US3587020A - Two-part core sheet for transformers - Google Patents

Two-part core sheet for transformers Download PDF

Info

Publication number
US3587020A
US3587020A US838235A US3587020DA US3587020A US 3587020 A US3587020 A US 3587020A US 838235 A US838235 A US 838235A US 3587020D A US3587020D A US 3587020DA US 3587020 A US3587020 A US 3587020A
Authority
US
United States
Prior art keywords
yoke
sheet
core sheet
branch
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US838235A
Inventor
Bruno Waasner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3587020A publication Critical patent/US3587020A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented

Definitions

  • the invention relates to a two-part core sheet for transformers, having a longitudinally divided central limb and consisting of two core sheet parts, each of which has a yoke which abuts against an outer limb of the other core sheet part.
  • An object of the invention is to construct two-part core sheets of this type in such a way that the core sheet parts can easily be joined together but are difficult, if not impossible, to separate unintentionally from each other. Furthermore, airgaps between the two core sheet parts must be kept as narrow as possible or avoided altogether, and a sheet packet formed of such core sheet should have good electrical properties. With this aim in view, the two core sheet parts, in the assembled state, should abut at their edges, under resilient pressure due to their own elasticity, as closely as possible against each other. The core sheets as an entirety, and the sheet packets formed from them, should pomess good and suitable electrical properties.
  • the present invention consists in a core sheet forming member adapted to interfit with another like member to form a core sheet for a transformer, said core sheet forming member comprising an end limb, a yoke and part of a central limb of said core sheet, wherein an edge of said yoke and an edge of said limb are adapted to abut against edges of an end limb and yoke respectively of said like member, one of said edges of said sheet forming member having a projectionvand the other of said edges a corresponding recess so that when said sheet forming member interfits with said other member, a projection of one member mates with a recess of the other member to prevent relative movement therebetween in the plane of the sheet.
  • the interlocking achieved bythe invention can be so secure that it can be used with success even with core sheets the central limb of which is divided in the direction of the limbs.
  • Application with such core sheets is possible in particular when the side edge of the projection and the abutting edge of the yoke end run obliquely in the sense that the side edge of the projection engages behind the abutting edge of the yoke end.
  • FIG. 1 shows a core sheet according to the invention, both core sheet parts of which are assembled together;
  • FIG. 2 shows the left lower corner of FIG. I, on a larger scale
  • FIG. 3 shows a comer, as in FIG. 2 but with mating edges of the yoke end and the contacting central limb shaped differently;
  • FIG. 4 shows a further form of said left lower comer
  • FIG. 5 shows a fourth embodiment of the left lower corner.
  • each core sheet part has a yoke I or In and an outer limb 2 and 2a, as well as a central limb part 3 and 3a.
  • the central limb formed by the central limb parts 3 and 3a is diagonally divided and the two central shank parts 3 and 3a abut against each other along their diagonal edges 4.
  • Their narrow ends have straight edges 5, 6, 7 and in order to obtain a lock with a better hold of the opposite core sheet part, in each case engage in a corresponding recess of the opposite core sheet part, i.e. yoke l (or la).
  • the edge 5 runs in the direction of the central limb, 3, 3a, which is considerably broader than the outer limb 2 or 20 and the yoke l or la.
  • Each outer limb'2 and 24 carries at its inner edge 8 and 8a a projection 9 and 9a, and abuts with the side edge 10 and 10a of the projection 9 and 90 against an edge 11 and 11a, lying substantially rectangularly to the direction of the limb, of the abutting yoke end.
  • edges 11 and Ila are arranged between projection and sheet center in such a way that the outer limb end cannot be drawn away in relation to the yoke unless the outer limb is elastically deformed by being bent out in the direction of the arrow 12.
  • the width of the airgap between the edges 4 and between the end edges of the yokes and the ends of the outer limbs 2 and 20 have been shown in the drawing as being considerably wider than they actually are or should be, and this has been done to simplify the drawing. The same is true for the width of the airgaps between the narrow ends of the central shank parts 3 and 3a and the corresponding recesses in the yokes l and la.
  • the dividing line of the central limb runs diagonally through the central limb and the narrow end of the central limb sheet parts can be inserted in a corresponding recess of the oppositely lying core sheet part in the direction of the plane of the sheet in such a way that the two central limb sheet parts at their diagonal dividing lines can be firmly pressed in after the insertion of their narrow ends in to the corresponding recesses.
  • the insertion or plugging together of the two core sheets is as may be imagined, simple, since before the projection 9 reaches the left, upper comer 13 (see the left lower comer in FIG. 1) in the insertion operation, the left, upper core sheet part, as a result of the diagonal arrangement of the gap 3, is still a considerable extent to the left of the end edge of the lower yoke la. It is only on insertion, whereon the two diagonal edges 4 slide onto each other, that the projection 9 approaches the end edge of the associated yoke la, so that only in the last part of the plugging together does elastic bulging out of the lower end of the outer limb 2 take place.
  • the insertability can be facilitated in addition by oblique surfaces I3.
  • the height of the projection lies in the region of the elastic yieldability of the core sheet part, determined in the main by the length and width of the outer limb.
  • the amount of elastic deformation the outer limb 2 is able to withstand substantially depends upon the length 1' and the width b of the outer limb, in which in addition a certain elastic deformation of the left-hand part of the yoke 1 occurs, which is determined in particular by the height II of the yoke.
  • the extent of the bending out of the left-hand outer limb 2 is determined by the height a of the projection and to a certain extent by the distance d of the side edge 10 of the projection from the lower end of the left-hand outer limb 2.
  • the ratios between 1', b, h on the one hand and a, d on the other hand must be selected such that the bending out of the outer limb 2 on the pushing together of the two core sheet parts lies within the elasticity range of the stressed parts. For instance, this condition is fulfilled with customary core sheet material if the individual dimensions have the following values:
  • FIG. 3 shows a somewhat differently constructed projection, in which the side edge 20 of the projection and the abutting edge 21 of the yoke end 22 run obliquely in the sense that the side edge 20 of the projection engages behind the abutting edge 21 of the yoke end 22. in this way the locking is further strengthened and moreover a resilient etTect in the sense of pressing out of the yoke end 22 onto the end 23 of the outer limb is obtained.
  • FIG. 4 shows a further variation of the projection.
  • the projection is given the reference number 25, and presses with the surface 26 against a corresponding surface 27 of the yoke end 28.
  • edges 30 and 31 of the lower limb end 32 and of the left-hand yoke end 33 are arranged obliquely and somewhat diagonally in relation to the core sheet, so that the end edge 3! of each yoke 33 runs somewhat diagonally in relation to the core sheet and abuts against a correspondingly running edge 30 of the associated outer limb end 32 of the other core sheet part.
  • the construction of the projection 34 and the nature of the rear engagement of a corresponding bearing surface 35 of the left-hand yoke end corresponds substantially to the embodiment in accordance with FIG. 3.
  • a bore 36 for accommodating a core sheet packet screw cuts into both the end edge 31 of the yoke and also the abutting edge 30 of the outer limb.
  • a two-piece core sheet assembly for a transformer having two side branches, a center branch, and two spaced yoke branches interconnecting the side and center branches, said core sheet comprising two sheet members adapted to be assembled together, each sheet member integrally including a side branch, a yoke, and a diagonal portion of the center branch, wherein an inner longitudinal edge at the free extremity of each of the side branches and the free edge of each yoke branch forms a matching projection and recess corresponding to said projection, said projections and said associated recesses being disposed closer to the outside edges than the inside edges of said core sheet-assembly, whereby when the two sheet members are pushed together in a common plane, a resilient outward deflection of the free extremity of the side branches occurs, followed by engagement of the projections in the recesses with said diagonal portions of the center branch of said two sheet members causing the matched projections and recesses to approach each other such that the resilient deflection of the free extremity of the side branches does not occur
  • a two-piece core sheet assembly as defined in claim I wherein the narrow extremity of the diagonal central branch portion of one sheet member is insertable into a matching notch in the yoke branch of the opposed sheet member, in the plane of the sheet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

A core sheet for a transformer core formed from two complementary sheet parts. Each sheet part comprises a yoke, an end limb and part of a central limb of the whole core sheet, and the two parts are positively locked together to form the sheet by engagement of complementary projections and recesses on abutting edges of the sheet parts.

Description

United States Patent 577,480 Gutmann 336/216 X 581,873 5/1897 Thomson 336/217 1,512,032 10/1924 Ledwinka 336/210 2,712,084 6/1955 Btidenbaugh 336/216 X 3,365,687 1/1968 Capell 336/216 X FOREIGN PATENTS 1,489,436 6/1967 France .Q 336/216 1,550,392 11/1968 France 336/216 1,558,102 1/1969 France 336/216 Primary Examiner-Thomas J. Kozma Attorney-Holman & Stern ABSTRACT: A core sheet for a transformer core formed from two complementary sheet parts. Each sheet part comprises a yoke, an end limb and part of a central limb of the whole core sheet, and the two parts are positively locked together to form the sheet by engagement of complementary projections and recesses on abutting edges of the sheet parts.
'(1 6 9 40m T 11 a 1 5 4; 2b 7 2.
5 5n 7 .ln-
PATENTEDJUNZZIQII v 3,587,020
mmvron. BRUNO WAASNER.
wifm mw', ,IM A
TWO-PART CORE SHEET FOR TRANSFORMERS The invention relates to a two-part core sheet for transformers, having a longitudinally divided central limb and consisting of two core sheet parts, each of which has a yoke which abuts against an outer limb of the other core sheet part.
An object of the invention is to construct two-part core sheets of this type in such a way that the core sheet parts can easily be joined together but are difficult, if not impossible, to separate unintentionally from each other. Furthermore, airgaps between the two core sheet parts must be kept as narrow as possible or avoided altogether, and a sheet packet formed of such core sheet should have good electrical properties. With this aim in view, the two core sheet parts, in the assembled state, should abut at their edges, under resilient pressure due to their own elasticity, as closely as possible against each other. The core sheets as an entirety, and the sheet packets formed from them, should pomess good and suitable electrical properties.
The present invention consists in a core sheet forming member adapted to interfit with another like member to form a core sheet for a transformer, said core sheet forming member comprising an end limb, a yoke and part of a central limb of said core sheet, wherein an edge of said yoke and an edge of said limb are adapted to abut against edges of an end limb and yoke respectively of said like member, one of said edges of said sheet forming member having a projectionvand the other of said edges a corresponding recess so that when said sheet forming member interfits with said other member, a projection of one member mates with a recess of the other member to prevent relative movement therebetween in the plane of the sheet.
, In this way it becomes very difficult to separate the two assembled core sheet parts, and in particular to separate two blocks of laminated core sheet parts which together form a sheet packet so that the interlocking is adequate for practically any stress which may occur. The interlocking achieved bythe invention can be so secure that it can be used with success even with core sheets the central limb of which is divided in the direction of the limbs. Application with such core sheets is possible in particular when the side edge of the projection and the abutting edge of the yoke end run obliquely in the sense that the side edge of the projection engages behind the abutting edge of the yoke end.
The invention will now be particularly described by way of example, with reference to the accompanying drawings in which:
FIG. 1 shows a core sheet according to the invention, both core sheet parts of which are assembled together;
FIG. 2 shows the left lower corner of FIG. I, on a larger scale;
, FIG. 3 shows a comer, as in FIG. 2 but with mating edges of the yoke end and the contacting central limb shaped differently;
FIG. 4 shows a further form of said left lower comer; and
FIG. 5 shows a fourth embodiment of the left lower corner.
I In FIG. I, each core sheet part has a yoke I or In and an outer limb 2 and 2a, as well as a central limb part 3 and 3a.
' The central limb formed by the central limb parts 3 and 3a is diagonally divided and the two central shank parts 3 and 3a abut against each other along their diagonal edges 4. Their narrow ends have straight edges 5, 6, 7 and in order to obtain a lock with a better hold of the opposite core sheet part, in each case engage in a corresponding recess of the opposite core sheet part, i.e. yoke l (or la). The edge 5 runs in the direction of the central limb, 3, 3a, which is considerably broader than the outer limb 2 or 20 and the yoke l or la. Each outer limb'2 and 24 carries at its inner edge 8 and 8a a projection 9 and 9a, and abuts with the side edge 10 and 10a of the projection 9 and 90 against an edge 11 and 11a, lying substantially rectangularly to the direction of the limb, of the abutting yoke end.
As a result the edges 11 and Ila are arranged between projection and sheet center in such a way that the outer limb end cannot be drawn away in relation to the yoke unless the outer limb is elastically deformed by being bent out in the direction of the arrow 12. The width of the airgap between the edges 4 and between the end edges of the yokes and the ends of the outer limbs 2 and 20 have been shown in the drawing as being considerably wider than they actually are or should be, and this has been done to simplify the drawing. The same is true for the width of the airgaps between the narrow ends of the central shank parts 3 and 3a and the corresponding recesses in the yokes l and la.
It is particularly advantageous if the dividing line of the central limb runs diagonally through the central limb and the narrow end of the central limb sheet parts can be inserted in a corresponding recess of the oppositely lying core sheet part in the direction of the plane of the sheet in such a way that the two central limb sheet parts at their diagonal dividing lines can be firmly pressed in after the insertion of their narrow ends in to the corresponding recesses.
With core sheets having wide central limbs, the obliqueness of the diagonals is frequently no longer self-limiting. There is then the danger that the core sheets, after the core sheet parts have been pressed together, do not hold fast together and slip in relation to each other, so that a narrow airgap occurs, or they may separate entirely from each other. By the occurrence of the airgap, the electrical properties of the core sheet are made worse. With cold rolled core sheets, the cut edge surfaces also have a very low friction coefficient, so that selflimiting can occur only with very steep diagonals. Since, on the other hand, a smooth-cut edge surface is desired in order to keep the airgap between the two core sheet parts as small as possible, self-limiting with cold rolled sheets is possible only with very steep diagonal cut edges.
The insertion or plugging together of the two core sheets, is as may be imagined, simple, since before the projection 9 reaches the left, upper comer 13 (see the left lower comer in FIG. 1) in the insertion operation, the left, upper core sheet part, as a result of the diagonal arrangement of the gap 3, is still a considerable extent to the left of the end edge of the lower yoke la. It is only on insertion, whereon the two diagonal edges 4 slide onto each other, that the projection 9 approaches the end edge of the associated yoke la, so that only in the last part of the plugging together does elastic bulging out of the lower end of the outer limb 2 take place. The insertability can be facilitated in addition by oblique surfaces I3.
In order to make it possible to plug the core sheet parts together in the direction of the limbs without permanent deformation, the height of the projection lies in the region of the elastic yieldability of the core sheet part, determined in the main by the length and width of the outer limb.
The amount of elastic deformation the outer limb 2 is able to withstand substantially depends upon the length 1' and the width b of the outer limb, in which in addition a certain elastic deformation of the left-hand part of the yoke 1 occurs, which is determined in particular by the height II of the yoke. The extent of the bending out of the left-hand outer limb 2 is determined by the height a of the projection and to a certain extent by the distance d of the side edge 10 of the projection from the lower end of the left-hand outer limb 2. If it is desired in the customary way to insert the core sheet parts into each other in the plane of the drawing, the ratios between 1', b, h on the one hand and a, d on the other hand must be selected such that the bending out of the outer limb 2 on the pushing together of the two core sheet parts lies within the elasticity range of the stressed parts. For instance, this condition is fulfilled with customary core sheet material if the individual dimensions have the following values:
F25 mrn. b=5 mm. h=5 mm.
a=0.3 mrn. d==l .2 mm.
FIG. 3 shows a somewhat differently constructed projection, in which the side edge 20 of the projection and the abutting edge 21 of the yoke end 22 run obliquely in the sense that the side edge 20 of the projection engages behind the abutting edge 21 of the yoke end 22. in this way the locking is further strengthened and moreover a resilient etTect in the sense of pressing out of the yoke end 22 onto the end 23 of the outer limb is obtained.
FIG. 4 shows a further variation of the projection. Here, the projection is given the reference number 25, and presses with the surface 26 against a corresponding surface 27 of the yoke end 28. The parts of the yoke end 28 and of the lower end 29 of the left-hand limb end, engaging into each other, engage with somewhat semicircular section surfaces in each other, so that a relative movement in the perpendicular direction is impossible in both directions.
In the embodiment in accordance with FIG. 5, the edges 30 and 31 of the lower limb end 32 and of the left-hand yoke end 33 are arranged obliquely and somewhat diagonally in relation to the core sheet, so that the end edge 3! of each yoke 33 runs somewhat diagonally in relation to the core sheet and abuts against a correspondingly running edge 30 of the associated outer limb end 32 of the other core sheet part. As a result the pushing in or plugging in of the core sheet parts is considerably simplified. The construction of the projection 34 and the nature of the rear engagement of a corresponding bearing surface 35 of the left-hand yoke end corresponds substantially to the embodiment in accordance with FIG. 3.
A bore 36 for accommodating a core sheet packet screw cuts into both the end edge 31 of the yoke and also the abutting edge 30 of the outer limb. When after assembly of the two core sheet parts the block screws are inserted into the bore 36, there results a further security of the two core sheet parts against mutual displacement. Moreover then generally two screws suffice instead of the customary four, in order to hold the two blocks consisting of core sheet parts together.
lclaim:
l. A two-piece core sheet assembly for a transformer having two side branches, a center branch, and two spaced yoke branches interconnecting the side and center branches, said core sheet comprising two sheet members adapted to be assembled together, each sheet member integrally including a side branch, a yoke, and a diagonal portion of the center branch, wherein an inner longitudinal edge at the free extremity of each of the side branches and the free edge of each yoke branch forms a matching projection and recess corresponding to said projection, said projections and said associated recesses being disposed closer to the outside edges than the inside edges of said core sheet-assembly, whereby when the two sheet members are pushed together in a common plane, a resilient outward deflection of the free extremity of the side branches occurs, followed by engagement of the projections in the recesses with said diagonal portions of the center branch of said two sheet members causing the matched projections and recesses to approach each other such that the resilient deflection of the free extremity of the side branches does not occur until the final stage of the mutual insertion.
2. A two-piece core sheet assembly as defined in claim I, wherein the narrow extremity of the diagonal central branch portion of one sheet member is insertable into a matching notch in the yoke branch of the opposed sheet member, in the plane of the sheet.
3. A two-piece core sheet assembly as defined in claim 2, wherein said projections are provided on the inner longitudinal edge of the free extremity of each of the side branches and wherein the recesses are provided at the free edge of each yoke branch. J
4. A two-piece core sheet assembly as defined in claim 3, wherein said projections and associated recesses are rectangular in shape.
5. A two-piece core sheet assembly as defined in claim 2, wherein said narrow extremity of the diagonal central branch portion insertable into a matching notch in said yoke branch of the opposed sheet member has a predetermined clearance in said notch, and wherein the side edge of each projection and a corresponding edge of each recess are inclined with respect to the abutting edges of the yoke member and the side member.

Claims (5)

1. A two-piece core sheet assembly for a transformer having two side branches, a center branch, and two spaced yoke branches interconnecting the side and center branches, said core sheet comprising two sheet members adapted to be assembled together, each sheet member integrally including a side branch, a yoke, and a diagonal portion of the center branch, wherein an inner longitudinal edge at the free extremity of each of the side branches and the free edge of each yoke branch forms a matching projection and recess corresponding to said projecTion, said projections and said associated recesses being disposed closer to the outside edges than the inside edges of said core sheet assembly, whereby when the two sheet members are pushed together in a common plane, a resilient outward deflection of the free extremity of the side branches occurs, followed by engagement of the projections in the recesses with said diagonal portions of the center branch of said two sheet members causing the matched projections and recesses to approach each other such that the resilient deflection of the free extremity of the side branches does not occur until the final stage of the mutual insertion.
2. A two-piece core sheet assembly as defined in claim 1, wherein the narrow extremity of the diagonal central branch portion of one sheet member is insertable into a matching notch in the yoke branch of the opposed sheet member, in the plane of the sheet.
3. A two-piece core sheet assembly as defined in claim 2, wherein said projections are provided on the inner longitudinal edge of the free extremity of each of the side branches and wherein the recesses are provided at the free edge of each yoke branch.
4. A two-piece core sheet assembly as defined in claim 3, wherein said projections and associated recesses are rectangular in shape.
5. A two-piece core sheet assembly as defined in claim 2, wherein said narrow extremity of the diagonal central branch portion insertable into a matching notch in said yoke branch of the opposed sheet member has a predetermined clearance in said notch, and wherein the side edge of each projection and a corresponding edge of each recess are inclined with respect to the abutting edges of the yoke member and the side member.
US838235A 1969-07-01 1969-07-01 Two-part core sheet for transformers Expired - Lifetime US3587020A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US83823569A 1969-07-01 1969-07-01

Publications (1)

Publication Number Publication Date
US3587020A true US3587020A (en) 1971-06-22

Family

ID=25276606

Family Applications (1)

Application Number Title Priority Date Filing Date
US838235A Expired - Lifetime US3587020A (en) 1969-07-01 1969-07-01 Two-part core sheet for transformers

Country Status (1)

Country Link
US (1) US3587020A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3793129A (en) * 1971-09-10 1974-02-19 V & E Friedland Ltd Two-part transformer lamination of slidingly engageable parts
EP0028494A1 (en) * 1979-11-02 1981-05-13 Linton And Hirst Limited Method for forming laminations for transformer cores
US4350913A (en) * 1980-08-13 1982-09-21 W. J. Industries, Incorporated Magnetic particle devices
US4602236A (en) * 1985-02-08 1986-07-22 Fl Industries, Inc. Laminated ballast core
EP0353029A2 (en) * 1988-07-27 1990-01-31 Linton And Hirst Limited Improvements in laminations
US6218927B1 (en) 1999-02-17 2001-04-17 Abb Power T&D Company Inc. Stacked magnetic transformer core with center leg curvilinear S-joints
US20040183644A1 (en) * 2003-01-30 2004-09-23 Omri Fishbein Cores and core laminations for electromagnetic devices
US20060125593A1 (en) * 2004-12-14 2006-06-15 The Delta Group Two part transformer core, transformer and method of manufacture
US20060158303A1 (en) * 2005-01-14 2006-07-20 Lincoln Global, Inc. Snap-together choke and transformer assembly for an electric arc welder
US20100085138A1 (en) * 2008-09-16 2010-04-08 Cambridge Semiconductor Limited Crossed gap ferrite cores

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3793129A (en) * 1971-09-10 1974-02-19 V & E Friedland Ltd Two-part transformer lamination of slidingly engageable parts
EP0028494A1 (en) * 1979-11-02 1981-05-13 Linton And Hirst Limited Method for forming laminations for transformer cores
US4350913A (en) * 1980-08-13 1982-09-21 W. J. Industries, Incorporated Magnetic particle devices
US4602236A (en) * 1985-02-08 1986-07-22 Fl Industries, Inc. Laminated ballast core
US5047745A (en) * 1988-07-27 1991-09-10 Linton And Hirst Limited Laminations
EP0353029A3 (en) * 1988-07-27 1990-05-23 Linton And Hirst Limited Improvements in laminations
EP0353029A2 (en) * 1988-07-27 1990-01-31 Linton And Hirst Limited Improvements in laminations
US6218927B1 (en) 1999-02-17 2001-04-17 Abb Power T&D Company Inc. Stacked magnetic transformer core with center leg curvilinear S-joints
US20040183644A1 (en) * 2003-01-30 2004-09-23 Omri Fishbein Cores and core laminations for electromagnetic devices
US20060125593A1 (en) * 2004-12-14 2006-06-15 The Delta Group Two part transformer core, transformer and method of manufacture
US7271696B2 (en) 2004-12-14 2007-09-18 Groupe Delta Xfo Inc. Two part transformer core, transformer and method of manufacture
US20060158303A1 (en) * 2005-01-14 2006-07-20 Lincoln Global, Inc. Snap-together choke and transformer assembly for an electric arc welder
US7646281B2 (en) 2005-01-14 2010-01-12 Lincoln Global, Inc. Snap-together choke and transformer assembly for an electric arc welder
US20100085138A1 (en) * 2008-09-16 2010-04-08 Cambridge Semiconductor Limited Crossed gap ferrite cores
US8035472B2 (en) * 2008-09-16 2011-10-11 Cambridge Semiconductor Limited Crossed gap ferrite cores

Similar Documents

Publication Publication Date Title
US3587020A (en) Two-part core sheet for transformers
KR950010178B1 (en) Compliant pin having improved adaptability
DE102007040937B3 (en) Electric contact
DE2720418C2 (en) Connector assembly for connecting a first wire to a second
US5573434A (en) Female electrical contact member
US3539977A (en) Electrical terminal
US2711524A (en) Electrical contact
US6193567B1 (en) Female terminal for printed circuit board
US5774987A (en) Electrical wedge connector
US3588784A (en) Electrical connector housing assembly
CA1205989A (en) Process for producing dual beam electrical contact
CA1067595A (en) Electrical terminal stamped and formed from a single piece of sheet metal stock
DE2425462C2 (en) Electrical socket contact
EP0734094B1 (en) Electrical contact member
US4957451A (en) Male electrical contact
US3998518A (en) Electrical connector having improved releasable contact construction
DE1615671A1 (en) Electrical plug connection
US4575173A (en) Insulation displacement terminal
DE102012107113A1 (en) heater
WO2012069499A1 (en) Electrical terminal
EP0854546A3 (en) Double lock for connector
DE2925739C2 (en)
US3795889A (en) Pin and socket type electrical contact terminals
US3793129A (en) Two-part transformer lamination of slidingly engageable parts
US4717361A (en) Contact for connector