US3581947A - Linearized gate control system for multiple feeder and hopper arrangements - Google Patents

Linearized gate control system for multiple feeder and hopper arrangements Download PDF

Info

Publication number
US3581947A
US3581947A US3581947DA US3581947A US 3581947 A US3581947 A US 3581947A US 3581947D A US3581947D A US 3581947DA US 3581947 A US3581947 A US 3581947A
Authority
US
United States
Prior art keywords
gate
hopper
potentiometers
cam
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Wayne D Jacobson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cedarapids Inc
Original Assignee
Iowa Manufacturing Company of Cedar Rapids
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iowa Manufacturing Company of Cedar Rapids filed Critical Iowa Manufacturing Company of Cedar Rapids
Application granted granted Critical
Publication of US3581947A publication Critical patent/US3581947A/en
Assigned to CEDARAPIDS, INC. reassignment CEDARAPIDS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: IOWA MANUFACTURING COMPANY OF CEDAR RAPIDS, IOWA
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/02Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for preparing the materials
    • E01C19/10Apparatus or plants for premixing or precoating aggregate or fillers with non-hydraulic binders, e.g. with bitumen, with resins, i.e. producing mixtures or coating aggregates otherwise than by penetrating or surface dressing; Apparatus for premixing non-hydraulic mixtures prior to placing or for reconditioning salvaged non-hydraulic compositions
    • E01C19/1059Controlling the operations; Devices solely for supplying or proportioning the ingredients
    • E01C19/1068Supplying or proportioning the ingredients
    • E01C19/1072Supplying or proportioning the ingredients the solid ingredients
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87571Multiple inlet with single outlet
    • Y10T137/87676With flow control
    • Y10T137/87684Valve in each inlet
    • Y10T137/87692With common valve operator

Definitions

  • a linearized gate control for multiple hopperfeeders of the cold feed system of an asphalt plant is disclosed.
  • Each hopper includes a cam, driven by a position servomotor, which opens or closes the gate governing the flow of aggregate from the hopper to its feeder, the latter being driven at a constant speed.
  • the cam is profiled so that equal increments of motor shaft rotation produce equal increments of gate opening.
  • the servomotors of all hoppers are connected into an electrical bridge circuit such that, after the respective proportionate openings of the gates are initially established by the setting of individual electrical controls for the gate motors, adjustment of a single master control to produce a certain percentage increase or decrease in the total aggregate delivered from all the hoppers will also increase or decrease the opening of each gate by the same percentage, as the case may be.
  • PATENTEDJUN nan 358L947 sum 1 BF 3 lNV/iN'l'OR.
  • Each hopper usually includes a lower stub hopper connected thereto which opens directly through its bottom onto a horizontal feeder, generally of the belt, vibratory or reciprocating kind.
  • the latter movesthe aggregate laterally from beneath the stub hopper and deposits the same on a delivery conveyor traveling beneath all the hoppers for removal to the dryer.
  • the practice is to provide a gate transversely overlying the feeder, the height of the lower edge of the gate above the feeder governing the amount of aggregate the feeder is permitted to carry off and discharge onto the delivery conveyor.
  • the gate of the first must be opened a lesser distance than the gate of the second in order to increase the delivery from each 25 percent. For this reason, it is not possible simply to gang together all the gates so that they may be opened and closed equal amounts; obviously, also, it is undesirable to have to go to each gate individually and readjust it by hand each time a proportionate change in its opening is needed.
  • each feeder is driven through an infinitely variable speed device governed by an electrical circuit of the bridge type.
  • Such devices are either DC motors or variable speed mechanical transmissions of the friction type.
  • Such mechanical transmissions are relatively exceedingly complex, costly and delicate, and suitable DC motors are also relatively costly.
  • the chief object of the present invention is to provide means by which the hopper gates themselves in the cold feed system of an asphalt plant may be adjusted, from a remote control station during operation of the plant both to produce initially the desired proportion of the aggregate from each hopper as well as thereafter to achieve proportionate changes in the supply from all hoppers.
  • each hopper gate by means of a large vertical cam plate driven by a position servomotor.
  • the gate itself is largely conventional in design and consists of an arcuate plate facing upstream of the feeder, adjustment of the height of the lower edge of the plate above the feeder controlling the amount of aggregate each feeder is allowed to deposit on the delivery conveyor.
  • the gate plate again as is typical, is supported by a pair of spaced brackets attached at one end to the downstream face of the gate plate and fixed at their other ends to a horizontal shaft downstream of the gate and journaled in the stub hopper transversely of and above the feeder.
  • a control arm rigidly fixed to the gate shaft, extends further downstream therefrom so that vertical movement of the arm will cause corresponding movement of the gate on its shaft relative to the feeder.
  • the control arm in turn carries a horizontally journaled cam follower which engages the edge of the cam plate, the latter being profiled, by well-known methods, to provide equal increments of gate openings for equal increments of motor shaft rotation.
  • the position servomotors of all gates are controlled by a typical bridge circuit containing individual command potentiometers disposed at a remote control station and corresponding individual actuator potentiometers incorporated in each motor by which the opening of each gate is initially set.
  • a master trim potentiometer at the control station is calibrated each side of its null position in percentage of increase or decrease of total aggregate desired.
  • the respective cam plates driven by the servomotors transform the proportionate increments of angular motor shaft rotation into linear increments of gate opening or closing proportionate to the original because equal angular increments of motor shaft rotation do not result in equal angular increments o of gate shaft rotation but, owing to the cam plate profiles, in equal linear increments of gate opening.
  • the original proportion of aggregates discharged to the delivery conveyor is preserved while the total amount of aggregate is increased or decreased,as the case may be.
  • the present invention provides an effective form of proportionate remote control of the cold feed of aggregate in an asphalt plant at less cost, complexity and fragility and of greater utility than has hitherto been the case.
  • FIG. 1 is a side elevational view illustrating a typical four hopper-feeder cold feed arrangement in an asphalt plant.
  • FIG. 2 is a view taken along the line 2-2 of FIG. 1 and illustrates a top plan view of one of the stub hoppers with its gate and gate actuating mechanism according to the present invention.
  • FIG. 3 is a side elevational view of the front part of the stub hopper shown in FIG. 2, and illustrating the gate actuating mechanism, certain portions being broken away for clarity.
  • FIG. 4 is a partial end elevational view of the stub hopper in FIG. 3, certain portions being broken away for clarity.
  • FIG. 5 schematically illustrates the electrical circuit controlling the operation of the hopper gates.
  • FIG. 1 a row of four, generally rectangular hopper 10, Nos. l-4, of typical cold feed system in an asphalt plant are shown supported by braced columns 11 sitting on pedestals 12.
  • Each hopper includes a lower stub hopper 13 secured to a horizontal flange 14 about the lower end of the former.
  • a feeder 15 Suspendedbeneath each stub hopper I3 is a feeder 15, those shown being of the belt type, having a belt 16 and head pulley 17 (see FIG. 3).
  • the feeders discharge onto a single delivery conveyor 18, supported by the columns 11, running beneath the feeders 15, the upper flights of the latter and of the delivery conveyor 18 all moving in the direction shown by the arrows in FIGS.
  • the hoppers 10 contain the various sizes of aggregate called for by the specification of the particular bituminous mix to be prepared by the plant. Since the stub hoppers l3 and their associated mechanism are all identical, only one need be and is described hereafter.
  • Each stub hopper 13 includes a pair of elongated sloping sidewalls 20, reinforced by an upper transverse brace member 21, a vertical rear end wall 22 and front end wall 23, and a feeder opening 24 running centrally the length thereof between the lower edges of the sidewalls 20.
  • the overall length of each stub hopper 13 is greater than that of the lower opening of its respective hopper 10 so that a transverse brace member 25, having a horizontal flange 25a along its upper edge, is provided between the upper edges of sidewalls 20 intermediate the brace member 21 and the front end wall 22 which, together with flanges 20a and 22a flush therewith on the upper edges of the sidewalls 20 and the rear end wall 22, respectively, engage the flange 14 of the hopper l0 thereabove.
  • the flanges 200 are carried forward to the front end wall 23 which is also provided with an upper flange 23a flush therewith.
  • the forward edge of the brace member 25 is carried down at 25b on each side of the feeder opening 24 to the sidewalls 20 therebelow to provide a vertical, rectangular gate opening 26 immediately below which is the upper flight of belt 16.
  • the head pulley 17 of the latter is driven by an appropriate constant speed, AC motor 27 through a belt 28 and a simple reduction gear box 29, all carried by the forward end of the stub hopper 13 along one side wall 20.
  • the stub hopper gate generally indicated at 30, consists simply of a transverse arcuate plate 31 spanning the gate opening 26, its convex side facing upstream of belt 16 and provided with a downstream turned lip 32 along its lower edge above belt 16.
  • a transverse gate shaft 34 To the concave face of plate 31 are fixed the ends of a pair of spaced, sector-shaped brackets 33 which extend downstream therefrom, their other ends being apertured to receive a transverse gate shaft 34, parallel to plate 31,
  • gate control motor and gear box PSM is secured atop a platform provided by a pair of stacked plates 41 secured to the flanges 20a and 23a of the adjacent side and front end walls 20 and 23, respectively.
  • the motor shaft 42 of PSM extends outboard beyond the adjacent flange 20a and control arm 37 parallel to gate shaft 34.
  • the plates 41 also support an appropriate electrical connection box 43 to which an electrical conduit 44 leads from a remote control panel and power source (not shown).
  • motor PSM may be a Model 35-183-1 position servomotor manufactured by Barber-Coleman of Rockford, 111., operating on 1 15 volts, 60 cycle, single phase AC and having a travel in either direction.
  • the outer end of motor shaft 42 receives a hub assembly 45 to which is fixed a vertical cam plate 46 disposed just outboard of and parallel to control arm 37.
  • the cam plate 46 is of an approximately 180 sector configuration, its outer periphery forming a cam profile 47, to be hereafter described in more detail, which engages a cam follower 48 and keeper 49 horizontally journaled at 50 on the outboard face of control arm 37.
  • a manual adjusting arm 51 is journaled to motor shaft 42 and extends forwardly and downwardly therefrom past and outboard of control arm 37, the latter portion of arm 51 being provided with a lost-motion slot 52 therealong, the two arms 37 and 51 being clampable to each other by means of a thumbscrew and washer assembly 53 for purposes to be later described.
  • the latter is normally in its released position and so permits the two arms 37 and 51 to move relative to each other about their respective axes of shafts 34 and 42 owing to the lost-motion slot 52.
  • a vertical gauge 54 is secured beneath the adjacent flange 20a and is marked in inches or percentage of gate opening. Accordingly, it will be obvious that, responsive to the cam profile 47, rotation of motor shaft 42 will cause the cam follower 48 to move the control arm 37, and thus gate 30, vertically about the axis of shaft 34 in the manner heretofore mentioned.
  • the object is to control the opening of all gates 30 such that increases or decreases in the total aggregate delivered by all feeders 15 to the delivery conveyor 18 result in corresponding increases or decreases in the amount of aggregate delivered by each gate 30 proportionate to the original percentage of the whole supplied by the gates 30.
  • This means, in terms of the illustrated embodiment, that the opening of a gate 30, which is defined as the distance of the lip 32 thereof above the belt 16, must increase or decrease by an amount proportionate to its original setting. For instance, if the gate 30 of No. 1 hopper is open I irches and the gate 30 of No. 2 hopper 8 inches, and an increase of 25 percent in the total aggregate supplied by both is desired, the gate 30 of No.
  • each cam plate 46 must transform equal angular increments of rotation of its respective motor shaft 42 into equal linear increments of gate opening, rather than into equal increments of angular rotation about shaft 34. Since the structure of all gates 30 and their control arms 37 is identical, and the distances between the shafts 34, the lips 32 and the cam followers 48 are all equal, the cam plates 46 may themselves also be identical in size and profile.
  • each cam plate 46 is readily generated by the science of kinematics, the kinematic theory of cam development being well known in the art. Briefly, this may be done on a drawing table by schematically laying out a gate 30, arm 37, motor shaft 42 and cam follower 48 in the gate closed position, that is to say, the position of a gate 30 when its lip 32 is in effect in contact with the belt 16. Next, a 180 sector of rotation of motor shaft 42 is divided into equal angular increments, say 18 in number, beginning from the position of cam follower 48 when in its gate closed location.
  • the full gate opening is then also divided into 18 equal linear increments and the gate thereafter raised" one of those increments-The resulting location of the cam follower 48 with respect to its original position is noted and that location transferred with respect to the first angular increment about shaft 42 by regarding the latter as having rotated by that increment, always remembering that the path of cam follower 48 is arcuate.
  • the gate is then raised" another increment and the procedure repeated for all 18 increments.
  • the result will be a series of points which may then be suitably joined to produce the ultimate cam profile 47, greater accuracy being obtained if the points of contact between the profile 47 and the cam follower 48 are plotted rather than those of the center of the latter.
  • the cam profile 47 so obtained will very closely produce equal linear increments of opening of each gate 30 for equal angular increments of rotation of its motor shaft 42.
  • FIG. 5 The electrical circuit by which all of the servomotors PSM are controlled is illustrated schematically in FIG. 5. It is a quite conventional bridge-type circuit; indeed it is very like the circuits which are readily obtainable from various sources, used to control the infinitely variable speed mechanical transmissions employed in present cold feed systems and hence need be only briefly described.
  • 1-4 are preferably located on a panel (not shown) at the remote control station and are appropriately wired into a set of four transistor type relays, R l-4, respectively, such as those also manufactured by the aforesaid Barber-Coleman, as type Ali-399, which control the supply of power to PSM 1-4 from the l volt, AC source indicated, as well as their direction of rotation.
  • the actuator potentiometers, AP 1-4 are also wired into the relays R l-4 and their respective command potentiometers CP l-4; in fact, AP 1- -4 are incorporated in their respective motors PSM 1-4 but in FIG. 5 are illustrated apart therefrom for purposes of clarity.
  • Each command potentiometer CP l-4 is calibrated over its entire range on a scale 0-80, the latter FIG. representing 80 percent of full opening of its gate 30 with which it is associated, in order to provide for a maximum increase in gate opening of 25 percent.
  • the master trim potentiometer, MTP therefore, is calibrated +25 percent and -25 percent each side of its zero or null position, and the bridge circuit is supplied with power from the indicated 115 volt, AC source through a 24 volt, AC center tap transformer, T-l.
  • Appropriate values for C? 1-4 and AP l-4 are 100 ohms each, and for MTP, ohms; other details and characteristics of the foregoing circuit will be apparent to those skilled in the art.
  • each gate 30 When the opening of each gate 30 is to be established initially, the portion of 80 percent of its opening required to supply its share of the total aggregate to be delivered to the delivery conveyor 18 is simply set on its respective one of command potentiometers, C? 1-4, at the remote control panel, the master trim potentiometer, MTP, being set initially at its null position. The circuit will then cause the relays R 1- -4 to close, activating their respective motors PSM l-4, until the circuit is balanced, whereupon relays R 1-4 will deactivate motors PSM l-4, the respective gates 30 being thus opened by the cam plates 46 the desired proportionate initial distances in the manner heretofore described. Hence, as mentioned, the need heretofore to go to each gate individually and initially set it manually is eliminated.
  • a cold feed system for an asphalt plant including a plurality of hopper means for different sized aggregate, each of said hopper means having feeder means associated therewith effective to receive on a surface thereof aggregate from said hopper means and to remove the same laterally outwardly thereof, and adjustable gate means effective to control the amount of aggregate so removed outwardly of said hopper means by said feeder means by variation in the linear distance of said gate means relative to said feeder means surface, the improvements in combination therewith comprising: gate adjusting means for each of said hopper means, each of said gate adjusting means including a position servo electric motor and mechanical means driven by said motor and operatively connected to said gate means effective to transform equal angular increments of motor rotation into equal linear increments of variation in the distance of said gate means relative to said feeder means surface; and electrical control means operatively connected to all of said motors effective to cause rotation of respective ones of said motors proportionate to the amounts of aggregate to be permitted by respective ones of said gate means to be removed outwardly by respective ones of said feeder means relative to the
  • said mechanical means includes a cam having a cam profile operatively connected to said gate means effective to cause said transformation.
  • cam comprises a generally planar member rotatably driven by said motor, a portion of the edge thereof constituting said cam profile.
  • said mechanical means also includes a cam follower carried by said gate means and engaging said cam profile, said cam follower, owing to said cam profile, describing equal linear increments of movement upon equal angular increments of rotation of said cam.
  • each of said hopper means includes means for manually adjusting each of said gate means independently of said gate adjusting means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

A linearized gate control for multiple hopper-feeders of the cold feed system of an asphalt plant is disclosed. Each hopper includes a cam, driven by a position servomotor, which opens or closes the gate governing the flow of aggregate from the hopper to its feeder, the latter being driven at a constant speed. The cam is profiled so that equal increments of motor shaft rotation produce equal increments of gate opening. The servomotors of all hoppers are connected into an electrical bridge circuit such that, after the respective proportionate openings of the gates are initially established by the setting of individual electrical controls for the gate motors, adjustment of a single master control to produce a certain percentage increase or decrease in the total aggregate delivered from all the hoppers will also increase or decrease the opening of each gate by the same percentage, as the case may be.

Description

United States Patent Cedar Rapids, Iowa LINEARIZED GATE CONTROL SYSTEM FOR FOREIGN PATENTS 1.160,190 7/1958 France Primary Examiner-Robert B. Reeves Assistant Examinerl-I, S. Lane Attorneys-Haven E. Simmons and James C. Nemmers ABSTRACT: A linearized gate control for multiple hopperfeeders of the cold feed system of an asphalt plant is disclosed. Each hopper includes a cam, driven by a position servomotor, which opens or closes the gate governing the flow of aggregate from the hopper to its feeder, the latter being driven at a constant speed. The cam is profiled so that equal increments of motor shaft rotation produce equal increments of gate opening. The servomotors of all hoppers are connected into an electrical bridge circuit such that, after the respective proportionate openings of the gates are initially established by the setting of individual electrical controls for the gate motors, adjustment of a single master control to produce a certain percentage increase or decrease in the total aggregate delivered from all the hoppers will also increase or decrease the opening of each gate by the same percentage, as the case may be.
PATENTEDJUN nan 358L947 sum 1 BF 3 lNV/iN'l'OR.
WAYNE D. JACOBSON 24M WM.
ATTORNE Y ATENTED JUN l ISTI SHEET 2 BF 3 FIG 4 INVENTOR. WAYNE D. JACOBSON ATTORNEY PATENTED m 1 l97l SHEET 3 BF 3 AP-l PSM-l I AP-Z PSM -2 PSM -3 PSM-4 WAYNE D. JA COBSON AT TORNE Y LINEARIZED GATE CONTROL SYSTEM FOR MULTIPLE FEEDER AND HOPPER ARRANGEMENTS BACKGROUND OF THE INVENTION Typically, the cold feed system in an asphalt plant consists of several hoppers containing the various sizes of aggregate which are to be joined proportionately, according to a particular specification, before being sent to the dryer. Each hopper usually includes a lower stub hopper connected thereto which opens directly through its bottom onto a horizontal feeder, generally of the belt, vibratory or reciprocating kind. The latter movesthe aggregate laterally from beneath the stub hopper and deposits the same on a delivery conveyor traveling beneath all the hoppers for removal to the dryer. In order to control the amount of aggregate taken from each stub hopper by its feeder, the practice is to provide a gate transversely overlying the feeder, the height of the lower edge of the gate above the feeder governing the amount of aggregate the feeder is permitted to carry off and discharge onto the delivery conveyor.
When the asphalt plant is to produce a mix according to a given specification, current practice is to adjust the gates of the hoppers manually to provide the initial proper proportion of aggregate from each to make up the total thereof to be sent to the dryer. During operation of the plant later on, it is often necessary to increase or decrease from time to time the total amount of aggregate discharged onto the delivery conveyor while maintaining the same proportion of its constituents. Obviously, this cannot be accomplished simply by opening or closing each gate equally since, as is almost always the case, the gates are not initially opened the same amount. Instead, each gate would have to be opened or closed by the same percentage as that of the increase or decrease in the total amount of aggregate desired in order to maintain the same proportionate combination of the individual sized aggregates. For instance, if an increase of 25 percent in the total amount of aggregate is desired, and one hopper is supplying, say, percent and another 40 percent of the total, plainly the gate of the first must be opened a lesser distance than the gate of the second in order to increase the delivery from each 25 percent. For this reason, it is not possible simply to gang together all the gates so that they may be opened and closed equal amounts; obviously, also, it is undesirable to have to go to each gate individually and readjust it by hand each time a proportionate change in its opening is needed.
Rather than try to vary the gateopenings once they are initially manually set, the practice has been instead to vary proportionately the operating speeds of the individual feeders beneath the hoppers from a remote control station in order to achieve proportionate changes in the aggregate supplied from each hopper. For this purpose, at least in the case of belt type of feeders, each feeder is driven through an infinitely variable speed device governed by an electrical circuit of the bridge type. Such devices are either DC motors or variable speed mechanical transmissions of the friction type. However, such mechanical transmissions are relatively exceedingly complex, costly and delicate, and suitable DC motors are also relatively costly. Should one such transmission fail, the entire asphalt plantmust be shutdown until repair or replacement can be made inasmuch as, since the transmission is an integral part of the feeder drive, manual adjustment of its associated gate is useless because the feeder itself is paralyzed. Repair of such transmissions in the field is not feasible owing to their complexity, and field replacement is not probable owing to the unlikeliness of having spares on hand because of their costliness. In the case of vibratory feeders, the practice is to vary the feed by means of rheostats, but feeders of this nature are not too widely used because their feed is not positive enough in many instances. Reciprocating feeders are even more rarely used owing to their complexity and maintenance problems. In any event, no matter what kind of feeders have been employed, it has not been possible heretofore, so far as is known, to achieve proportionate changes in the total aggregate supply by means only of the hopper gates themselves, nor to set the openings thereof initially, without in each instance having to go to each gate individually and do so manually.
The chief object of the present invention, therefore, is to provide means by which the hopper gates themselves in the cold feed system of an asphalt plant may be adjusted, from a remote control station during operation of the plant both to produce initially the desired proportion of the aggregate from each hopper as well as thereafter to achieve proportionate changes in the supply from all hoppers.
SUMMARY OF THE INVENTION Essentially, the foregoing object and others are achieved in the preferred embodiment of the invention by operating each hopper gate by means of a large vertical cam plate driven by a position servomotor. The gate itself is largely conventional in design and consists of an arcuate plate facing upstream of the feeder, adjustment of the height of the lower edge of the plate above the feeder controlling the amount of aggregate each feeder is allowed to deposit on the delivery conveyor. The gate plate, again as is typical, is supported by a pair of spaced brackets attached at one end to the downstream face of the gate plate and fixed at their other ends to a horizontal shaft downstream of the gate and journaled in the stub hopper transversely of and above the feeder. A control arm, rigidly fixed to the gate shaft, extends further downstream therefrom so that vertical movement of the arm will cause corresponding movement of the gate on its shaft relative to the feeder. The control arm in turn carries a horizontally journaled cam follower which engages the edge of the cam plate, the latter being profiled, by well-known methods, to provide equal increments of gate openings for equal increments of motor shaft rotation.
The position servomotors of all gates are controlled by a typical bridge circuit containing individual command potentiometers disposed at a remote control station and corresponding individual actuator potentiometers incorporated in each motor by which the opening of each gate is initially set. A master trim potentiometer at the control station is calibrated each side of its null position in percentage of increase or decrease of total aggregate desired. Once the initial openings of the individual gates are set at the remote control station by the command potentiometers, thereafter adjustment of the master potentiometer one way or the other from its null position results in increments of rotation of the servomotors of all gates proportionate to the original settings of the command potentiometers, that is, proportionate to the original gate openings. The respective cam plates driven by the servomotors, however, transform the proportionate increments of angular motor shaft rotation into linear increments of gate opening or closing proportionate to the original because equal angular increments of motor shaft rotation do not result in equal angular increments o of gate shaft rotation but, owing to the cam plate profiles, in equal linear increments of gate opening. Thus the original proportion of aggregates discharged to the delivery conveyor is preserved while the total amount of aggregate is increased or decreased,as the case may be.
Accordingly, complex and costly variable speed transmissions or relatively expensive DC motors can be dispensed with and simple AC motors and reduction gear boxes substituted which are easily repairable or replaceable in the field. Furthermore, not only can proportionate changes in the total amount of aggregate be made from a remote control station, but the hopper gate openings can be initially remotely set from that same station without the need in either case of actually going to the individual gates and doing so manually. The gate control system of the present invention is relatively inexpensive and much more reliable since it is so much less complex. Should the system fail, means are also provided whereby the gates can be manually adjusted on the spot, whereupon the plant can continue to operate since the system is wholly independent of the feeders or their drives; in other words, the system fails safe," which is an important feature. In short, the present invention provides an effective form of proportionate remote control of the cold feed of aggregate in an asphalt plant at less cost, complexity and fragility and of greater utility than has hitherto been the case.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side elevational view illustrating a typical four hopper-feeder cold feed arrangement in an asphalt plant.
FIG. 2 is a view taken along the line 2-2 of FIG. 1 and illustrates a top plan view of one of the stub hoppers with its gate and gate actuating mechanism according to the present invention.
FIG. 3 is a side elevational view of the front part of the stub hopper shown in FIG. 2, and illustrating the gate actuating mechanism, certain portions being broken away for clarity.
FIG. 4 is a partial end elevational view of the stub hopper in FIG. 3, certain portions being broken away for clarity.
FIG. 5 schematically illustrates the electrical circuit controlling the operation of the hopper gates.
DESCRIPTION OF THE PREFERRED EMBODIMENT In FIG. 1, a row of four, generally rectangular hopper 10, Nos. l-4, of typical cold feed system in an asphalt plant are shown supported by braced columns 11 sitting on pedestals 12. Each hopper includes a lower stub hopper 13 secured to a horizontal flange 14 about the lower end of the former. Suspendedbeneath each stub hopper I3 is a feeder 15, those shown being of the belt type, having a belt 16 and head pulley 17 (see FIG. 3). The feeders discharge onto a single delivery conveyor 18, supported by the columns 11, running beneath the feeders 15, the upper flights of the latter and of the delivery conveyor 18 all moving in the direction shown by the arrows in FIGS. 1, 2 and 3 toward the dryer and remainder of the asphalt plant (not shown). The hoppers 10, of course, contain the various sizes of aggregate called for by the specification of the particular bituminous mix to be prepared by the plant. Since the stub hoppers l3 and their associated mechanism are all identical, only one need be and is described hereafter.
Each stub hopper 13 includes a pair of elongated sloping sidewalls 20, reinforced by an upper transverse brace member 21, a vertical rear end wall 22 and front end wall 23, and a feeder opening 24 running centrally the length thereof between the lower edges of the sidewalls 20. The overall length of each stub hopper 13 is greater than that of the lower opening of its respective hopper 10 so that a transverse brace member 25, having a horizontal flange 25a along its upper edge, is provided between the upper edges of sidewalls 20 intermediate the brace member 21 and the front end wall 22 which, together with flanges 20a and 22a flush therewith on the upper edges of the sidewalls 20 and the rear end wall 22, respectively, engage the flange 14 of the hopper l0 thereabove. The flanges 200 are carried forward to the front end wall 23 which is also provided with an upper flange 23a flush therewith. The forward edge of the brace member 25 is carried down at 25b on each side of the feeder opening 24 to the sidewalls 20 therebelow to provide a vertical, rectangular gate opening 26 immediately below which is the upper flight of belt 16. The head pulley 17 of the latter is driven by an appropriate constant speed, AC motor 27 through a belt 28 and a simple reduction gear box 29, all carried by the forward end of the stub hopper 13 along one side wall 20.
As mentioned, the stub hopper gate, generally indicated at 30, consists simply of a transverse arcuate plate 31 spanning the gate opening 26, its convex side facing upstream of belt 16 and provided with a downstream turned lip 32 along its lower edge above belt 16. To the concave face of plate 31 are fixed the ends of a pair of spaced, sector-shaped brackets 33 which extend downstream therefrom, their other ends being apertured to receive a transverse gate shaft 34, parallel to plate 31,
5 jacent sidewall 20 and fixed to a gate control arm 37 extending horizontally downstream therefrom beyond the front end wall 23 with respect to the lowermost position of gate 30 above the belt 16, as shown in FIG. 3. Hence, movement of the control arm 37 in the direction indicated by the arrow A in the latter FIG. will result in rotation of shaft 34 and consequent movement of gate 30 in the direction indicated by the arrow B in that FIG, and vice versa.
At the forward corner of the stub hopper 13 opposite feeder motor 27 a position servo, gate control motor and gear box PSM is secured atop a platform provided by a pair of stacked plates 41 secured to the flanges 20a and 23a of the adjacent side and front end walls 20 and 23, respectively. The motor shaft 42 of PSM extends outboard beyond the adjacent flange 20a and control arm 37 parallel to gate shaft 34. The plates 41 also support an appropriate electrical connection box 43 to which an electrical conduit 44 leads from a remote control panel and power source (not shown). As an example, motor PSM may be a Model 35-183-1 position servomotor manufactured by Barber-Coleman of Rockford, 111., operating on 1 15 volts, 60 cycle, single phase AC and having a travel in either direction. The outer end of motor shaft 42 receives a hub assembly 45 to which is fixed a vertical cam plate 46 disposed just outboard of and parallel to control arm 37. The cam plate 46 is of an approximately 180 sector configuration, its outer periphery forming a cam profile 47, to be hereafter described in more detail, which engages a cam follower 48 and keeper 49 horizontally journaled at 50 on the outboard face of control arm 37. Inboard of cam plate 46 a manual adjusting arm 51 is journaled to motor shaft 42 and extends forwardly and downwardly therefrom past and outboard of control arm 37, the latter portion of arm 51 being provided with a lost-motion slot 52 therealong, the two arms 37 and 51 being clampable to each other by means of a thumbscrew and washer assembly 53 for purposes to be later described. The latter is normally in its released position and so permits the two arms 37 and 51 to move relative to each other about their respective axes of shafts 34 and 42 owing to the lost-motion slot 52. Finally, just inboard of the control arm 37, a vertical gauge 54 is secured beneath the adjacent flange 20a and is marked in inches or percentage of gate opening. Accordingly, it will be obvious that, responsive to the cam profile 47, rotation of motor shaft 42 will cause the cam follower 48 to move the control arm 37, and thus gate 30, vertically about the axis of shaft 34 in the manner heretofore mentioned.
Referring now particularly to the profile 47 of cam plate 46, it will be recalled that the object is to control the opening of all gates 30 such that increases or decreases in the total aggregate delivered by all feeders 15 to the delivery conveyor 18 result in corresponding increases or decreases in the amount of aggregate delivered by each gate 30 proportionate to the original percentage of the whole supplied by the gates 30. This in turn means, in terms of the illustrated embodiment, that the opening of a gate 30, which is defined as the distance of the lip 32 thereof above the belt 16, must increase or decrease by an amount proportionate to its original setting. For instance, if the gate 30 of No. 1 hopper is open I irches and the gate 30 of No. 2 hopper 8 inches, and an increase of 25 percent in the total aggregate supplied by both is desired, the gate 30 of No. I must be opened an additional 1 inch while the gate 30 of No. 2 must be opened an additional 2inches. The servomotors PSM of all gates 30 are operated conjointly, in the manner hereafter described, such that, when an increase or decrease in the total aggregate supplied to the delivery conveyor 18 is desired, the respective motor shafts 42 rotate through angular increments proportionate to the original openings of the respective gates 30 with which they are associated. Hence, the profile 47 of each cam plate 46 must transform equal angular increments of rotation of its respective motor shaft 42 into equal linear increments of gate opening, rather than into equal increments of angular rotation about shaft 34. Since the structure of all gates 30 and their control arms 37 is identical, and the distances between the shafts 34, the lips 32 and the cam followers 48 are all equal, the cam plates 46 may themselves also be identical in size and profile.
The profile 47 of each cam plate 46 is readily generated by the science of kinematics, the kinematic theory of cam development being well known in the art. Briefly, this may be done on a drawing table by schematically laying out a gate 30, arm 37, motor shaft 42 and cam follower 48 in the gate closed position, that is to say, the position of a gate 30 when its lip 32 is in effect in contact with the belt 16. Next, a 180 sector of rotation of motor shaft 42 is divided into equal angular increments, say 18 in number, beginning from the position of cam follower 48 when in its gate closed location. The full gate opening, as defined above, is then also divided into 18 equal linear increments and the gate thereafter raised" one of those increments-The resulting location of the cam follower 48 with respect to its original position is noted and that location transferred with respect to the first angular increment about shaft 42 by regarding the latter as having rotated by that increment, always remembering that the path of cam follower 48 is arcuate. The gate is then raised" another increment and the procedure repeated for all 18 increments. The result will be a series of points which may then be suitably joined to produce the ultimate cam profile 47, greater accuracy being obtained if the points of contact between the profile 47 and the cam follower 48 are plotted rather than those of the center of the latter. Hence, the cam profile 47 so obtained will very closely produce equal linear increments of opening of each gate 30 for equal angular increments of rotation of its motor shaft 42.
The electrical circuit by which all of the servomotors PSM are controlled is illustrated schematically in FIG. 5. It is a quite conventional bridge-type circuit; indeed it is very like the circuits which are readily obtainable from various sources, used to control the infinitely variable speed mechanical transmissions employed in present cold feed systems and hence need be only briefly described. The command potentiometers, C? 1-4, of their respective position servomotors PSM 1-4 of hoppers Nos. 1-4 are preferably located on a panel (not shown) at the remote control station and are appropriately wired into a set of four transistor type relays, R l-4, respectively, such as those also manufactured by the aforesaid Barber-Coleman, as type Ali-399, which control the supply of power to PSM 1-4 from the l volt, AC source indicated, as well as their direction of rotation. The actuator potentiometers, AP 1-4, are also wired into the relays R l-4 and their respective command potentiometers CP l-4; in fact, AP 1- -4 are incorporated in their respective motors PSM 1-4 but in FIG. 5 are illustrated apart therefrom for purposes of clarity. Each command potentiometer CP l-4 is calibrated over its entire range on a scale 0-80, the latter FIG. representing 80 percent of full opening of its gate 30 with which it is associated, in order to provide for a maximum increase in gate opening of 25 percent. The master trim potentiometer, MTP, therefore, is calibrated +25 percent and -25 percent each side of its zero or null position, and the bridge circuit is supplied with power from the indicated 115 volt, AC source through a 24 volt, AC center tap transformer, T-l. Appropriate values for C? 1-4 and AP l-4 are 100 ohms each, and for MTP, ohms; other details and characteristics of the foregoing circuit will be apparent to those skilled in the art.
When the opening of each gate 30 is to be established initially, the portion of 80 percent of its opening required to supply its share of the total aggregate to be delivered to the delivery conveyor 18 is simply set on its respective one of command potentiometers, C? 1-4, at the remote control panel, the master trim potentiometer, MTP, being set initially at its null position. The circuit will then cause the relays R 1- -4 to close, activating their respective motors PSM l-4, until the circuit is balanced, whereupon relays R 1-4 will deactivate motors PSM l-4, the respective gates 30 being thus opened by the cam plates 46 the desired proportionate initial distances in the manner heretofore described. Hence, as mentioned, the need heretofore to go to each gate individually and initially set it manually is eliminated. Later on, should a variation in the total amount of aggregate be desired, movement of the master trim potentiometer, MTP, to increase or decrease the supply of total aggregate by any amount upto 25 percent will unbalance the circuit and reactivate motors PSM ll-4 through relays R l-4 until rebalance occurs, during which time each motor PSM will turn through an angular increment proportionate to the initial setting of its respective command potentiometer CP 1-4. The original proportions of aggregate supplied from the hoppers 10 will thus be maintained, since the cam plates 46, owing to the foregoing described characteristics of their profiles 47, result in linear changes in gate openings proportionate to the respective angular rotations of the motor shafts 42, as explained above. It should be noted that if any of command potentiometers CP 1- -4 is initially set at zero, no movement of master trim potentiometer MTP thereafter will result in activation of its associated motor PSM. Should any of the motors PSM 1-4 or the bridge circuitry fail, then the gate or gates 30 concerned may be manually adjusted by moving the control arm 37 to the proper position indicated by the gauge 54 and locking the same in position by means of the thumb screw and washer assembly 53. Such a failure therefore does not affect the operation of the feeders 15 so that the plant can continue on without any significant downtime.
Though the present invention has been described in terms of a particular embodiment, being the best mode known of carrying out the same, and detailed descriptive language has been used, it is not thereby so limited. Instead, the following claims are to be read as encompassing all adaptations and modifications of the invention falling within the'spirit and scope thereof.
lclaim:
1. ln a cold feed system for an asphalt plant, said system including a plurality of hopper means for different sized aggregate, each of said hopper means having feeder means associated therewith effective to receive on a surface thereof aggregate from said hopper means and to remove the same laterally outwardly thereof, and adjustable gate means effective to control the amount of aggregate so removed outwardly of said hopper means by said feeder means by variation in the linear distance of said gate means relative to said feeder means surface, the improvements in combination therewith comprising: gate adjusting means for each of said hopper means, each of said gate adjusting means including a position servo electric motor and mechanical means driven by said motor and operatively connected to said gate means effective to transform equal angular increments of motor rotation into equal linear increments of variation in the distance of said gate means relative to said feeder means surface; and electrical control means operatively connected to all of said motors effective to cause rotation of respective ones of said motors proportionate to the amounts of aggregate to be permitted by respective ones of said gate means to be removed outwardly by respective ones of said feeder means relative to the total amount of aggregate so removed by all of said feeder means, said control means being operative from a location remote from said gate means.
2. The device of claim 1 wherein said mechanical means includes a cam having a cam profile operatively connected to said gate means effective to cause said transformation.
3. The device of claim 2 wherein said cam comprises a generally planar member rotatably driven by said motor, a portion of the edge thereof constituting said cam profile.
4. The device of claim 3 wherein said mechanical means also includes a cam follower carried by said gate means and engaging said cam profile, said cam follower, owing to said cam profile, describing equal linear increments of movement upon equal angular increments of rotation of said cam.
tiometers to concurrently produce together with said command and actuator otentiometers increments of rotation of all of said motors proportionate to the increments of rotation thereof theretofore produced by said command and actuator otentiometers, said command and master trim potentiometers being disposed at a control location remote from said hopper means; and wherein each of said hopper means includes means for manually adjusting each of said gate means independently of said gate adjusting means.

Claims (5)

1. In a cold feed system for an asphalt plant, said system including a plurality of hopper means for different sized aggregate, each of said hopper means having feeder means associated therewith effective to receive on a surface thereof aggregate from said hopper means and to remove the same laterally outwardly thereof, and adjustable gate means effective to control the amount of aggregate so removed outwardly of said hopper means by said feeder means by variation in the linear distance of said gate means relative to said feeder means surface, the improvements in combination therewith comprising: gate adjusting means for each of said hopper means, each of said gate adjusting means including a position servo electric motor and mechanical means driven by said motor and operatively connected to said gate means effective to transform equal angular increments of motor rotation into equal linear increments of variation in the distance of said gate means relative to said feeder means surface; and electrical control means operatively connected to all of said motors effective to cause rotation of respective ones of said motors proportionate to the amounts of aggregate to be permitted by respective ones of said gate means to be removed outwardly by respective ones of said feeder means relative to the total amount of aggregate so removed by all of said feeder means, said control means being operative from a location remote from said gate means.
2. The device of claim 1 wherein said mechanical means includes a cam having a cam profile operatively connected to said gate means effective to cause said transformation.
3. The device of claim 2 wherein said cam comprises a generally planar member rotatably driven by said motor, a portion of the edge thereof constituting said cam profile.
4. The device of claim 3 wherein said mechanical means also includes a cam follower carried by said gate means and engaging said cam profile, said cam follower, owing to said cam profile, describing equal linear increments of movement upon equal angular increments of rotation of said cam.
5. The device of claim 2 wherein said electrical control means includes a bridge-type circuit having a plurality of pairs of command potentiometers and actuator potentiometers, one of said pairs of command and actuator potentiometers being associated with one of said motors, said command potentiometers being individually settable to produce together with said actuator potentiometers different increments of rotation of said motors, and a master trim potentiometer associated with all of said motors and said command and actuator potentiometers, said master trim potentiometer being settable independently of and after the setting of said command potentiometers to concurrently produce together with said command and actuator potentiometers increments of rotation of all of said motors proportionate to the increments of rotation thereof theretofore produced by said command and actuator potentiometers, said command and master trim potentiometers being disposed at a control location remote from said hopper means; and wherein each of said hopper means includes means for manually adjusting each of said gate means independently of said gate adjusting means.
US3581947D 1969-01-27 1969-01-27 Linearized gate control system for multiple feeder and hopper arrangements Expired - Lifetime US3581947A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US79396269A 1969-01-27 1969-01-27

Publications (1)

Publication Number Publication Date
US3581947A true US3581947A (en) 1971-06-01

Family

ID=25161269

Family Applications (1)

Application Number Title Priority Date Filing Date
US3581947D Expired - Lifetime US3581947A (en) 1969-01-27 1969-01-27 Linearized gate control system for multiple feeder and hopper arrangements

Country Status (1)

Country Link
US (1) US3581947A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4705125A (en) * 1986-11-14 1987-11-10 Ishida Scales Manufacturing Company, Ltd. Method of and apparatus for controlling hopper gate motion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4705125A (en) * 1986-11-14 1987-11-10 Ishida Scales Manufacturing Company, Ltd. Method of and apparatus for controlling hopper gate motion

Similar Documents

Publication Publication Date Title
US2727733A (en) Batch feeding and mixing apparatus
US3661365A (en) Apparatus for proportioning dry particulate materials
US3833693A (en) Dispensing of a material into a mould
US2276383A (en) Constant capacity feeder
US2181756A (en) Automatic weighing bag filler
DE1474594A1 (en) Method and device for regulating a material flow
US2100315A (en) Weighing feeder
US3581947A (en) Linearized gate control system for multiple feeder and hopper arrangements
US4714396A (en) Process for controlling the charging of a shaft furnace
US2182068A (en) Apparatus for coating food products
US2343722A (en) Feed control device
CH330809A (en) Plant for the continuous mixing and grinding of solid, granular or powdery material
US3182969A (en) Blending apparatus
US3696976A (en) Linearized gate control system for multiple feeder and hopper arrangements
US2758700A (en) Mineral filler feeder
US2718986A (en) Spreader control
US1466639A (en) Mixing apparatus
US20230301226A1 (en) System and method for controlling distribution pattern of centrifugal fertilizer spreaders
US3784061A (en) Feeder valves
US2588030A (en) Feeder for oscillating conveyers
US2703668A (en) Pan skip mechanism
US2818162A (en) Feeder
US3497113A (en) Distributor for falling granular material
US1346141A (en) Can-filling machine
JPS60238722A (en) Quantity scale

Legal Events

Date Code Title Description
AS Assignment

Owner name: CEDARAPIDS, INC.

Free format text: CHANGE OF NAME;ASSIGNOR:IOWA MANUFACTURING COMPANY OF CEDAR RAPIDS, IOWA;REEL/FRAME:004446/0003

Effective date: 19850702