioning system
US5136855A (en) * 1991-03-05 1992-08-11 Ontario Hydro Heat pump having an accumulator with refrigerant level sensor
WO1996020378A1 (en) * 1994-12-23 1996-07-04 British Technology Group Usa Inc. Vapour compression system
WO1996027108A1 (en) * 1995-02-28 1996-09-06 American Standard Inc. Feed forward control of expansion valve
US5557937A (en) * 1990-10-04 1996-09-24 The University Of Leeds Vapour compression systems
US6038875A (en) * 1994-12-23 2000-03-21 Btg International Inc. Vapor compression system
WO2001022013A1 (en) * 1999-09-08 2001-03-29 Gram Equipment A/S A refrigerator with cyclone liquid gas separator
WO2001067011A1 (en) * 2000-03-03 2001-09-13 Vai Holdings, Llc High efficiency refrigeration system
US6389818B2 (en) 2000-03-03 2002-05-21 Vortex Aircon, Inc. Method and apparatus for increasing the efficiency of a refrigeration system
EP1215452A1 (en) * 2000-12-16 2002-06-19 Eaton Fluid Power GmbH Refrigeration apparatus with superheat temperature control in front of the compressor
US6430937B2 (en) 2000-03-03 2002-08-13 Vai Holdings, Llc Vortex generator to recover performance loss of a refrigeration system
US20040261449A1 (en) * 2003-06-24 2004-12-30 Memory Stephen B. Refrigeration system
US20070062214A1 (en) * 2005-05-18 2007-03-22 Lg Electronics Inc. Accumulator of refrigeration cycle system
EP1925892A2 (en) * 2006-11-23 2008-05-28 Mario Paul Stojec Heat pump
US20100218522A1 (en) * 2009-02-09 2010-09-02 Earthlinked Technologies, Inc. Oil return system and method for active charge control in an air conditioning system
US20110088420A1 (en) * 2010-12-29 2011-04-21 Michael Shelton Chemical State Monitor for Refrigeration System
US20130000344A1 (en) * 2009-02-19 2013-01-03 Emerson Network Power Co., Ltd. Air conditioner
US20170051956A1 (en) * 2014-02-28 2017-02-23 Mitsubishi Electric Corporation Accumulator and refrigeration apparatus including the same
EP3438574A1 (en) * 2017-08-02 2019-02-06 Wurm GmbH & Co. KG Elektronische Systeme Refrigeration system and a method for regulating a refrigeration system
CN112413954A (en) * 2020-11-23 2021-02-26 珠海格力电器股份有限公司 Air source heat pump hot water chilling unit control method and device and air conditioning system
EP3601907B1 (en) 2017-03-28 2022-04-20 Danfoss A/S A vapour compression system with a suction line liquid separator
US11448434B1 (en) 2018-11-01 2022-09-20 Booz Allen Hamilton Inc. Thermal management systems
US11561029B1 (en) 2018-11-01 2023-01-24 Booz Allen Hamilton Inc. Thermal management systems
US11561033B1 (en) 2019-06-18 2023-01-24 Booz Allen Hamilton Inc. Thermal management systems
US11561030B1 (en) 2020-06-15 2023-01-24 Booz Allen Hamilton Inc. Thermal management systems
US11644221B1 (en) 2019-03-05 2023-05-09 Booz Allen Hamilton Inc. Open cycle thermal management system with a vapor pump device
US11835270B1 (en) 2018-06-22 2023-12-05 Booz Allen Hamilton Inc. Thermal management systems
US11841179B2 (en) * 2020-01-14 2023-12-12 Goodman Global Group, Inc. Heating, ventilation, and air-conditioning systems and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2032286A (en) * 1935-04-30 1936-02-25 Frick Co Refrigerant liquid return system
US2892320A (en) * 1955-05-31 1959-06-30 Lester K Quick Liquid level control in refrigeration system
US2953906A (en) * 1955-05-09 1960-09-27 Lester K Quick Refrigerant flow control apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2032286A (en) * 1935-04-30 1936-02-25 Frick Co Refrigerant liquid return system
US2953906A (en) * 1955-05-09 1960-09-27 Lester K Quick Refrigerant flow control apparatus
US2892320A (en) * 1955-05-31 1959-06-30 Lester K Quick Liquid level control in refrigeration system

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2432692A1 (en) * 1978-08-03 1980-02-29 Audi Ag COMPRESSION HEAT PUMP
US4250721A (en) * 1978-08-03 1981-02-17 Audi Nsu Auto Union Aktiengesellschaft Heat pump
US4217765A (en) * 1979-06-04 1980-08-19 Atlantic Richfield Company Heat exchanger-accumulator
EP0038374A1 (en) * 1980-04-18 1981-10-28 Monseol Limited A compression refrigerator unit adjustable in accordance with the liquid flowing out from the evaporator
US4474034A (en) * 1982-09-23 1984-10-02 Avery Jr Richard J Refrigerant accumulator and charging apparatus and method for vapor-compression refrigeration system
US4528826A (en) * 1982-09-23 1985-07-16 Avery Jr Richard J Refrigerant accumulator and charging apparatus and method for vapor-compression refrigeration system
US4593752A (en) * 1984-08-10 1986-06-10 Hussmann Corporation Combined refrigerated and heated food service table
EP0217605A2 (en) * 1985-09-20 1987-04-08 Sanden Corporation Air conditioning system
EP0217605A3 (en) * 1985-09-20 1987-09-09 Sanden Corporation Air conditioning system
AU589211B2 (en) * 1985-09-20 1989-10-05 Sanden Corporation Control device for automotive air conditioning system
US5557937A (en) * 1990-10-04 1996-09-24 The University Of Leeds Vapour compression systems
US5136855A (en) * 1991-03-05 1992-08-11 Ontario Hydro Heat pump having an accumulator with refrigerant level sensor
WO1996020378A1 (en) * 1994-12-23 1996-07-04 British Technology Group Usa Inc. Vapour compression system
US6038875A (en) * 1994-12-23 2000-03-21 Btg International Inc. Vapor compression system
WO1996027108A1 (en) * 1995-02-28 1996-09-06 American Standard Inc. Feed forward control of expansion valve
WO2001022013A1 (en) * 1999-09-08 2001-03-29 Gram Equipment A/S A refrigerator with cyclone liquid gas separator
EA003381B1 (en) * 1999-09-08 2003-04-24 Грэм Эквипмент А/С A refrigerator with cyclone liquid gas separator
US6666041B1 (en) 1999-09-08 2003-12-23 Gram Equipment A/S Refrigerator with cyclone liquid gas separator
WO2001067011A1 (en) * 2000-03-03 2001-09-13 Vai Holdings, Llc High efficiency refrigeration system
US6389818B2 (en) 2000-03-03 2002-05-21 Vortex Aircon, Inc. Method and apparatus for increasing the efficiency of a refrigeration system
US6430937B2 (en) 2000-03-03 2002-08-13 Vai Holdings, Llc Vortex generator to recover performance loss of a refrigeration system
EP1215452A1 (en) * 2000-12-16 2002-06-19 Eaton Fluid Power GmbH Refrigeration apparatus with superheat temperature control in front of the compressor
US20040261449A1 (en) * 2003-06-24 2004-12-30 Memory Stephen B. Refrigeration system
WO2005010445A1 (en) * 2003-06-24 2005-02-03 Modine Manufacturing Company Refrigeration system
US6901763B2 (en) 2003-06-24 2005-06-07 Modine Manufacturing Company Refrigeration system
US20070062214A1 (en) * 2005-05-18 2007-03-22 Lg Electronics Inc. Accumulator of refrigeration cycle system
US7930899B2 (en) * 2005-05-18 2011-04-26 Lg Electronics Inc. Accumulator of refrigeration cycle system
EP1925892A2 (en) * 2006-11-23 2008-05-28 Mario Paul Stojec Heat pump
EP1925892A3 (en) * 2006-11-23 2011-12-14 Mario Paul Stojec Heat pump
US10184700B2 (en) * 2009-02-09 2019-01-22 Total Green Mfg. Corp. Oil return system and method for active charge control in an air conditioning system
US20100218522A1 (en) * 2009-02-09 2010-09-02 Earthlinked Technologies, Inc. Oil return system and method for active charge control in an air conditioning system
US20130000344A1 (en) * 2009-02-19 2013-01-03 Emerson Network Power Co., Ltd. Air conditioner
US8650898B2 (en) * 2009-02-19 2014-02-18 Emerson Network Power Co., Ltd. Air conditioner
US9146048B2 (en) 2010-12-29 2015-09-29 Michael Shelton Chemical state monitor for refrigeration system
US20110088420A1 (en) * 2010-12-29 2011-04-21 Michael Shelton Chemical State Monitor for Refrigeration System
US20170051956A1 (en) * 2014-02-28 2017-02-23 Mitsubishi Electric Corporation Accumulator and refrigeration apparatus including the same
US10060661B2 (en) * 2014-02-28 2018-08-28 Mitsubishi Electric Corporation Accumulator and refrigeration apparatus including the same
EP3601907B1 (en) 2017-03-28 2022-04-20 Danfoss A/S A vapour compression system with a suction line liquid separator
EP3438574A1 (en) * 2017-08-02 2019-02-06 Wurm GmbH & Co. KG Elektronische Systeme Refrigeration system and a method for regulating a refrigeration system
DE102017117565A1 (en) * 2017-08-02 2019-02-07 Wurm Gmbh & Co. Kg Elektronische Systeme COOLING SYSTEM AND METHOD FOR CONTROLLING A REFRIGERATOR
US11835270B1 (en) 2018-06-22 2023-12-05 Booz Allen Hamilton Inc. Thermal management systems
US11561036B1 (en) 2018-11-01 2023-01-24 Booz Allen Hamilton Inc. Thermal management systems
US11448434B1 (en) 2018-11-01 2022-09-20 Booz Allen Hamilton Inc. Thermal management systems
US11561029B1 (en) 2018-11-01 2023-01-24 Booz Allen Hamilton Inc. Thermal management systems
US11644221B1 (en) 2019-03-05 2023-05-09 Booz Allen Hamilton Inc. Open cycle thermal management system with a vapor pump device
US11801731B1 (en) 2019-03-05 2023-10-31 Booz Allen Hamilton Inc. Thermal management systems
US11561033B1 (en) 2019-06-18 2023-01-24 Booz Allen Hamilton Inc. Thermal management systems
US11629892B1 (en) * 2019-06-18 2023-04-18 Booz Allen Hamilton Inc. Thermal management systems
US11796230B1 (en) 2019-06-18 2023-10-24 Booz Allen Hamilton Inc. Thermal management systems
US11841179B2 (en) * 2020-01-14 2023-12-12 Goodman Global Group, Inc. Heating, ventilation, and air-conditioning systems and methods
US11561030B1 (en) 2020-06-15 2023-01-24 Booz Allen Hamilton Inc. Thermal management systems
CN112413954B (en) * 2020-11-23 2021-11-16 珠海格力电器股份有限公司 Air source heat pump hot water chilling unit control method and device and air conditioning system
CN112413954A (en) * 2020-11-23 2021-02-26 珠海格力电器股份有限公司 Air source heat pump hot water chilling unit control method and device and air conditioning system

Similar Documents

Publication Publication Date Title
US3600904A (en) Control for refrigeration system
US2641908A (en) Refrigerator defrosting means
JPH04316962A (en) Refrigeration cycle
EP0756691B1 (en) Refrigeration system
US2145354A (en) Refrigerating apparatus
US2063380A (en) Refrigerant distributor
US3412574A (en) Refrigeration apparatus with lubricant oil handling means
US3438218A (en) Refrigeration system with oil return means
US3919858A (en) Direct liquid refrigerant supply and return system
US3864934A (en) Cooling pump system
US3177674A (en) Refrigeration system including charge checking means
US11199347B2 (en) Oil separation device and refrigeration cycle apparatus
JPH11173706A (en) Oil separator
US2140306A (en) Control of gas or vapor compressors
US3369374A (en) Capacity control for refrigeration systems
US1830022A (en) Expansion valve control
US3631684A (en) Step-by-step control of refrigerant return in a compressor-condenser-expander system
US3247677A (en) Apparatus for controlling the operation of an ice making machine
CN106996663A (en) Gas-liquid separator and plate-type evaporator for plate-type evaporator
US3163015A (en) Refrigeration system including charge checking means
US1854997A (en) Refrigeration
US1884186A (en) Refrigeration
US3331216A (en) Liquid refrigerant cooled motor feed assurance means
US4417453A (en) Liquid separator for use in a refrigerating air conditioning apparatus
CN111059801A (en) Condenser assembly, control method thereof, oil return assembly and air conditioner