US3573467A - Smoke detector utilizing glow tubes for both voltage compensation and signal coupling - Google Patents

Smoke detector utilizing glow tubes for both voltage compensation and signal coupling Download PDF

Info

Publication number
US3573467A
US3573467A US835961A US3573467DA US3573467A US 3573467 A US3573467 A US 3573467A US 835961 A US835961 A US 835961A US 3573467D A US3573467D A US 3573467DA US 3573467 A US3573467 A US 3573467A
Authority
US
United States
Prior art keywords
voltage
junction
cell
light source
smoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US835961A
Inventor
Alfred W Vasel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pyrotector Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3573467A publication Critical patent/US3573467A/en
Assigned to PYROTECTOR, INC.; A CORP OF RI. reassignment PYROTECTOR, INC.; A CORP OF RI. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CHLORIDE INCORPORATED
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Definitions

  • a circuit for the photoelectric detection of smoke is provided with means for compensating for fluctuations in the output voltage due to variations in the main supply voltage which energizes both the light source and the photocell.
  • This compensating means utilizes a voltage compensating circuit which comprises glow tubes and which is coupled to the photocell via another glow tube.
  • the photocell itself is connected in series with a resistor, the series combination of the resistor and photocell are connected across the main supply voltage.
  • the junction between the photocell and resistor is connected to the coupling glow tube which in turn is photon coupled to a photosensitive resistor which, when activated, inhibits rectification in a DC relay holding circuit causing the relay to release thereby activating an alarm.
  • Particle detectors of this type utilize a darkened chamber through which gas or liquid is forced or allowed to diffuse, with means projecting a light beam across the chamber.
  • a photocell is provided which views the medial portion of the light beam and is shielded from the direct radiation from the light source. When particles carried by the fluid medium appear in the light beam, the light is reflected therefrom onto the photocell. The resulting decrease in resistance of the cell is utilized to actuate an external alarm system.
  • an object of this invention is to provide a smoke detector in which means is provided for greatly diminishing the effect of line voltage variations on the smoke concentration at which the alarm is actuated.
  • a further object of this invention is to provide a smoke detector in which the failure of the light source causes an audible signal by means other than the alarm provided to indicate the presence of smoke.
  • FIG. l is a top plan view of a particle detector labyrinth for use with a smoke detector embodying the features of the invention, partly broken away to show the interior arrangement;
  • FIG. 2 is a view in section taken on line 2-2 of Flg. l;
  • FIG. 3 is a schematic diagram of the electrical circuit of a particle detector embodying the features of the invention.
  • a particle detector which includes generally a housing T2, 21 light source 14 disposed outside the housing, and a detector element C l disposed in the housing in operative relation to appear hereinafter.
  • the detector 10, in the illustrated embodiment, is particularly adapted for use as the detector unit of a smoke alarm and for this purpose the housing 112 comprises a peripheral wall 18 having a pair of end caps 20 and 22 forming an internal dark chamber 24.
  • the end caps extend beyond the periphery of the wall 113 and have inwardly turned flanges 26 and 28 which are spaced outwardly from the wall.
  • Each end of the wall is pro vided with a series of outwardly inclined spacing lugs 30, which are adapted to engage frictionally the inner surface of the flanges to retain the caps in assembly.
  • the flanges 26 and 28, in conjunction with the spacing lugs 30, form a peripheral passageway at each end of the wall to permit smoke to enter the chamber from the surrounding atmosphere.
  • a focusing tube 32 extends through the housing wall on one side thereof, and a light trap tube 34 is disposed in the housing wall on the opposite side in alignment with the focusing tube 32.
  • a lens 36 of the converging type is disposed in the focusing tube 32, with a focal length such that light from the source 14 is focused in a converging beam onto the bottom of the light trap tube 34, to that the beam from the light has a minimum size at the bottom of said trap, and a minimum amount of the light from the source falls on any other portion of the interior sur face of the housing.
  • a detector tube 38 extends through the housing wall between the light trap tube and the focusing tube, and is disposed generally perpendicular to the axes thereof.
  • the detector element C l is disposed in the detector tube, and to restrict the field of view of the detector, a lens 40 of the converging type is disposed in the detector tube between the detector element and the chamber.
  • the lens 40 has a focal length such that the image of the detector element is focused onto a minimum area on the opposite surface of the housing wall and the cone of focus of the detector element is directed across the cone of focus of the light beam, so that the detector element views only the medial portion of the light beam and the field of view of the cell at the opposite wall portion is confined to the medial portion of the wall, so that the cell does not view the peripheral apertures at the top and bottom of the wall. Hence substantially no light reaches the detector ele ment except light appearing in the focus cone of the lens 40.
  • the end 42 of the detector tube on the side adjacent the light tube extends forwardly to the cone of focus of the light beam to provide a shield against stray light from the inside surface of the focus tube.
  • the end of the detector tube from this foremost point is inclined rear wardly at an angle such that the inside surface of the detector tube cannot view the inside surface of the focus tube.
  • the side of the end of the detector tube adjacent the light trap tube is provided with an inclined shield 44.
  • the housing 12 is adapted to be mounted onto a support panel 46, and the light source T4 is also mounted on the panel in alignment with the focusing tube 32, and connected to a suitable source of electric current.
  • the external mounting of the light source provides a visual check on its condition and makes replacement convenient.
  • the detector element C 1 may be any type of device which is responsive by a change in resistance to a change in light intensity, such a a photoresistive cell.
  • a detector circuit may be connected to the detector element and adjusted to the cell resistance under normal conditions of no smoke so that a predetermined further decrease in cell resistance will actuate an external alarm connected to the detector circuit.
  • smoke enters the housing and appears in the light beam light from the smoke particles in the portion of the light beam viewed by the detector is reflected or diffused onto the detector cell, thereby lowering the resistance of the cell and actuating the alarm circuit.
  • the physical structure and operation of the above-described housing is the subject matter of a copending application Ser. No. 396,629, filed Sept. 15, 1964, by the present inventor and Rudolph W. ltalns.
  • FIG. 3 there is illustrated an alarm and control circuit for use with the labyrinth of FIGS. 1 and 2.
  • the relay R11 is connected across the source of voltage E in series with a pair of parallel circuit paths, one of which includes a photocell C2 and a diode Dil, the other of which includes a diode D2 poled in a direction opposite to that of the diode D1.
  • a photocell C3 In parallel with the relay R1 is a photocell C3 and a capacitor F1.
  • the photocell C3 is positioned to receive light from the light source [4 whenever said light source is energized, and the photocell C2 receives light from an adjacent neon bulb Bl which is energized only when photocell Cl is illuminated by smoke particles, in a manner to appear hereinafter.
  • the circuit path which includes the normally dark photocell C2 is a high resistance path, so that only half-wave voltage is applied to the relay RI, and to the capacitor F1 and cell C3 in parallel therewith.
  • the cell C3 is normally conductive, since it is illuminated by the light source 14.
  • the halfwave voltage is therefore capable of maintaining the relay Rl energized since the capacitor F1 in parallel therewith stores sufficient energy on the half-cycle in which the diode D2 is conductive to maintain the relay R1 pulled in by discharging on the opposite half-cycle during which the diode D2 is not conductive.
  • the neon bulb B1 When cell Cl is illuminated by smoke particles in the manner previously described, the neon bulb B1 is energized (in a manner to appear hereinafter) thereby illuminating cell C2 and rendering it conductive, so that full-wave voltage is applied across the relay RI and the capacitor Fl. Since the capacitor F1 is a low impedance shunt to full-wave AC voltage, and the relay is a DC-operated device the voltage across the relay Rl drops to a value such that the relay is deenergized allowing contacts RlXl to close and energize the alarm.
  • the abovedescribed portion of the circuit accomplishes this in the following manner. If the light source 14 should fail (under normal no-smoke operating conditions), the resistance of photocell C3 increases to a substantially nonconductive condition. The capacitor Fl thereby becomes ineffective to supply current to the relay R] on the portion ofthe cycle during which diode D2 is nonconductive so that only half-wave voltage is applied to the relay. Although the relay remains energized, so that contacts RlXl remain open; the intermittent undirectional voltage applied to the relay causes the armature to vibrate or chatter with an audible sound loud enough to attract the attention of any person in the vicinity of the device.
  • the neon bulb B1 is energized to actuate the alarm, in the manner previously described, when the cell C l sees illuminated smoke particles, in a manner now to be described.
  • the cell Cl is connected across the voltage source in series with a resistor K1 and the diode D1, and the neon bulb B1 is connected to the junction Jl between the cell C l and the resistor Kl. Since the cell Cl is normally not illuminated and therefore has a high resistance, the voltage at the junction Jl is below the striking voltage of the neon bulb Bl.
  • the concentration of smoke at which the alarm will be actuated will be influenced by the supply voltage.
  • An increase in supply voltage unless some compensating effect is provided, will cause the alarm to be actuated at a lower smoke concentration than is desired for two reasons.
  • the greater voltage will cause an increased brightness of the light source 14 so that more light is reflected from the smoke particles onto the cell Cl; and second, a higher voltage is applied to the cell C 1 so that the ignition voltage of the neon glow tube Bl is reached at a higher resistance of cell C l.
  • a supply voltage lower than normal would result in the opposite effect; that is, decreased brightness of the light source 14, and less voltage applied to the cell C 1, so that the alarm would be actuated only when the amount of smoke in the housing is greater than the predetermined amount.
  • a pair of neon glow tubes B2 and B3 are connected in parallel with the cell across the voltage source, and both the glow tubes and the cell are connected to the voltage source through a resistor K5 so that the voltage at the cell Cl is maintained relatively constant by the regulating effect of the glow tubes.
  • the variations in supply voltage cause variations in brightness of the light source 14 which will cause a variation in the amount of light received by the cell Cl.
  • the voltage at thejunction Jl will vary as a function of the supply voltage.
  • the amount of smoke necessary to be present in the housing to cause the voltage at point J] to reach the ignition temperature of the glow tube would vary with the supply voltage.
  • means is provided for varying with variations in the supply voltage the voltage required at Jl to ignite the glow tube, by applying a bias voltage to the oppositc side of the glow tube in the following manner.
  • the bias for the glow tube is obtained from junction J2 of two series resistors K3 and K4 connected through two voltage regulating glow tubes B4 and B5 to the supply voltage.
  • the change in bias voltage at junction J2 can substantially eliminate the effect of variations in brightness of the light source 14 so that the glow tube B1 is ignited and the alarm sounded at substantially the same smoke concentration regardless of whether the supply voltage E is above or below normal.
  • the normal supply voltage E is v.
  • bias voltage at junction J2 is 12 v. and the voltage between terminals necessary to ignite the glow tube is 60 v.
  • junction J1 Seventy-two volts is therefore required at junction J1 to ignite the glow tube.
  • An increase in supply voltage to 132 v. will result in an increase in brightness of the light source.
  • the greater reflection from the smoke particles may cause the voltage at J I to be, for example, 76 v.
  • the bias voltage at junction J2 increase to 16 v.
  • the voltage at junction J 1 may be only 68 v. when the predetermined amount of smoke is present in the housing.
  • the bias voltage must therefore drop to 8 v. It will be apparent that the required voltage bias to be applied to the glow tube Bl will be influenced by the characteristics of the light source 14 and the photocell C l, and the other components of the circuit must be selected in accordance with said characteristics.
  • a control circuit for use in a smoke detector device which utilizes radiation from a light source subject to variations in intensity due to variations in supply voltage
  • a photoresistive cell and a first resistor in series therewith through a first junction said cell being positioned to receive radiation from the light source reflected from smoke particles, a first glow tube having one terminal connected to said first junction and being ignited when the voltage at the first junction reaches a predetermined value above the voltage at its other terminal, a voltage-compensating circuit comprising two series-connected glow tubes and two resistors connected in series with the two glow tubes through a second junction, said compensating circuit being connected in parallel with the cell and the first resistor said other terminal of the glow tube being connected to the second junction between the two resistors of the voltage-regulating circuit, whereby an increase in supply voltage across the photoresistive cell and the first resistor which causes an increase in intensity of the light source which would cause an increase in voltage at the first junction for a predetermined resistance of said photoresistive cell is compensated for by an increase in supply

Landscapes

  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Business, Economics & Management (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Management (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A circuit for the photoelectric detection of smoke is provided with means for compensating for fluctuations in the output voltage due to variations in the main supply voltage which energies both the light source and the photocell. This compensating means utilizes a voltage compensating circuit which comprises glow tubes and which is coupled to the photocell via another glow tube. The photocell itself is connected in series with a resistor, the series combination of the resistor and photocell are connected across the main supply voltage. The junction between the photocell and resistor is connected to the coupling glow tube which in turn is photon coupled to a photosensitive resistor which, when activated, inhibits rectification in a DC relay holding circuit causing the relay to release thereby activating an alarm.

Description

United States Patent Alfred W. Vasel 222 Linwood St., Abington, Mass. 02351 835,961
June 24, 1969 Division of Ser. No. 592,617, Nov. 7, 1966, fi N 3 461 4 Patented Apr. 6, 1971 Inventor Appl. No. Filed SMOKE DETECTOR UTILIZING GLOW TUBES FOR BOTH VOLTAGE COMPENSATION AND SIGNAL COUPLING 1 Claim, 3 Drawing Figs.
Int. Cl 00111 21/12, 00111 21/26, 1101 39/12 r1610 61 Search 250/218, 220, 206, 208; 356/207, 208
References Cited UNITED STATES PATENTS Vedder 356/207 2,654,845 10/ l 953 Presenz 250/218 2,891,438 6/1959 Fuhrmann et al..... 250/218 3,340,519 9/1967 Vasel; 250/218 Primary Examiner-James W. Lawrence Assistant Examiner-T. N. Grigsby Attorney-Robert E. Ross ABSTRACT: A circuit for the photoelectric detection of smoke is provided with means for compensating for fluctuations in the output voltage due to variations in the main supply voltage which energizes both the light source and the photocell. This compensating means utilizes a voltage compensating circuit which comprises glow tubes and which is coupled to the photocell via another glow tube. The photocell itself is connected in series with a resistor, the series combination of the resistor and photocell are connected across the main supply voltage. The junction between the photocell and resistor is connected to the coupling glow tube which in turn is photon coupled to a photosensitive resistor which, when activated, inhibits rectification in a DC relay holding circuit causing the relay to release thereby activating an alarm.
Patented April 6, 1971 Inven for A/frea W Vase/ By his Attorney WWW/ a Slt/ll OllflE DETECTOR lU'llTlLllZllblG GLOW TlUlBlES FOR BOTH ll/UTJTAGIE COMPENSATTUN AND SllGNAlL CG UFILTNG This invention relates generally to particle detectors and has particular reference to a smoke detector of the diffusion type and to an improved alarm circuit for use therewith, and is a division of Ser. No. 592,6l7 now US. Pat. No. 3,461,443.
Particle detectors of this type utilize a darkened chamber through which gas or liquid is forced or allowed to diffuse, with means projecting a light beam across the chamber. A photocell is provided which views the medial portion of the light beam and is shielded from the direct radiation from the light source. When particles carried by the fluid medium appear in the light beam, the light is reflected therefrom onto the photocell. The resulting decrease in resistance of the cell is utilized to actuate an external alarm system.
Devices of this type are finding wide use in both industrial and residential applications, however they have been found to have a number of disadvantages in certain applications.
Since the amount of illumination reaching the photocell under a predetermined. smoke concentration is a function of the brightness of the light beam, which is dependent on the voltage applied to the light source, it will be apparent that the smoke concentration at which the alarm will be sounded will vary with the line voltage applied to the light source. In other words, when the line voltage is below normal so that the light source is less bright than normal a greater smoke concentration will be required to actuate the alarm than when the voltage is higher than normal and the light source is brighter than normal. This effect is amplified by the fact that the line voltage variations also affect the voltage applied across the photocell.
Another difficulty with such devices has been the problem of providing economical means for indicating a failure of the light source. Although a system in which the failure of the light source would actuate the alarm is simple to design and build, it has been considered undesirable to have the smoke alarm utilized for this purpose, and the provision of a separate alarm to indicate bulb failure is too expensive for many applications.
Hence an object of this invention is to provide a smoke detector in which means is provided for greatly diminishing the effect of line voltage variations on the smoke concentration at which the alarm is actuated.
A further object of this invention is to provide a smoke detector in which the failure of the light source causes an audible signal by means other than the alarm provided to indicate the presence of smoke.
Other objects of the invention will be apparent to one skilled in the art from the following detailed description of a specific embodiment thereof.
In the drawing:
FIG. l is a top plan view of a particle detector labyrinth for use with a smoke detector embodying the features of the invention, partly broken away to show the interior arrangement;
FIG. 2 is a view in section taken on line 2-2 of Flg. l; and
FIG. 3 is a schematic diagram of the electrical circuit of a particle detector embodying the features of the invention.
Referring to the drawing there is illustrated a particle detector which includes generally a housing T2, 21 light source 14 disposed outside the housing, and a detector element C l disposed in the housing in operative relation to appear hereinafter.
The detector 10, in the illustrated embodiment, is particularly adapted for use as the detector unit of a smoke alarm and for this purpose the housing 112 comprises a peripheral wall 18 having a pair of end caps 20 and 22 forming an internal dark chamber 24. The end caps extend beyond the periphery of the wall 113 and have inwardly turned flanges 26 and 28 which are spaced outwardly from the wall. Each end of the wall is pro vided with a series of outwardly inclined spacing lugs 30, which are adapted to engage frictionally the inner surface of the flanges to retain the caps in assembly. The flanges 26 and 28, in conjunction with the spacing lugs 30, form a peripheral passageway at each end of the wall to permit smoke to enter the chamber from the surrounding atmosphere.
To direct and control the beam from the light source 14, a focusing tube 32 extends through the housing wall on one side thereof, and a light trap tube 34 is disposed in the housing wall on the opposite side in alignment with the focusing tube 32. A lens 36 of the converging type is disposed in the focusing tube 32, with a focal length such that light from the source 14 is focused in a converging beam onto the bottom of the light trap tube 34, to that the beam from the light has a minimum size at the bottom of said trap, and a minimum amount of the light from the source falls on any other portion of the interior sur face of the housing.
A detector tube 38 extends through the housing wall between the light trap tube and the focusing tube, and is disposed generally perpendicular to the axes thereof. The detector element C l is disposed in the detector tube, and to restrict the field of view of the detector, a lens 40 of the converging type is disposed in the detector tube between the detector element and the chamber. The lens 40 has a focal length such that the image of the detector element is focused onto a minimum area on the opposite surface of the housing wall and the cone of focus of the detector element is directed across the cone of focus of the light beam, so that the detector element views only the medial portion of the light beam and the field of view of the cell at the opposite wall portion is confined to the medial portion of the wall, so that the cell does not view the peripheral apertures at the top and bottom of the wall. Hence substantially no light reaches the detector ele ment except light appearing in the focus cone of the lens 40. To further insure that a minimum amount of the internal stray light reaches the detector element, the end 42 of the detector tube on the side adjacent the light tube extends forwardly to the cone of focus of the light beam to provide a shield against stray light from the inside surface of the focus tube. The end of the detector tube from this foremost point is inclined rear wardly at an angle such that the inside surface of the detector tube cannot view the inside surface of the focus tube. To prevent stray reflected light from the inside of the light trap tube from reaching the detector lens 44), the side of the end of the detector tube adjacent the light trap tube is provided with an inclined shield 44.
in the illustrated embodiment the housing 12 is adapted to be mounted onto a support panel 46, and the light source T4 is also mounted on the panel in alignment with the focusing tube 32, and connected to a suitable source of electric current. The external mounting of the light source provides a visual check on its condition and makes replacement convenient.
The detector element C 1 may be any type of device which is responsive by a change in resistance to a change in light intensity, such a a photoresistive cell. One type of cell which has been found satisfactory is cadmium sulfide, which responds to an increase in light intensity by a decrease in resistance. Hence. in the illustrated embodiment a detector circuit may be connected to the detector element and adjusted to the cell resistance under normal conditions of no smoke so that a predetermined further decrease in cell resistance will actuate an external alarm connected to the detector circuit. When smoke enters the housing and appears in the light beam, light from the smoke particles in the portion of the light beam viewed by the detector is reflected or diffused onto the detector cell, thereby lowering the resistance of the cell and actuating the alarm circuit. The physical structure and operation of the above-described housing is the subject matter of a copending application Ser. No. 396,629, filed Sept. 15, 1964, by the present inventor and Rudolph W. ltalns.
Referring to FIG. 3, there is illustrated an alarm and control circuit for use with the labyrinth of FIGS. 1 and 2. The circuit of FIG. 3, which is energized from an alternating current source E, is intended to deenergize a normally energized DC relay Rll, to close contacts RlXl to energize an alarm A when the cell Cl views illuminated particles in the light beam in the labyrinth, in a manner to be described.
The relay R11 is connected across the source of voltage E in series with a pair of parallel circuit paths, one of which includes a photocell C2 and a diode Dil, the other of which includes a diode D2 poled in a direction opposite to that of the diode D1. In parallel with the relay R1 is a photocell C3 and a capacitor F1.
The photocell C3 is positioned to receive light from the light source [4 whenever said light source is energized, and the photocell C2 receives light from an adjacent neon bulb Bl which is energized only when photocell Cl is illuminated by smoke particles, in a manner to appear hereinafter.
Therefore, during normal operation of the device, under conditions of no smoke, the circuit path which includes the normally dark photocell C2 is a high resistance path, so that only half-wave voltage is applied to the relay RI, and to the capacitor F1 and cell C3 in parallel therewith. The cell C3 is normally conductive, since it is illuminated by the light source 14. The halfwave voltage is therefore capable of maintaining the relay Rl energized since the capacitor F1 in parallel therewith stores sufficient energy on the half-cycle in which the diode D2 is conductive to maintain the relay R1 pulled in by discharging on the opposite half-cycle during which the diode D2 is not conductive.
When cell Cl is illuminated by smoke particles in the manner previously described, the neon bulb B1 is energized (in a manner to appear hereinafter) thereby illuminating cell C2 and rendering it conductive, so that full-wave voltage is applied across the relay RI and the capacitor Fl. Since the capacitor F1 is a low impedance shunt to full-wave AC voltage, and the relay is a DC-operated device the voltage across the relay Rl drops to a value such that the relay is deenergized allowing contacts RlXl to close and energize the alarm.
As previously mentioned, it is considered desirable to provide some means other than the main smoke alarm to indicate the failure of the smoke-illuminating light source. The abovedescribed portion of the circuit accomplishes this in the following manner. If the light source 14 should fail (under normal no-smoke operating conditions), the resistance of photocell C3 increases to a substantially nonconductive condition. The capacitor Fl thereby becomes ineffective to supply current to the relay R] on the portion ofthe cycle during which diode D2 is nonconductive so that only half-wave voltage is applied to the relay. Although the relay remains energized, so that contacts RlXl remain open; the intermittent undirectional voltage applied to the relay causes the armature to vibrate or chatter with an audible sound loud enough to attract the attention of any person in the vicinity of the device.
The neon bulb B1 is energized to actuate the alarm, in the manner previously described, when the cell C l sees illuminated smoke particles, in a manner now to be described. The cell Cl is connected across the voltage source in series with a resistor K1 and the diode D1, and the neon bulb B1 is connected to the junction Jl between the cell C l and the resistor Kl. Since the cell Cl is normally not illuminated and therefore has a high resistance, the voltage at the junction Jl is below the striking voltage of the neon bulb Bl. When smoke particles enter the chamber and are viewed by the cell Cl, its resistance drops, and when the predetermined concentration of smoke is present in the housing, the resistance of the cell C 1 drops to a value low enough to allow the voltage at J l to reach the igniting voltage of the neon bulb Bl, thereby actuating the alarm in the manner previously described.
As previously described, the concentration of smoke at which the alarm will be actuated will be influenced by the supply voltage. An increase in supply voltage, unless some compensating effect is provided, will cause the alarm to be actuated at a lower smoke concentration than is desired for two reasons. First, the greater voltage will cause an increased brightness of the light source 14 so that more light is reflected from the smoke particles onto the cell Cl; and second, a higher voltage is applied to the cell C 1 so that the ignition voltage of the neon glow tube Bl is reached at a higher resistance of cell C l. A supply voltage lower than normal would result in the opposite effect; that is, decreased brightness of the light source 14, and less voltage applied to the cell C 1, so that the alarm would be actuated only when the amount of smoke in the housing is greater than the predetermined amount.
To prevent line voltage variations from appreciably affecting the voltage applied to the cell Cl, a pair of neon glow tubes B2 and B3 are connected in parallel with the cell across the voltage source, and both the glow tubes and the cell are connected to the voltage source through a resistor K5 so that the voltage at the cell Cl is maintained relatively constant by the regulating effect of the glow tubes.
As previously described, the variations in supply voltage cause variations in brightness of the light source 14 which will cause a variation in the amount of light received by the cell Cl. With a predetermined amount of smoke present in the housing, therefore, the voltage at thejunction Jl will vary as a function of the supply voltage. Hence the amount of smoke necessary to be present in the housing to cause the voltage at point J] to reach the ignition temperature of the glow tube would vary with the supply voltage. To compensate for this obviously undesirable effect, means is provided for varying with variations in the supply voltage the voltage required at Jl to ignite the glow tube, by applying a bias voltage to the oppositc side of the glow tube in the following manner.
In the illustrated embodiment the bias for the glow tube is obtained from junction J2 of two series resistors K3 and K4 connected through two voltage regulating glow tubes B4 and B5 to the supply voltage.
The addition of the bias voltage obtained at J2 to the side of the glow tube Bl opposite junction J 1 changes the voltage required at junction Jl to ignite the glow tube Bl in a manner now to be described. When the supply voltage E rises above normal, causing the light source 14 to increase in brightness, and, if smoke is present in the housing, raising the voltage at J1, the increased voltage through the regulating tubes B4 and B5 and through the resistors K3 and K4 increases the voltage at junction J2 and consequently at the adjacent side of the glow tube Bl. Therefore a greater voltage is required at the junction Jl to ignite the glow tube, thereby compensating for the increased brightness of the light source 14. Conversely a lower supply voltage E will decrease the bias voltage at junction J2, and under such condition less voltage will be required at junction J l to ignite the glow tube B] at the predetermined smoke level, thereby compensating for the fact that the lower By a selection of appropriate values of the various components of the circuit, the change in bias voltage at junction J2 can substantially eliminate the effect of variations in brightness of the light source 14 so that the glow tube B1 is ignited and the alarm sounded at substantially the same smoke concentration regardless of whether the supply voltage E is above or below normal. In a typical embodiment, it may be assumed that the normal supply voltage E is v., and bias voltage at junction J2 is 12 v. and the voltage between terminals necessary to ignite the glow tube is 60 v. Seventy-two volts is therefore required at junction J1 to ignite the glow tube. An increase in supply voltage to 132 v. will result in an increase in brightness of the light source. When the predetermined smoke concentration is present in the housing, the greater reflection from the smoke particles may cause the voltage at J I to be, for example, 76 v. To prevent the alarm from being energized prematurely, it is therefore necessary that the bias voltage at junction J2 increase to 16 v.
If the supply voltage drops to 1 l0 v., for example, the voltage at junction J 1 (resulting from decreased brightness of the light source) may be only 68 v. when the predetermined amount of smoke is present in the housing. The bias voltage must therefore drop to 8 v. It will be apparent that the required voltage bias to be applied to the glow tube Bl will be influenced by the characteristics of the light source 14 and the photocell C l, and the other components of the circuit must be selected in accordance with said characteristics.
Since certain obvious changes may be made in the device disclosed herein without departing from the scope of the insupply voltage has reduced the brightness of the light source vention, it is intended that all matter contained herein be interpreted in an illustrative and not a limited sense.
l. A control circuit for use in a smoke detector device which utilizes radiation from a light source subject to variations in intensity due to variations in supply voltage comprising a photoresistive cell and a first resistor in series therewith through a first junction, said cell being positioned to receive radiation from the light source reflected from smoke particles, a first glow tube having one terminal connected to said first junction and being ignited when the voltage at the first junction reaches a predetermined value above the voltage at its other terminal, a voltage-compensating circuit comprising two series-connected glow tubes and two resistors connected in series with the two glow tubes through a second junction, said compensating circuit being connected in parallel with the cell and the first resistor said other terminal of the glow tube being connected to the second junction between the two resistors of the voltage-regulating circuit, whereby an increase in supply voltage across the photoresistive cell and the first resistor which causes an increase in intensity of the light source which would cause an increase in voltage at the first junction for a predetermined resistance of said photoresistive cell is compensated for by an increase in voltage at the second junction due to increased current flow in the voltage regulator circuit.

Claims (1)

1. A control circuit for use in a smoke detector device which utilizes radiation from a light source subject to variations in intensity due to variations in supply voltage comprising a photoresistive cell and a first resistor in series therewith through a first junction, said cell being positioned to receive radiation from the light source reflected from smoke particles, a first glow tube having one terminal connected to said first junction and being ignited when the voltage at the first junction reaches a predetermined value above the voltage at its other terminal, a voltage-compensating circuit comprising two seriesconnected glow tubes and two resistors connected in series with the two glow tubes through a second junction, said compensating circuit being connected in parallel with the cell and the first resistor , said other terminal of the glow tube being connected to the second junction between the two resistors of the voltageregulating circuit, whereby an increase in supply voltage across the photoresistive cell and the first resistor which causes an increase in intensity of the light source which would cause an increase in voltage at the first junction for a predetermined resistance of said photoresistive cell is compensated for by an increase in voltage at the second junction due to increased current flow in the voltage regulator circuit.
US835961A 1966-11-07 1969-06-24 Smoke detector utilizing glow tubes for both voltage compensation and signal coupling Expired - Lifetime US3573467A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US59261766A 1966-11-07 1966-11-07
US83596169A 1969-06-24 1969-06-24

Publications (1)

Publication Number Publication Date
US3573467A true US3573467A (en) 1971-04-06

Family

ID=27081495

Family Applications (1)

Application Number Title Priority Date Filing Date
US835961A Expired - Lifetime US3573467A (en) 1966-11-07 1969-06-24 Smoke detector utilizing glow tubes for both voltage compensation and signal coupling

Country Status (1)

Country Link
US (1) US3573467A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894240A (en) * 1974-03-22 1975-07-08 Simer Pump Company Control circuit for maintaining a movable medium between limits

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1810739A (en) * 1928-11-09 1931-06-16 Westinghouse Electric & Mfg Co Smoke indicator system
US2654845A (en) * 1952-11-07 1953-10-06 Cecil S Presenz Vapor detector
US2891438A (en) * 1950-03-23 1959-06-23 S L F Engineering Company Photoelectric photometer having compensating means for line voltage fluctuations
US3340519A (en) * 1965-11-22 1967-09-05 Alfred W Vasel Smoke detection apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1810739A (en) * 1928-11-09 1931-06-16 Westinghouse Electric & Mfg Co Smoke indicator system
US2891438A (en) * 1950-03-23 1959-06-23 S L F Engineering Company Photoelectric photometer having compensating means for line voltage fluctuations
US2654845A (en) * 1952-11-07 1953-10-06 Cecil S Presenz Vapor detector
US3340519A (en) * 1965-11-22 1967-09-05 Alfred W Vasel Smoke detection apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894240A (en) * 1974-03-22 1975-07-08 Simer Pump Company Control circuit for maintaining a movable medium between limits

Similar Documents

Publication Publication Date Title
US3409885A (en) Smoke detection apparatus
US3882477A (en) Smoke and heat detector incorporating an improved smoke chamber
US2304641A (en) Control apparatus
US3752978A (en) Photoelectric intrusion detector
US3980997A (en) Smoke detector
US3555532A (en) Vapor or particle detection device
US3191048A (en) Light sensitive alarm system
US4242673A (en) Optical particle detector
US3461443A (en) Smoke detector with means indicating the failure of the light source
US4103997A (en) Light scattering type smoke detector
US4206456A (en) Smoke detector
US4249169A (en) Optical smoke detector
US3312826A (en) Photoelectric smoke detector with ventilation induced by light source
CA1232343A (en) Photoelectric smoke detector and alarm system
US3660670A (en) Document detecting and counting apparatus
US3122638A (en) Infrared detector system for flame and particle detection
US3062961A (en) Circuit controlling device
US3430220A (en) Fire detector
US3573467A (en) Smoke detector utilizing glow tubes for both voltage compensation and signal coupling
US3411005A (en) Compact infrared detector systems with regulated power supply
US3723747A (en) Photoelectric detector with compensating photocell
US3936814A (en) Smoke detector and alarm
US3313946A (en) Smoke, flame, critical temperature and rate of temperature rise detector
US4025915A (en) LED smoke detector circuit
US3789383A (en) Smoke detector with means for compensating for variations in light source brightness due to line voltage variations

Legal Events

Date Code Title Description
AS Assignment

Owner name: PYROTECTOR, INC.; 333 LINCOLN ST., HINGHAM, MA. A

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CHLORIDE INCORPORATED;REEL/FRAME:004094/0656

Effective date: 19830103