US3570701A - Tank for use in storing low temperature liquefied gas - Google Patents

Tank for use in storing low temperature liquefied gas Download PDF

Info

Publication number
US3570701A
US3570701A US780717A US3570701DA US3570701A US 3570701 A US3570701 A US 3570701A US 780717 A US780717 A US 780717A US 3570701D A US3570701D A US 3570701DA US 3570701 A US3570701 A US 3570701A
Authority
US
United States
Prior art keywords
vessel
low temperature
liquefied gas
inner vessel
temperature liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US780717A
Inventor
Katsuro Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Globe Corp
Original Assignee
Eneos Globe Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos Globe Corp filed Critical Eneos Globe Corp
Application granted granted Critical
Publication of US3570701A publication Critical patent/US3570701A/en
Assigned to MITSUI LIQUEFIED GAS CO., LTD. reassignment MITSUI LIQUEFIED GAS CO., LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: BRIDGESTONE LIQUEFIED PETROLEUM GAS COMPANY LIMITED
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/022Land-based bulk storage containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D1/00Straightening, restoring form or removing local distortions of sheet metal or specific articles made therefrom; Stretching sheet metal combined with rolling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0119Shape cylindrical with flat end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/032Orientation with substantially vertical main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0646Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S220/00Receptacles
    • Y10S220/901Liquified gas content, cryogenic

Definitions

  • the camber serves to relieve the hoop 2 /1961 M rris n 220/9(A') stress acting upon the inner vessel when it is subjected to the 3,085,708 4/1963 Dosker 220/9( A) load resulting from the low temperature liquefied gas.
  • This invention relates to tanks for use in storing low temperature liquefied gas such as low temperature liquefied natural gas, low temperature liquefied petroleum gas etc. and more particularly to an improved thin film type tank.
  • a thin film type tank comprises an outer vessel having a rigid construction, a heat insulating layer having a substantial resistance to compression resistant property and provided on the inside surface of the outer vessel and an inner vessel having a thin film construction and provided inside of the heat insulating layer, in which the inner vessel serves only to prevent leakage of the liquefied gas and the load resulting from the liquefied gas is supported through the heat insulating layer by the rigid outer vessel.
  • Such an inner vessel comes into contact with the low temperature liquefied gas therefore it must be made of a material which does not have its flexibility altered by low temperatures, which materials are usually expensive. But, since the thickness of the inner vessel is small, it can be manufactured in a less expensive manner.
  • the inner vessel of the thin film type tank becomes not only contracted when exposed to the low temperature liquefied gas, but also elongated when it is subjected to the load resulting from the low temperature liquefied gas and brought into a close contact with the heat insulating layer.
  • a mechanism for allowing expansion and contraction of the inner vessel may be provided. But, such a mechanism affords the disadvantage that the construction of the inner vessel becomes complex.
  • the inner vessel made of thin film could not keep its configuration and hence must be supported at various points thereof by the heat insulating layer. These supporting points tend to prevent free movement of the inner vessel, with the result that dangerous stress occurs therein.
  • the principal object of the invention is to provide an improved thin film type tank and more particularly an inner vessel thereof without having the above mentioned disadvantages.
  • FIG. 1 is a vertical sectional view of a tank for use in storing low temperature liquefied gas according to the invention
  • FIG. 2 is its transverse sectional view taken along the line II-II of FIG. 1;
  • FIG. 3 diagrammatically illustrates the mutual relation between the dimensions of an inner vessel and those of an outer vessel
  • FIG. 4 is a transverse sectional view similar to FIG. 2 and illustrating a state of the tank shown in FIG. 1;
  • FIG. 5 is an enlarged view of the part surrounded by the circle G in FIG. 4;
  • FIG. 6A-6D are enlarged views illustrating different states of the inner vessel including gently undulated camber according to the invention.
  • the reference numeral 1 designates a roof of an outer vessel, 2 its sidewall and 3 a bottom plate thereof.
  • 4 shows a heat insulating layer having a substantial resistance to compression, 5 a cover plate of an inner vessel, 6 its sidewall and 7 a bottom plate thereof.
  • the inner vessel is made of a thin film and constructed such that the load resulting from low temperature liquefied gas charged in the inner vessel is supported through the heat insulating layer 4 by the outer vessel.
  • the inner vessel made of the thin film is so constructed that it is secured only at its cover plate 5 to the outer vessel inclusive of the heat insulating layer 4, while the remaining parts of the inner vessel are not secured to the outer vessel.
  • the inner vessel becomes deformed when it is subjected to the load resulting from the low temperature liquefied gas.
  • Such deformation of the inner vessel results in a so-called membrane force to be produced which propagates through the thin film.
  • the membrane force moves towards that part of the inner vessel which is subjected in less extent to the load resulting from the low temperature liquefied gas.
  • the deformations are concentrated on a rounded shoulder portion formed between the cover plate 5 and the sidewall 6 where no liquid load acts, and the membrane force acting upon the inner vessel in its vertical direction substantially disappears as the rounded shoulder portion is deformed.
  • the load resulting from the low temperature liquefied gas is evenly distributed and hence there occurs uniform hoop force. This hoop force acting upon the inner vessel in horizontal direction will now be described.
  • the inner vessel becomes contracted when it is exposed to the low temperature liquefied gas, while the outer vessel is not exposed to the low temperature liquefied gas so that it is not deformed whereby between the inner and outer vessels is formed a gap.
  • the inner vessel is subjected to tensile stress resulting from the hoop force.
  • the inner vessel In general, if use is made of a thin film made of metals such as steel, aluminum, etc. as the inner vessel structural material, the inner vessel has to expand over its elastic limit in order to close the gap to be formed when exposed to the low temperature liquefied gas having a temperature less than about 40
  • the above-mentioned design wherein the dimensions of the inner vessel at room temperature are made equal to those of the outer vessel results in considerable constructional disadvantage in that the inner vessel produces therein a stress exceeding its elastic limit.
  • peripheral dimensions of the material of the inner vessel at room temperature are made larger than the inner peripheral dimensions of the insulating layer of the outer vessel for the purpose of obviating the above mentioned disadvantage.
  • the inner vessel of the thin film-type tank should be formed into a liquidtight bag. It is desirable that no stress is applied to such a liquidtight bag even if it is subjected to the load resulting from the low temperature liquefied gas.
  • Q is the dimensions of the inner vessel at room temperature which are so designed that no stress is applied to it when it is subjected to the load resulting from the low temperature liquefied gas;
  • the allowable strain is about 0.2 percent for the design within the elastic limit of the inner vessel made of steel, aluminum etc. If this strain becomes more than about 0.2 percent there occurs plastic deformation of the inner vessel. In order to prevent occurrence of such plastic deformation of the inner vessel it is necessary to make the accuracy of design and working less than 0.2 percent. But, as above mentioned it is extremely difficult to make the accuracy of design and working less than 0.2 percent.
  • the film when the thin film inner vessel is of welded construction, the film must have a substantial thickness and hence have a certain bending rigidity. Therefore, if the dimensions of the material of the inner vessel are made considerably larger than the no stress point F as in the above-mentioned case 3, the excess portion of the inner vessel which is larger than the no stress point F is buckled to form regular waves as shown in FIGS. 4 and 5 when the inner vessel is exposed to the low temperature liquefied gas.
  • the shape and number of these waves are determined by the dimensions of the inner vessel, the amount of that excess portion of the inner vessel which is larger than the no stress point F, the modulus of elasticity of the film, the thickness of the film, the modulus of elasticity of the heat insulating layer adapted to support the inner vessel and the load resulting from the low temperature liquefied gas.
  • the number of these waves changes in dependence on the load resulting from the low temperature liquefied gas. If the load becomes increased, each of these waves becomes small to increase the number of waves.
  • the load acting upon these waves is considered to act upon a curved beam having a length L and supported at both ends I and K of each wave as shown in FIG. 5.
  • the load resulting from the low temperature liquefied gas is supported by the curved beam so that allowable excess length of the inner vessel that is larger than the no stress point F is determined by the strength of the curved beam.
  • the amount of such allowable excess length of the inner vessel is determined in dependence on the above mentioned various conditions and is larger than the allowable strain of the inner vessel when it is subjected to the tensile stress and compressive stress as described with reference to the above mentioned cases I and 2.
  • the supporting points .I and K are located on an elastic heat insulating layer having a comparatively small modulus of elasticity (Young's modulus), the compressive bending stress becomes relatively small.
  • the allowable rate of the excess length of the inner vessel is about 0.6 percent for the design within the elastic limit of the inner vessel of aluminum film, when it is subjected to the load resulting from the low temperature liquefied gas whose value is 0.6 Kg. /cm".
  • the allowable strain for the case 3 is about three times larger than that for the cases 1 and 2.
  • the dimensions of the sheet material of the inner vessel are made larger than those of the inner surface of the insulation layer of the outer vessel so that in the cases 2 and 3 the dimensions of the material of the inner vessel have to be made considerably larger than those of said inner surface of the insulating layer of the outer vessel.
  • That portion of the inner vessel which is larger than the outer vessel must be enclosed as corrugations in the outer vessel and these corrugations should disappear when the inner vessel is subjected to the low temperature and load resulting from the low temperature liquefied gas.
  • Conventional flexible couplings could not be used as means for attaining such object instead of using the corrugations. It is preferable that these corrugations are regularly distributed and elastically restored to their original shape when the load is removed.
  • FIG. 6A shows the mutual relation between the inner and outer vessels in which the bottom of each camber 6 is in contact with the outer vessel, while the top of each camber 6 is located inside the outer vessel. If the inner vessel is exposed to the low temperature liquefied gas, the inner vessel contracts and is moved inwards and separated from the outer vessel as shown in FIG. 68. At the same time, if the inner vessel is subjected to the load resulting from the low temperature liquefied gas, the inner vessel is urged against the outer vessel whereby the cambeis 6 disappear and are positioned at the above mentioned no stress point F as shown in FIG. 6C.
  • the invention has been explained with reference to the vertically cylindrical thin film type tank, it is a matter of course that the invention may also be applied to inboard rectangular thin film type tanks. Moreover, while the invention has been explained with reference to the inner vessel having no supported points in the horizontal section thereof. the invention may also be applied to rectangular tanks each provided at its center with a partition wall to which is secured the inner vessel. Thus, the invention is not limited to the shape of the tank and the presence or absence of points supporting the inner vessel in the horizontal section.
  • a tank for use in storing low temperature liquefied gas comprising an outer vessel having a rigid construction and lined with a heat insulating layer having substantial resistance to compression, and an inner membrane vessel of a thin film type provided in said outer vessel, said inner membrane vesscl including a sidewall having a plurality of vertically extending.
  • corrugation means such that, at ambient temperature and under no load the peripheral dimension of the material of said inner membrane vessel is greater than the inner periphery of said heat insulating layer, said corrugation means being so gently undulated that when under load at low temperature said corrugation means tend to be flattened out and then said sidewall of said inner membrane vessel is buckled into a number of gently undulating waves which are of 'a different frequency than that of the initial corrugation means under the influence of compressive stress whereby the lateral stress to which said sidewall is subjected becomes su stantially compressive or compressive and bending.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

A tank for use in storing low temperature liquefied gas having a rigid outer vessel lined with a heat insulating layer and an inner vessel of a thin film construction with gently undulated camber. The peripheral dimensions of the material of the inner vessel are made relatively larger than those of the inner peripheral dimensions of the insulating layer of the outer vessel. The camber serves to relieve the hoop stress acting upon the inner vessel when it is subjected to the load resulting from the low temperature liquefied gas.

Description

United States Patent [72] lnventor Katsuro Yamamoto Tokyo, Japan [21] Appl. No. 780,717
[22] Filed Dec. 3, 1968 [45] Patented Mar. 16, 1971 [73] Assignee Bridgestone Liquefied Petroleum Gas Company Limited Tokyo, Japan [54] TANK FOR USE IN STORING LOW 3,150,794 9/1964 Schlumberger et a1. 220/9(A) 3,150,795 9/1964 Schlumberger 220/9(A) 3,151,416 10/1964 Eakin et al (220/9A'UX) 3,215,301 1 1/1965 Armstrong 220/9(A')X FOREIGN PATENTS 1,293,237 4/1962 France 220/9(A) 1,073,713 6/1967 Great Britain.. 220/9(A) 6,515,226 5/1966 Netherlands 220/9(A') Primary Examiner.loseph R. Leclair Assistant Examiner-James R. Garrett TEM?ERATURE LIQUEFIED GAS Attorney1-l0lman & Stern 3 Clalms, 9 Drawing Flgs.
[52] U.S.Cl 220/10 [51 865d 7/22 [50] Field of Search 220/9 (A), ABSTRACT; A tank for use in storing |ow temperature,
9 (A )1 10 liquefied gas having a rigid outer vessel lined with a heat insulating layer and an inner vessel of a thin film construction with [56] References Cted gently undulated camber. The peripheral dimensions ofthe UNTED STATES PATENTS material of the inner vessel are made relatively larger than 2,889,953 6/ 1959 Momson 220/9(A') those of the inner peripheral dimensions of the insulating layer 2,944,692 7/ 1960 Farrell et a1. 220/9(A') of the outer vessel. The camber serves to relieve the hoop 2 /1961 M rris n 220/9(A') stress acting upon the inner vessel when it is subjected to the 3,085,708 4/1963 Dosker 220/9( A) load resulting from the low temperature liquefied gas.
ail s I I s \I I \,f a I, L 9" i :1 z y I :4 11
$1 =2 "25 S, :I Q73! I 1/ ,G ,7 I!
SHEET 2 0F 3 Fig. 3
Iuvzwrrmg KH'FSUA Ynmn mo 1''.
87A M DWJ #Mii.
PATENTED MRI 6 l9?! 3, 570.701
SHEET 3 OF 3 Fig. 6A
TANK FOR USE IN STORING LOW TEMPERATURE LIQUEFIED GAS This invention relates to tanks for use in storing low temperature liquefied gas such as low temperature liquefied natural gas, low temperature liquefied petroleum gas etc. and more particularly to an improved thin film type tank.
A thin film type tank comprises an outer vessel having a rigid construction, a heat insulating layer having a substantial resistance to compression resistant property and provided on the inside surface of the outer vessel and an inner vessel having a thin film construction and provided inside of the heat insulating layer, in which the inner vessel serves only to prevent leakage of the liquefied gas and the load resulting from the liquefied gas is supported through the heat insulating layer by the rigid outer vessel. Such an inner vessel comes into contact with the low temperature liquefied gas therefore it must be made of a material which does not have its flexibility altered by low temperatures, which materials are usually expensive. But, since the thickness of the inner vessel is small, it can be manufactured in a less expensive manner.
But, the inner vessel of the thin film type tank becomes not only contracted when exposed to the low temperature liquefied gas, but also elongated when it is subjected to the load resulting from the low temperature liquefied gas and brought into a close contact with the heat insulating layer. In this case, it is not desirable that the elongation of the inner vessel exceeds the elastic limit thereof. In order to avoid such undesirable elongation, a mechanism for allowing expansion and contraction of the inner vessel may be provided. But, such a mechanism affords the disadvantage that the construction of the inner vessel becomes complex. Moreover, the inner vessel made of thin film could not keep its configuration and hence must be supported at various points thereof by the heat insulating layer. These supporting points tend to prevent free movement of the inner vessel, with the result that dangerous stress occurs therein.
The principal object of the invention is to provide an improved thin film type tank and more particularly an inner vessel thereof without having the above mentioned disadvantages.
For a better understanding of the invention, reference is taken to the accompanying drawings, in which:
FIG. 1 is a vertical sectional view of a tank for use in storing low temperature liquefied gas according to the invention;
FIG. 2 is its transverse sectional view taken along the line II-II of FIG. 1;
FIG. 3 diagrammatically illustrates the mutual relation between the dimensions of an inner vessel and those of an outer vessel;
FIG. 4 is a transverse sectional view similar to FIG. 2 and illustrating a state of the tank shown in FIG. 1;
FIG. 5 is an enlarged view of the part surrounded by the circle G in FIG. 4; and
FIG. 6A-6D are enlarged views illustrating different states of the inner vessel including gently undulated camber according to the invention.
Referring now to FIG. 1, the reference numeral 1 designates a roof of an outer vessel, 2 its sidewall and 3 a bottom plate thereof. 4 shows a heat insulating layer having a substantial resistance to compression, 5 a cover plate of an inner vessel, 6 its sidewall and 7 a bottom plate thereof.
In accordance with the invention the inner vessel is made of a thin film and constructed such that the load resulting from low temperature liquefied gas charged in the inner vessel is supported through the heat insulating layer 4 by the outer vessel. In the embodiment shown in the drawings, the inner vessel made of the thin film is so constructed that it is secured only at its cover plate 5 to the outer vessel inclusive of the heat insulating layer 4, while the remaining parts of the inner vessel are not secured to the outer vessel.
Thus, the inner vessel becomes deformed when it is subjected to the load resulting from the low temperature liquefied gas. Such deformation of the inner vessel results in a so-called membrane force to be produced which propagates through the thin film. In a vertical sectional plane of the inner vessel, the membrane force moves towards that part of the inner vessel which is subjected in less extent to the load resulting from the low temperature liquefied gas. As the result, the deformations are concentrated on a rounded shoulder portion formed between the cover plate 5 and the sidewall 6 where no liquid load acts, and the membrane force acting upon the inner vessel in its vertical direction substantially disappears as the rounded shoulder portion is deformed. In a horizontal sectional plane of the inner vessel, however, the load resulting from the low temperature liquefied gas is evenly distributed and hence there occurs uniform hoop force. This hoop force acting upon the inner vessel in horizontal direction will now be described.
If the dimensions of the inner vessel at room temperature are made equal to those of the outer vessel, the inner vessel becomes contracted when it is exposed to the low temperature liquefied gas, while the outer vessel is not exposed to the low temperature liquefied gas so that it is not deformed whereby between the inner and outer vessels is formed a gap. Thus, the inner vessel is subjected to tensile stress resulting from the hoop force.
In general, if use is made of a thin film made of metals such as steel, aluminum, etc. as the inner vessel structural material, the inner vessel has to expand over its elastic limit in order to close the gap to be formed when exposed to the low temperature liquefied gas having a temperature less than about 40 Thus, the above-mentioned design wherein the dimensions of the inner vessel at room temperature are made equal to those of the outer vessel results in considerable constructional disadvantage in that the inner vessel produces therein a stress exceeding its elastic limit.
In the present tank the peripheral dimensions of the material of the inner vessel at room temperature are made larger than the inner peripheral dimensions of the insulating layer of the outer vessel for the purpose of obviating the above mentioned disadvantage.
In principle, the inner vessel of the thin film-type tank should be formed into a liquidtight bag. It is desirable that no stress is applied to such a liquidtight bag even if it is subjected to the load resulting from the low temperature liquefied gas.
In FIG. 3 illustrating the mutual relation between the dimensions of the inner vessel and those of the outer vessel, if F designates a point at which no stress is applied, then the following relation is given by the equation:
Q) where Q) is the dimensions of the inner vessel at room temperature which are so designed that no stress is applied to it when it is subjected to the load resulting from the low temperature liquefied gas;
@ the dimensions of the outer vessel;
the amount of thermal contraction of the inner vessel; and
the amount of deformation of the outer vessel when it is subjected to the load resulting from the low temperature liquefied gas.
That is, it is necessary to make the dimensions of the material of the inner vessel larger than those of the interior surface of the insulating layer of the outer vessel by taking into consideration the amount of contraction of the inner vessel andv the amount of deformation of the outer vessel when they are subjected to the load resulting from the low temperature liquefied gas. In practice, however, it is almost impossible to bring the dimensions of the inner and outer vessels into coincidence with the above-mentioned no stress point F owing to the design and working accuracy. Different kinds of hoop force occur depending upon whether the dimensions of the inner vessel are smaller or larger than the no stress point F. That is:
I. there occurs tensile stress acting upon the inner vessel when its dimensions are smaller than the no stress point F;
2. there occurs compressive stress acting upon the inner vessel when its dimensions are a little larger than the no stress point F; and
3. there occurs compressive bending stress acting upon the inner vessel when its dimensions are considerably larger than the no stress point F.
When there occur the tensile stress and compressive stress acting upon the inner vessel as in the above mentioned cases I and 2 the allowable strain is about 0.2 percent for the design within the elastic limit of the inner vessel made of steel, aluminum etc. If this strain becomes more than about 0.2 percent there occurs plastic deformation of the inner vessel. In order to prevent occurrence of such plastic deformation of the inner vessel it is necessary to make the accuracy of design and working less than 0.2 percent. But, as above mentioned it is extremely difficult to make the accuracy of design and working less than 0.2 percent.
In general, when the thin film inner vessel is of welded construction, the film must have a substantial thickness and hence have a certain bending rigidity. Therefore, if the dimensions of the material of the inner vessel are made considerably larger than the no stress point F as in the above-mentioned case 3, the excess portion of the inner vessel which is larger than the no stress point F is buckled to form regular waves as shown in FIGS. 4 and 5 when the inner vessel is exposed to the low temperature liquefied gas.
The shape and number of these waves are determined by the dimensions of the inner vessel, the amount of that excess portion of the inner vessel which is larger than the no stress point F, the modulus of elasticity of the film, the thickness of the film, the modulus of elasticity of the heat insulating layer adapted to support the inner vessel and the load resulting from the low temperature liquefied gas.
The number of these waves changes in dependence on the load resulting from the low temperature liquefied gas. If the load becomes increased, each of these waves becomes small to increase the number of waves.
The load acting upon these waves is considered to act upon a curved beam having a length L and supported at both ends I and K of each wave as shown in FIG. 5.
Thus, the load resulting from the low temperature liquefied gas is supported by the curved beam so that allowable excess length of the inner vessel that is larger than the no stress point F is determined by the strength of the curved beam. The amount of such allowable excess length of the inner vessel is determined in dependence on the above mentioned various conditions and is larger than the allowable strain of the inner vessel when it is subjected to the tensile stress and compressive stress as described with reference to the above mentioned cases I and 2. Particularly, when the supporting points .I and K are located on an elastic heat insulating layer having a comparatively small modulus of elasticity (Young's modulus), the compressive bending stress becomes relatively small.
As an example, in a tank having an inner diameter of mm. is enclosed an inner vessel made of aluminum film having a thickness of 3 mm. and this inner vessel is supported by a rigid heat insulating layer. The allowable rate of the excess length of the inner vessel is about 0.6 percent for the design within the elastic limit of the inner vessel of aluminum film, when it is subjected to the load resulting from the low temperature liquefied gas whose value is 0.6 Kg. /cm".
In other words, the allowable strain for the case 3 is about three times larger than that for the cases 1 and 2.
As seen from the above, it is preferable to make the dimensions of the material of the inner vessel a little larger than the no stress point F.
When the inner vessel is assembled in the outer vessel at room temperature, even in the case 1, the dimensions of the sheet material of the inner vessel are made larger than those of the inner surface of the insulation layer of the outer vessel so that in the cases 2 and 3 the dimensions of the material of the inner vessel have to be made considerably larger than those of said inner surface of the insulating layer of the outer vessel.
That portion of the inner vessel which is larger than the outer vessel must be enclosed as corrugations in the outer vessel and these corrugations should disappear when the inner vessel is subjected to the low temperature and load resulting from the low temperature liquefied gas. Conventional flexible couplings could not be used as means for attaining such object instead of using the corrugations. It is preferable that these corrugations are regularly distributed and elastically restored to their original shape when the load is removed.
Experimental tests have yielded the result that the above mentioned requirements can be satisfied by using cambers 6 gently undulated as shown in FIGS. 6A-6D.
FIG. 6A shows the mutual relation between the inner and outer vessels in which the bottom of each camber 6 is in contact with the outer vessel, while the top of each camber 6 is located inside the outer vessel. If the inner vessel is exposed to the low temperature liquefied gas, the inner vessel contracts and is moved inwards and separated from the outer vessel as shown in FIG. 68. At the same time, if the inner vessel is subjected to the load resulting from the low temperature liquefied gas, the inner vessel is urged against the outer vessel whereby the cambeis 6 disappear and are positioned at the above mentioned no stress point F as shown in FIG. 6C. If the dimensions of the inner vessel are considerably larger than the no stress point F, then that surplus portion of the inner vessel which is larger than the no stress point F is yielded into a number of buckled waves as shown in FIG. 6D. The shape of these buckled waves are not dependent upon the cambers shown in FIG. 6A, but are determined by the abovementioned various conditions.
While the invention has been explained with reference to the vertically cylindrical thin film type tank, it is a matter of course that the invention may also be applied to inboard rectangular thin film type tanks. Moreover, while the invention has been explained with reference to the inner vessel having no supported points in the horizontal section thereof. the invention may also be applied to rectangular tanks each provided at its center with a partition wall to which is secured the inner vessel. Thus, the invention is not limited to the shape of the tank and the presence or absence of points supporting the inner vessel in the horizontal section.
Iclaim:
l. A tank for use in storing low temperature liquefied gas comprising an outer vessel having a rigid construction and lined with a heat insulating layer having substantial resistance to compression, and an inner membrane vessel of a thin film type provided in said outer vessel, said inner membrane vesscl including a sidewall having a plurality of vertically extending. circumferentially spaced corrugation means such that, at ambient temperature and under no load the peripheral dimension of the material of said inner membrane vessel is greater than the inner periphery of said heat insulating layer, said corrugation means being so gently undulated that when under load at low temperature said corrugation means tend to be flattened out and then said sidewall of said inner membrane vessel is buckled into a number of gently undulating waves which are of 'a different frequency than that of the initial corrugation means under the influence of compressive stress whereby the lateral stress to which said sidewall is subjected becomes su stantially compressive or compressive and bending.
2. A tank for use in storing low temperature liquefied gas as claimed in claim 1 wherein said heat insulating layer has a comparatively small modulus of elasticity relative to the modulus of elasticity of the material of the membrane vessel thereby causing said compressive bending stress to be reduced.
3. A tank for use in storing low temperature liquefied gas as claimed in claim 1 wherein said inner membrane vessel includes a cover plate, rounded shoulder portions formed between said cover plate and said sidewall of said inner membrane vessel, the deformation of said inner membrane vessel at its vertical sectional plane produced when it is subjected to the load resulting from the low temperature liquefied gas being absorbed by said rounded shoulder portions.

Claims (2)

  1. 2. A tank for use in storing low temperature liquefied gas as claimed in claim 1 wherein said heat insulating layer has a comparatively small modulus of elasticity relative to the modulus of elasticity of the material of the membrane vessel thereby causing said compressive bending stress to be reduced.
  2. 3. A tank for use in storing low temperature liquefied gas as claimed in claim 1 wherein said inner membrane vessel includes a cover plate, rounded shoulder portions formed between said cover plate and said sidewall of said inner membrane vessel, the deformation of said inner membrane vessel at its vertical sectional plane produced when it is subjected to the load resulting from the low temperature liquefied gas being absorbed by said rounded shoulder portions.
US780717A 1968-02-06 1968-12-03 Tank for use in storing low temperature liquefied gas Expired - Lifetime US3570701A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP727368 1968-02-06
US78071768A 1968-12-03 1968-12-03

Publications (1)

Publication Number Publication Date
US3570701A true US3570701A (en) 1971-03-16

Family

ID=26341548

Family Applications (1)

Application Number Title Priority Date Filing Date
US780717A Expired - Lifetime US3570701A (en) 1968-02-06 1968-12-03 Tank for use in storing low temperature liquefied gas

Country Status (4)

Country Link
US (1) US3570701A (en)
DE (1) DE1815242A1 (en)
FR (1) FR1595976A (en)
GB (1) GB1202789A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3666132A (en) * 1970-01-14 1972-05-30 Bridgestone Liquified Gas Co L Membrane container construction for storing low-temperature liquified gas
US3970208A (en) * 1973-12-28 1976-07-20 National Forge Company Protective shield for pressure vessels
US4201745A (en) * 1977-03-05 1980-05-06 Klockner-Humboldt-Deutz Aktiengesellschaft Autoclave for carrying out of material conversions under high temperatures and high pressures
US20090152278A1 (en) * 2007-12-14 2009-06-18 Markus Lindner Inner shell for a pressure vessel
US20110168722A1 (en) * 2010-01-13 2011-07-14 BDT Consultants Inc. Full containment tank
US20110186580A1 (en) * 2008-03-03 2011-08-04 Samsung Heavy Ind. Co., Ltd. Reinforcing member for corrugated membrane of lng cargo tank, membrane assembly having the reinforcing member and method for constructing the same
US11073243B2 (en) * 2017-03-22 2021-07-27 Ihi Corporation Low-temperature tank and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113154256B (en) * 2021-04-12 2022-07-19 合肥通用机械研究院有限公司 Support arrangement for low temperature storage tank pump well pipe

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2889953A (en) * 1954-02-04 1959-06-09 Constock Liquid Methane Corp Insulated tank with impervious lining
US2944692A (en) * 1958-03-27 1960-07-12 Constock Liquid Methane Corp Expansible container for lowtemperature fluid
US2994452A (en) * 1954-08-02 1961-08-01 Conch Int Methane Ltd Insulated tank for liquefied hydrocarbons and the like with loose membranous lining therefor
FR1293237A (en) * 1960-05-21 1962-05-11 Conch Int Methane Ltd Container comprising a flexible inner tank, in particular for storing or transporting a liquefied gas
US3085708A (en) * 1960-12-19 1963-04-16 Conch Int Methane Ltd Membrane type storage tank
US3150794A (en) * 1961-06-20 1964-09-29 Conch Int Methane Ltd Membrane tanks
US3150795A (en) * 1961-06-20 1964-09-29 Conch Int Methane Ltd Membrane tanks
US3151416A (en) * 1961-05-15 1964-10-06 Inst Gas Technology Method of constructing a liquefied gas container
US3215301A (en) * 1961-11-21 1965-11-02 Conch Int Methane Ltd Expansible metal sheets
NL6515226A (en) * 1964-11-30 1966-05-31
GB1073713A (en) * 1963-06-11 1967-06-28 Technigaz Improvements in or relating to fluid-tight enclosed spaces for storing and/or transporting fluids

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2889953A (en) * 1954-02-04 1959-06-09 Constock Liquid Methane Corp Insulated tank with impervious lining
US2994452A (en) * 1954-08-02 1961-08-01 Conch Int Methane Ltd Insulated tank for liquefied hydrocarbons and the like with loose membranous lining therefor
US2944692A (en) * 1958-03-27 1960-07-12 Constock Liquid Methane Corp Expansible container for lowtemperature fluid
FR1293237A (en) * 1960-05-21 1962-05-11 Conch Int Methane Ltd Container comprising a flexible inner tank, in particular for storing or transporting a liquefied gas
US3085708A (en) * 1960-12-19 1963-04-16 Conch Int Methane Ltd Membrane type storage tank
US3151416A (en) * 1961-05-15 1964-10-06 Inst Gas Technology Method of constructing a liquefied gas container
US3150794A (en) * 1961-06-20 1964-09-29 Conch Int Methane Ltd Membrane tanks
US3150795A (en) * 1961-06-20 1964-09-29 Conch Int Methane Ltd Membrane tanks
US3215301A (en) * 1961-11-21 1965-11-02 Conch Int Methane Ltd Expansible metal sheets
GB1073713A (en) * 1963-06-11 1967-06-28 Technigaz Improvements in or relating to fluid-tight enclosed spaces for storing and/or transporting fluids
NL6515226A (en) * 1964-11-30 1966-05-31

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3666132A (en) * 1970-01-14 1972-05-30 Bridgestone Liquified Gas Co L Membrane container construction for storing low-temperature liquified gas
US3970208A (en) * 1973-12-28 1976-07-20 National Forge Company Protective shield for pressure vessels
US4201745A (en) * 1977-03-05 1980-05-06 Klockner-Humboldt-Deutz Aktiengesellschaft Autoclave for carrying out of material conversions under high temperatures and high pressures
US20090152278A1 (en) * 2007-12-14 2009-06-18 Markus Lindner Inner shell for a pressure vessel
US20100237081A1 (en) * 2007-12-14 2010-09-23 Gm Global Technology Operations, Inc. Inner shell for a pressure vessel
US20110186580A1 (en) * 2008-03-03 2011-08-04 Samsung Heavy Ind. Co., Ltd. Reinforcing member for corrugated membrane of lng cargo tank, membrane assembly having the reinforcing member and method for constructing the same
US20150114970A1 (en) * 2008-03-03 2015-04-30 Samsung Heavy Ind. Co., Ltd. Reinforcing member for corrugated membrane of lng cargo tank, membrane assembly having the reinforcing member and method for contructing the same
US20170108169A1 (en) * 2008-03-03 2017-04-20 Samsung Heavy Ind. Co., Ltd. Reinforcing member for corrugated membrane of lng cargo tank, membrane assembly having the reinforcing member and method for constructing the same
US10132446B2 (en) * 2008-03-03 2018-11-20 Samsung Heavy Ind. Co., Ltd Reinforcing member for corrugated membrane of LNG cargo tank, membrane assembly having the reinforcing member and method for constructing the same
US20110168722A1 (en) * 2010-01-13 2011-07-14 BDT Consultants Inc. Full containment tank
US11073243B2 (en) * 2017-03-22 2021-07-27 Ihi Corporation Low-temperature tank and method for manufacturing same

Also Published As

Publication number Publication date
GB1202789A (en) 1970-08-19
DE1815242A1 (en) 1971-06-09
FR1595976A (en) 1970-06-15

Similar Documents

Publication Publication Date Title
US3858752A (en) Container having improved resealable closure system
US3302358A (en) Thermal insulation structures
US3339778A (en) Insulated tank for liquids at low temperatures
US3570701A (en) Tank for use in storing low temperature liquefied gas
US4105819A (en) Laminated sheets particularly for cryogenic enclosures, pipes, and the like
US3150794A (en) Membrane tanks
US1651521A (en) Method and apparatus for the storage and the transportation of gas
US5004129A (en) Self-venting container
US3039418A (en) Tankers
US3399800A (en) Tank for liquefied gas
US4176761A (en) Thermally insulated vessel especially for liquefied gases
US3115983A (en) Support system for cryogenic liquid storage tank
US3425585A (en) Support system for cryogenic containers
KR102614343B1 (en) Closed and insulated tank with multiple zones
US3337079A (en) Stressed membrane liquified gas container
US3333725A (en) Floating cover and sealing means for liquid storage tank
US3595423A (en) Tank for use in storing low-temperature liquefied gas
GB1368608A (en) Low temperature liquefied gas tank of a membrane type
EP3798495B1 (en) Insulation device for low-temperature pipe
US3851611A (en) Tank of a low temperature liquefied gas tanker ship
US3273740A (en) Tank for liquefied natural gas and other products stored at low temperatures
US2993460A (en) Tank support
US3613932A (en) Low-temperature liquefied gas storage equipment
US3622030A (en) Tank for use in storing low-temperature liquefied gas
US2925934A (en) Support means for the movable end of a vessel

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUI LIQUEFIED GAS CO., LTD., JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:BRIDGESTONE LIQUEFIED PETROLEUM GAS COMPANY LIMITED;REEL/FRAME:003945/0173

Effective date: 19811208

Owner name: MITSUI LIQUEFIED GAS CO., LTD.

Free format text: CHANGE OF NAME;ASSIGNOR:BRIDGESTONE LIQUEFIED PETROLEUM GAS COMPANY LIMITED;REEL/FRAME:003945/0173

Effective date: 19811208