US3567032A - Filter and pump for a recirculating sanitary system - Google Patents

Filter and pump for a recirculating sanitary system Download PDF

Info

Publication number
US3567032A
US3567032A US829486A US3567032DA US3567032A US 3567032 A US3567032 A US 3567032A US 829486 A US829486 A US 829486A US 3567032D A US3567032D A US 3567032DA US 3567032 A US3567032 A US 3567032A
Authority
US
United States
Prior art keywords
filter
pump
pumping
aperture
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US829486A
Inventor
James M Kemper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monogram Industries Inc
Original Assignee
Monogram Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monogram Industries Inc filed Critical Monogram Industries Inc
Application granted granted Critical
Publication of US3567032A publication Critical patent/US3567032A/en
Anticipated expiration legal-status Critical
Assigned to HELLER FINANCIAL, INC. reassignment HELLER FINANCIAL, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAG AEROSPACE INDUSTRIES, INC., A CORP. OF DE
Assigned to MAG AEROSPACE INDUSTRIES, INC. reassignment MAG AEROSPACE INDUSTRIES, INC. RELEASE AND REASSIGNMENT OF SECURITY INTEREST Assignors: HELLER FINANCIAL, INC.
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D5/00Special constructions of flushing devices, e.g. closed flushing system
    • E03D5/016Special constructions of flushing devices, e.g. closed flushing system with recirculation of bowl-cleaning fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • B01D29/03Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements self-supporting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/26Filters with built-in pumps filters provided with a pump mounted in or on the casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S4/00Baths, closets, sinks, and spittoons
    • Y10S4/10Water additive or substitute

Definitions

  • the needle members extend beyond the plate into the storage tank at all times, and the reciprocating motion im-' parted to the needle members tends to clean the needle-aperture combination, which acts as the filter.
  • the pump also supplies a limited backflow through the filter for cleaning purposes during a portion of the operating cycle,
  • a novel, pneumatic timing device assures the completion of an operating cycle.
  • the present invention relates to recirculating sanitary systems, and, more particularly, to a system including a toilet, a. storage tank, and pumping and filtering means for providing a supply of flushing liquid to the toilet.
  • the recirculating sanitary systems exemplified by the patent to liatona, et al., or Dietz, above,.u tilize an electrically driven rotary pump in combination with a rotating filter cup.
  • a wiper assembly is provided to clean the filter during operation to remove solid or particulate residue from the filter itself.
  • the pump is capable of reversible operation toallow limited backflushing through the filter for cleaning purposes. Since, in sanitary systems, fibrous materials such as paper or fabric, and
  • W hat is needed, and what has been provided by the present invention, is an improved, recirculating system with a novel filter element, that is not subject to the problems of the prior art.
  • a large diaphragm pump is provided with a reciprocating arm connected to the diaphragm thereof.
  • a pneumatic system drives the diaphragm and a bias spring returns the diaphragm to a set initial position.
  • the intake to the diaphragm pump includes an apertured plate member and a plurality of needle members connected to the reciprocating arm.
  • the needle members reciprocate through the aperture on each actuation of the diaphragm.
  • the needle members move through the apertures into the storage tank portion and, on the return stroke, the needles are withdrawn into the filter assembly.
  • each aperture and the corresponding needle member creates the filtering structure.
  • the needle members at all times extend through the plate member and into the storage tank, to prevent an occluding of the apertures by impermeable foreign objects.
  • the diaphragm pump is provided with a first unidirectional flow valve, which is connected to the toilet flushing supply line, and a second, unidirectional flow valve which admits fluid from the storage tank.
  • the reciprocating arm is loosely mounted in the pump housing so that on the pumping stroke, some fluid is permitted to flow through the filter assembly and into the storage tank, thereby backflushing the filter and cleaning particulate residue from the vicinity of the filter apertures.
  • the pneumatic system drives the diaphragm pump and a novel, pneumatic time delay apparatus is provided to permit a complete cycle of operation to be triggered by the momentary actuation of a pushbutton or other start mechanism.
  • the pneumatic system is, at all times, isolated from the recirculating liquid system, and operates wholly independently therefrom. Because the pump stores the liquid to be used in the flush portion of the cycle, high volume flow through the filter is not required. Rather, the filter operates during a fill portion of a cycle and the rate of fill can be selectively adjusted so as not to disturb the sedimentary contents of the storage tank. Depending upon the demand cycle of the sanitary system, the fill portion of the cycle can be extended so that even a relatively fine filter can be utilized in the system.
  • the placement of the return spring can be changed and the diaphragm pump can be operated utilizing a vacuum line rather than a pressure line.
  • a hydraulic system could be utilized, since the driving system is maintained isolated from the driven system.
  • Still other pumping mechanisms can be adapted for use in the present invention, including electrically driven systems which can provide a reciprocating motion to the filteringcornbination.
  • a diaphragm pump acts as a partial reservoir of filtered flushing liquid.
  • a conventional impeller pump drives filtered liquid through the system and a bypass drives the pump diaphragm.
  • the impeller pump draws additional liquid through the filter as needed and a portion of this liquid is returned, through a bypass to drive the diaphragm, reciprocating the filter needles with respect to the plate.
  • the filter Because the pump stores some of the liquid to be used in the flush portion of the cycle, high volume flow through the filter is not required. Rather, the filter operates both during the flush and fill portions of a cycle. Further, the diaphragm pump, at the end of a flush stroke, refills itself, primarily through the filter.
  • the fluid that is expelled from thedriving chamber of the diaphragm pump is returned, through the bypass and will, during the intake stroke tend to stand in the discharge line.
  • the standing fluid will provide a limited'backflow through the filter and into the tank, tending to clean the filter plate.
  • the reciprocating filter assembly may, in alternative embodiments, utilize a reciprocating apertured plate in combination with stationary needle members. Further, the fineness" of the filter can readily be modified by the appropriate choice of aperture size relative to the cross section of the individual needle members.
  • FIG. 1 is an overall block diagram of a recirculating sanitary system in which the present invention is useful
  • FIG. 2 is a side view of an integral pump and filter unit according to the present invention.
  • FIG. 3 is a side sectional view of a preferred embodiment of a pump and filter adapted to be mounted below the storage tank of a sanitary system;
  • FIG. 4 is atop view of the filter portion of the unit of FIG. 3;
  • H6. 5 is a magnified side sectional view of the filter portion of the apparatus of FIG. 3;
  • H6. 6 is a side sectional view of an alternative filter arrangement in which an apcrtured plate reciprocates and needle members are held stationary;
  • PEG. 7 is a side sectional view of a pneumatic trigger vent combination
  • llG. 8 is a side sectional view of the alternative embodiment of an impeller and diaphragm pump and filter combination adapted to be mounted either within or below the storage tank of a sanitary system.
  • FIG. 1 there is shown, in generalized diagrammatic form, the recirculating sanitary system according to the present invention in which general blocks have been utilized to represent each of the elements of such a system.
  • Basic to the system it ⁇ is a toilet element 12 which is mounted in conjunction with storage tank M.
  • a flush line l6 supplies flushing liquid to the toilet l2 and the flush liquid and waste matter exits from the toilet 12, directly into the storage tank Elli
  • a pump and filter combination i8 is connected to the storage tank M and is also connected to a source of power through an appropriate connection.
  • the power may be electrical, hydraulic, or pneumatic, or, may be solely mechanical, depending upon the intended location and use of the system M2.
  • An appropriate trigger and timing mechanism 20 controls the application of power to the pump and filter combination 153 for a predetermined period of time. The period depends upon the intended use of the system and the volume of flushing fluid required for normal operation of the toilet 12 relative to the storage capability of the storage tank 14-.
  • actuation of the trigger assembly 2:0 permits the application of power to the pump and filter combination 118 for the predetermined period of time.
  • the pump and filter combination 1%! draws and filters fluid from the storage tank 1 and pumps this fluid through the flush line 16 into the toilet 12. The fluid is then returned to the storage tank 14 for subsequent recirculation.
  • recirculating sanitary systems it? are utilized in mobile vehicles such as aircraft, trailers and mobile homes, buses, campers and boats.
  • FIG. 2 there is shown a novel pump and filter assembly 3h according to the present invention, shown partially submerged in a storage tank 32.
  • the storage tank 32 contains both liquid and solid matter, such as is generally found in a waste disposal system.
  • the pump and filter assembly fill is an integral, a self-contained unit with a first flexible connection 34 to a source of pneumatic fluid, in this application, compressed air, and with a second flexible connection 356, which carries the flushing liquid to the flush input line of an appropriate toilet assembly, such as has been shown in the prior art set forth. above.
  • a modified pump and filter assembly 30' is shown in greater detail in llG. 3, which is a side sectional view of a preferred embodiment according to the present invention which is adapted to be mounted below a storage tank. As shown, a pair of rectangular members are joined at a perimeter flange 40. A first rectangular member 42, which is on the driving side of the pump, is provided with a fitting 44 to which is connected a flexible hose 4-6, that leads to the source of pneumatic fluid.
  • An internal diaphragm 48 isolates a driving chamber 50 from a driven chamber 52 and maybe made of a metal or other impervious material.
  • the diaphragm 48 is mounted in the flange dil, either by extending the diaphragm 43 into the flange dill and capturing it therebetween, or, a flexing strip 4% of a more flexible material having a much higher resistance to fatigue and stress is bonded to the diaphragm 48 and is held by the flange
  • a second rectangular member 54 completes the pump portion and forms the driven chamber 52 of the pump.
  • the pump is driven by compressed air and, accordingly, a return spring 56 is provided to bias the diaphragm into a first or rest position, representing the quiescent portion of the pumping cycle.
  • a reciprocating rod member is concentrically mounted with respect to the return spring and has a disc-shaped fitting 69 at one end,
  • the diaphragm is provided with a cup-shaped indentation 64 to receive the return spring 56.
  • a corresponding cup-shaped indentation 66 is provided in the second member 54'- through which the reciprocating rod member 98 extends and which retains the return spring 56 in position.
  • An outlet fitting 68 is provided through which filtered liquid can be provided, through a flexible line 70, to the flush inlet of the toilet.
  • a unidirectional flow valve 72 permits the flush line 70 to have filtered fluid standing therein at all times.
  • the cupshaped indentation 6'6 provides, external to the pump a filter cylinder which is connected to a filter plate '76.
  • a plurality of circular apertures 78 are formed in the filter plate 76, into which are fitted a corresponding plurality of needle members 80.
  • the needle members fill have a cross-sectional area that is only slightly less than the area of the corresponding aperture 78, an annular fiow space 82 is provided of limited area.
  • the plurality of needle members and apertures 78 function as a filter since, in general, the annular space $2 provided is suffrciently small to exclude most particulate matter that may be found in the storage tank and yet enable an adequate flow of filtered liquid to the pump 30.
  • the plurality of needle members 80 are fixedly mounted on a reciprocating plate 84 which is attached to the reciprocating rod member 58.
  • the reciprocating rod member 58 extends through the aperture 86 of the cup-shaped indentation 056 and some clearance is provided, as between the rod member 58 and the aperture 86.
  • a second, unidirectional flow valve 88 is positioned to permit a flow of filtered liquid into the driven chamber 52 from the inner volume of the cup 66.
  • the diaphragm 48 is driven upward until a final position is reached, as indicated in H0. 3, determined by the height of the cup-shaped indentations 64, 66. After the predetermined period of time, the connection to the pressurized source is broken and the line 46 is then vented to atmosphere, permitting a reduction of the pressure in the driving chamber 5b.
  • the diaphragm 48 then moves downward, under the force of the return spring 56.
  • the increase in volume resulting thereby produces a pressure differential between the fluid in the storage tank and the driven chamber 52. Liquid then flows through the annular filtering spaces 82 between the needle members 80 and the filter apertures '73 and through the unidirectional valve 80 into the driven chamber 32.
  • the reciprocating arm 5% moves downward, pulling the needle members 80 through the filter apertures '78, thereby removing any matter which might be adhering to the needle members 80.
  • the diaphragm 48 is at the rest position again shown in dashed lines and the driven chamber 52 is now filled with filtered liquid. Since the return or fill stroke is different from the pump or flush stroke, the flow rate of fluid through the filter is not critical.
  • the compressed air is again applied to the driving chamber fill and the diaphragm $33 is driven upward at any desired velocity.
  • the filtered fluid then in the chamber 52. flows through the unidirectional valve 72 into the outlet fitting 68 and into the flush ring of a toilet and the stored volume of fluid flushes the toilet.
  • the driven chamber 52 can hold a volume of liquid sufiicient to completely flush the toilet during the pumping stroke and, in a typical system may be as much as two gallons of fluid. It will be noted that as soon as the pumping, or flush stroke is completed, the return, or fill stroke is instituted and the pump is refilled with fluid for the next operation. Since the rate of fill need. not be as great as the rate of flow during the flush cycle, the filter need not draw solids toward the filter plate. An appropriate bleed vent to atmosphere in the operating mechanism selectively determines the time required for the filling stroke, so that the complete cycle time from flush to flush can be kept as brief or as long as is desirable.
  • the reciprocating action of the filter needle members 89 with respect to the filter aperture 78 keeps the filtering area clear, and the back ilow of fluid during the pumping stroke helps to remove potentially clogging material from the vicinity of the filter opening. Also, the extent to which the needle members till project into the storage tank volume after the completion of the return stroke, determines the extent to which potentially clogging material of a relatively impermeable nature can be kept form the vicinity of the filtering openings.
  • FIG. 4 there is shown a front view of the filter plate 76, the filter apertures 78, and the corresponding needle members 80.
  • the size of the filter annulus 82 formed by concentrically fitting a needle member 80 into a filter aperture 78 can be varied and is determined only by the number of annuli provided andthe size of the smallest particle which may be passed by the filter without objection. If the fill time is extended, the filter can be relatively fine since a slower rate of flow will not adversely affect the flush portion of the cycle.
  • FlG. 5 shows, in somewhatgreater detail, the arrangement of the filter plate 76, the apertures 78, the needle members 80 fitting therein and the annuli 32. Also, shown in dashed lines is the position of the needle members 80 relative to the filter plate 76 during a pumping stroke of the diaphragm 4%.
  • the needle members fill-might be provided with a cleaning collar or other appropriate fitting,vso that at the end of a pumping stroke, the filter apertures 78 could be substantially occupied by the needle member 80 forcibly driving out foreign particulate matter.
  • FIG. 6 there is shown a possible alternative embodiment in which a reciprocating arm 58' drives reciprocating filter plate l76 that contains filter apertures A corresponding plurality of filter needle members 180 is fixedly mounted with respect to the filter assembly.
  • a reciprocating arm 58' drives reciprocating filter plate l76 that contains filter apertures
  • a corresponding plurality of filter needle members 180 is fixedly mounted with respect to the filter assembly.
  • the operation of the pump and filter assembly is substantially the same as the embodiments illustrated in FIGS. 3, 4 ⁇ and 5.
  • a filter cylinder 174 is provided with a flexible, collapsible portion 325, so that the volume inside the filter cylinder can be changed during the reciprocation of the filter plate 1%.
  • a pump stroke with the arm member 58' moving to the right, the filter plate 176 is moved to the left and the filter cylinder 17 3 is collapsed upon itself partially reducing the volume therein and resulting in an enhanced flow of fluid to the right, thereby clearing the apertures 1'78 and the filter plate 1'76.
  • the reciprocating rod 58 moves to the left and the reciprocating filter plate 1'76 moves to the right.
  • the limited flow of fluid from the pump into the filter cylinder 174 has an enhanced effect on cleaning the apertured plate in that the collapsing of the filtercylinder 1'74 also results in a l'low of fluid to the right.
  • H0. 7 there is shown an improved trigger-type valve mechanism which is suitable for use as a flush valve in a sanitary system according to the present invention.
  • An intake port M2 is connected to a source of compressed air and an outlet port 104 is connected to the driving side of the pump filter through the flexible tubing to.
  • a tee section 106 is provided in the flexible tubing 46.
  • the valve body 108 is provided with a control chamber 110, that is-coupled to a small, pressure accumulator tank 112. Compressed air is supplied to the tank 112 through a controllable restriction 11 from a flexible connection 116 to the tee 106.
  • a spool valve 118 permits the outlet port 104 to communicate either with an exhaust chamber 120 or an air supply chamber 122 in a first and second configuration, respectively.
  • An iron piston124 is connected to the spool valve 118 and cooperates with a permanent magnet 126 in the control chamber to hold the spool valve 118 in the second or operating configuration, in which the air supply is applied to the pump.
  • a pushbutton plunger 128 ismounted in the end of the valve housing 108 and, in this embodiment, is adapted to contact the opposite end of the spool valve 118.
  • a return spring 130 biases the pushbutton 128 out of contact with the spool valve 118 and a pin 132 retains the pushbutton 128 in the valve body 108.
  • the spool valve 118 is in the first configuration shown in FIG. 7 coupling the pump to the exhaust chamber which communicates to atmosphere through an adjustably controllable restriction 134.
  • the pushbutton 128 is depressed, forcing the spool valve 118 into its second, flush configuration.
  • the piston 124 is thereby moved into operative proximity of the permanent magnet 126 which securely holds the piston and spool valve 118.
  • Air from the supply is transmitted to the pump through the outlet port 104 and the flexible tubing 6 and a pumping cycle is initiated.
  • the pushbutton 123 when released, returns to its normally extended position under the force of the return spring 13%.
  • the air under pressure is also applied through the tee 106 and through the controllable restriction 114 into the accumulator tank 112 which is connected to the control chamber 110 in which the piston 124 is being held by the permanent magnet 126.
  • the pneumatic force in the control chamber llll exerted upon the piston 124 eventually is sufficient to overcome the magnetic attraction between the piston 124 and the permanent magnet 126 at which time the piston and spool valve 118 are moved into the first or fill configuration.
  • the pressure applied to the pump and the tank 112 is permitted to vent to atmosphere through the exhaust chamber lflll and the controllable restriction 134. As the pressure drops, the pump operates in the fill portion of the cycle and filtered liquid is drawn into the driven chamber.
  • the operatingv cycle divides into a first or flush part, during which the pump is energized to provide a flushing liquid to the toilet, and a second or fill-part, during which the pump is refilled with filtered liquid.
  • the duration of the flush and fill portions of the cycle are separately adjustable by adjusting the pneumatic flow through the restrictions 114 and 13$.
  • the volume of flushing liquid provided the toilet can be controlled somewhat by shortening the flushing part of the cycle by admitting air to the accumulator tank M2 at a greater rate.
  • the time available for refilling the pump is controlled by regulating the rate of air flow through exhaust restriction 132.
  • the valve lliil in operation, is monostable in that actuation of the pushbutton 128 causes the valve to continue to operate for a predetermined period of time whether or not the button 12-73 is released.
  • the period is determined by the setting of restriction EM, after which the spool valve flllb snaps back to the stabie, first configuration.
  • air under pressure is also being applied to the piston chamber to force the valve into the first configuration. Gnce in the first configuration, the air pressure applied to the supply chamber 122 tends to maintain the needle valve seated in the first configuration since a greater surface area is provided for seating the valve than on the piston side of the spool valve 118.
  • a pump assembly Elli includes a diaphragm pump 23% which is partially driven by fluid from the flush line, and partly by the action of an impeller p'urnp assembly 232, which is the primary pumping element of the system.
  • a return spring 256 is provided to bias a diaphragm 24% into a first or rest position, representing a relatively quiescent portion of the pumping cycle.
  • the impeller pump assembly 232 includes an electric motor 25% which may be substantially identical in placement and operation to the electric motor shown in the above-described patent to liatona, et al., and is connected to a drive shaft 260, which operates a rotating impeller member 262 in an appropriate pump cavity 264. Operation of the electric motor 253 causes the impeller 262 to rotate, drawing fluid from the driven chamber 252 into a pump outlet fitting 268 which applies driven f-luid through a flexible line 2'70. Fluid is also applied to the outlet 272.
  • the upper surface of the second rectangular member 254 is fitted with a plurality of filter apertures 278 and a corresponding plurality of-needle member 289 are fitted therein.
  • the needle members 278 are mounted on a plate member 284 which is held against the diaphragm 248 by the return spring 265, one end of which rests in a groove 276 provided for that purpose in the plate member 284.
  • the diaphragm 24b normally biased into the driving chamber 250 and the return spring 256 is fully extended.
  • filtered liquid will stand in the flushing system at that height and, generally, will be above the outlet 268 of the impeller pump 232. W hen the electric motor 258 is energized, the drive shaft 26% rotates to drive the impeller 262, which forces filtered fluid up through the outlet 263 and into the first and second flexible connections 27b, 2
  • the action of the impeller 262 reduces the fluid pressure in the driven chamber 22 and the diaphragm 248 begins to move upwards. Further, the needle members 2% are set in motion through the apertures 278. Part of the output of the impeller 262 is fed back through the outlet 272 into the flexible line 2 36, which tends to drive the diaphragm 248 towards the upper surface of the driven chamber 252.
  • the volume of fluid flow into the flexible lines 270, 2 36 exceeds the fluid storage capability of the driven chamber 252. Accordingly, while the needle members 286) are moving outward through the apertures 278, the reduced fluid pressure within the driven chamber 252 causes an infiow of liquid from the tank 32, through the filter in a direction opposite to the motion of the needle members Ztill.
  • the diaphragm 248 advances to its limit of travel which is determined, either by the compressed height of the return spring 256, or by the upturned portion of the diaphragm edges.
  • a timing device (not shown) on the motor 258 continues to operate the impeller pump 232 until a of the impeller pump 232'are furnished through the needle aperture filter combination.
  • fluid is expelled from the driving chamber 2%, back through the first flexible line 270 and into the impeller pump outlet 268.
  • the volume of the fluid in the discharge line 270 plus the volume of fluid stored in the driving chamber 250 will exceed the volume of the driven chamber 252, even with the diaphragm 2 58 in its extreme rearward position. Under those circumstances, a backflow will take place, from the driven chamber 252, through the filter and into the tank 32', thereby cleaning the area in the vicinity of the filter apertures 2'78 and needles 280.
  • a pump filter comprising:
  • a. pumping means having an intake and including a source of reciprocating motion
  • filter plate means interposed between said pumping means intake and a supply of liquid to be filtered and pumped, said filter plate means having at least one aperture communicating with the supply;
  • needle means including at least one needle member positioned in said aperture to restrict the flow of liquid thercthrough;
  • motion transmission means for coupling said source of reciprocating motion to said filter plate and needle means for imparting relative motion therebetween;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Reciprocating Pumps (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Sanitary Device For Flush Toilet (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

In a recirculating sanitary system, an improved filter and pump assembly provides a source of flushing liquid. A diaphragm pump is provided with a coupling to a plurality of needle members that reciprocate through an apertured plate. The needle members extend beyond the plate into the storage tank at all times, and the reciprocating motion imparted to the needle members tends to clean the needle-aperture combination, which acts as the filter. The pump also supplies a limited backflow through the filter for cleaning purposes during a portion of the operating cycle. In addition, a novel, pneumatic timing device assures the completion of an operating cycle.

Description

United States Patent [72] Inventor James M. Kemper Hollywood, Calif.
[21 Appl. No. 829,486
[22] Filed June 2,1969
[45 Patented Mar. 2, 1971 [73] Assignee Monogram Industries, Inc.
Los Angeles, Calif.
Continuation-impart of Ser. No. 737,232, June 14, 1968, now abandoned.
[54] FILTER AND PUMP FOR A RECIRCULATING SANITARY SYSTEM 6 Claims, 8 Drawing Figs.
[52] U.S. CI 210/355, 210/413, 210/416, 4/1 [51] Int. Cl B0ld 29/38 [50] Field otSearch 210/355,
[56 1 References Cited UNITED STATES PATENTS 1,877,449 9/l932 Fulcher 210/413X 2,321,786 6/1943 Wotton 210/413X 3,429,445 2/1969 Lee 210/416X Primary Examiner-John Adee Attorneys-Golove and Kleinberg, Leonard Golove and Marvin H. Kleinberg ABSTRACT: ln a recirculating sanitary system, an improved filter and pump assembly provides a source of flushing liquid. A diaphragm pump is provided with a coupling to a plurality of needle members that reciprocate through an apertured plate. The needle members extend beyond the plate into the storage tank at all times, and the reciprocating motion im-' parted to the needle members tends to clean the needle-aperture combination, which acts as the filter. The pump also supplies a limited backflow through the filter for cleaning purposes during a portion of the operating cycle, In addition, a novel, pneumatic timing device assures the completion of an operating cycle.
PATENTEDMAR 212m 3567.032
SHEET 1 OF 3 l2 Fug. l. v
Toilet Flush Iine sflgroge Pum Film?- Sourge I8 Fig. 5.
' James M. Kemper,
INVENTOR.
GOLOVE 8| KLEINBERG,
ATTORNEYS.
PATE'NTEU MAR 2|91| 3567.032
SHEET 2 OF 3 GOLOVE 8| KLEINBERG, ATTORNEY.
alssvlosz PATENTEU um |97| SHEET 3 or 3 James M Kemper,
INVENTOR.
Fig. 8.
GOLOVE 8 KLEINBERG,
ATTORNEYS.
AND PUMP FOR A RECECULATENG SANITARY SYSTEM This is a continuation-in-part of the application filed Jun. M, 1963, Ser. No. 737,232, now abandoned.
The present invention relates to recirculating sanitary systems, and, more particularly, to a system including a toilet, a. storage tank, and pumping and filtering means for providing a supply of flushing liquid to the toilet.
Qirculating sanitary systems in which the present invention is useful have been described and shown in the patents to W. F. Katona, et al., US. Pat. No. 3,256,221 and J. W. Dietz, et al., US. Fat. No. 3,067,433. Pneumatically operated recirculating systems have been disclosed, for example, in the recent patents to C. A. Garver, U.S. Pat. No. 3,024,933, and W. D. Hicks, U.S. Pat. No. 3,001,205.
The recirculating sanitary systems, exemplified by the patent to liatona, et al., or Dietz, above,.u tilize an electrically driven rotary pump in combination with a rotating filter cup. A wiper assembly is provided to clean the filter during operation to remove solid or particulate residue from the filter itself. The pump is capable of reversible operation toallow limited backflushing through the filter for cleaning purposes. Since, in sanitary systems, fibrous materials such as paper or fabric, and
yet other foreign objects may become entangled with the filter cup and cleaning scrapers or combs, the relative rotation as between the cup and the scraper or comb during operation, may cause the fibrous materials or other foreign objects-to be wound around the filter or merely jammed in the assembly. In either event, rotation is prevented, locking the filter and causing either a stalling and burnout of the electrical motor or a failure within the power train.
it is also noted that with impeller-type pumps, the intake of flushing liquid is contemporaneous with the flushing operation, resulting in a requirement that a high volume of liquid be passed through the filter basket at a time when the storage tank contents are in agitation. Consequently, the high volume flow may be impaired by the circulation of the waste and solid matter being drawn toward the filter and pump.
W hat is needed, and what has been provided by the present invention, is an improved, recirculating system with a novel filter element, that is not subject to the problems of the prior art.
According to a preferred embodiment of the invention, a large diaphragm pump is provided with a reciprocating arm connected to the diaphragm thereof. In the preferred embodimerit, a pneumatic system drives the diaphragm and a bias spring returns the diaphragm to a set initial position.
The intake to the diaphragm pump includes an apertured plate member and a plurality of needle members connected to the reciprocating arm. The needle members reciprocate through the aperture on each actuation of the diaphragm. On the pump stroke of the diaphragm, the needle members move through the apertures into the storage tank portion and, on the return stroke, the needles are withdrawn into the filter assembly.
The clearance provided between each aperture and the corresponding needle member creates the filtering structure. In the preferred embodiment, the needle members at all times extend through the plate member and into the storage tank, to prevent an occluding of the apertures by impermeable foreign objects.
The diaphragm pump is provided with a first unidirectional flow valve, which is connected to the toilet flushing supply line, and a second, unidirectional flow valve which admits fluid from the storage tank. The reciprocating arm is loosely mounted in the pump housing so that on the pumping stroke, some fluid is permitted to flow through the filter assembly and into the storage tank, thereby backflushing the filter and cleaning particulate residue from the vicinity of the filter apertures.
In the preferred embodiment, the pneumatic system drives the diaphragm pump and a novel, pneumatic time delay apparatus is provided to permit a complete cycle of operation to be triggered by the momentary actuation of a pushbutton or other start mechanism. The pneumatic system is, at all times, isolated from the recirculating liquid system, and operates wholly independently therefrom. Because the pump stores the liquid to be used in the flush portion of the cycle, high volume flow through the filter is not required. Rather, the filter operates during a fill portion of a cycle and the rate of fill can be selectively adjusted so as not to disturb the sedimentary contents of the storage tank. Depending upon the demand cycle of the sanitary system, the fill portion of the cycle can be extended so that even a relatively fine filter can be utilized in the system.
In alternative embodiments, the placement of the return spring can be changed and the diaphragm pump can be operated utilizing a vacuum line rather than a pressure line. in yet other embodiments, a hydraulic system could be utilized, since the driving system is maintained isolated from the driven system.
Still other pumping mechanisms can be adapted for use in the present invention, including electrically driven systems which can provide a reciprocating motion to the filteringcornbination.
' For systems wherein a ready supply of pneumatic fluid is not available, it has been deemed desirable to provide a system which incorporates the'diaphragm pump and'filter assembly of the copending application and the electrically operated pump of Katona, et al. supra.
in yet another alternative, of the present invention, a diaphragm pump acts as a partial reservoir of filtered flushing liquid. A conventional impeller pump drives filtered liquid through the system and a bypass drives the pump diaphragm. The impeller pump draws additional liquid through the filter as needed and a portion of this liquid is returned, through a bypass to drive the diaphragm, reciprocating the filter needles with respect to the plate.
Because the pump stores some of the liquid to be used in the flush portion of the cycle, high volume flow through the filter is not required. Rather, the filter operates both during the flush and fill portions of a cycle. Further, the diaphragm pump, at the end of a flush stroke, refills itself, primarily through the filter.
The fluid that is expelled from thedriving chamber of the diaphragm pump is returned, through the bypass and will, during the intake stroke tend to stand in the discharge line. At the conclusion of the intake stroke, the standing fluid will provide a limited'backflow through the filter and into the tank, tending to clean the filter plate.
The reciprocating filter assembly may, in alternative embodiments, utilize a reciprocating apertured plate in combination with stationary needle members. Further, the fineness" of the filter can readily be modified by the appropriate choice of aperture size relative to the cross section of the individual needle members.
The novel features which are believed to be characteristic of the invention, both as to organization and method of operation, together with further objects and advantages thereof will be better understood from the following description considered in connection with the accompanying drawings in which several preferred embodiments of the invention are illustrated by way of example. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended as a definition of the limits of the invention.
FIG. 1 is an overall block diagram of a recirculating sanitary system in which the present invention is useful;
FIG. 2 is a side view of an integral pump and filter unit according to the present invention;
FIG. 3 is a side sectional view of a preferred embodiment of a pump and filter adapted to be mounted below the storage tank of a sanitary system;
FIG. 4 is atop view of the filter portion of the unit of FIG. 3;
H6. 5 is a magnified side sectional view of the filter portion of the apparatus of FIG. 3;
H6. 6 is a side sectional view of an alternative filter arrangement in which an apcrtured plate reciprocates and needle members are held stationary;
PEG. 7 is a side sectional view of a pneumatic trigger vent combination; and
llG. 8 is a side sectional view of the alternative embodiment of an impeller and diaphragm pump and filter combination adapted to be mounted either within or below the storage tank of a sanitary system.
Turning first to FIG. 1, there is shown, in generalized diagrammatic form, the recirculating sanitary system according to the present invention in which general blocks have been utilized to represent each of the elements of such a system. Basic to the system it} is a toilet element 12 which is mounted in conjunction with storage tank M. A flush line l6 supplies flushing liquid to the toilet l2 and the flush liquid and waste matter exits from the toilet 12, directly into the storage tank Elli A pump and filter combination i8 is connected to the storage tank M and is also connected to a source of power through an appropriate connection. The power may be electrical, hydraulic, or pneumatic, or, may be solely mechanical, depending upon the intended location and use of the system M2.
An appropriate trigger and timing mechanism 20 controls the application of power to the pump and filter combination 153 for a predetermined period of time. The period depends upon the intended use of the system and the volume of flushing fluid required for normal operation of the toilet 12 relative to the storage capability of the storage tank 14-.
in operation, actuation of the trigger assembly 2:0 permits the application of power to the pump and filter combination 118 for the predetermined period of time. The pump and filter combination 1%! draws and filters fluid from the storage tank 1 and pumps this fluid through the flush line 16 into the toilet 12. The fluid is then returned to the storage tank 14 for subsequent recirculation. Typically, recirculating sanitary systems it? are utilized in mobile vehicles such as aircraft, trailers and mobile homes, buses, campers and boats.
Turning next to FIG. 2, there is shown a novel pump and filter assembly 3h according to the present invention, shown partially submerged in a storage tank 32. The storage tank 32 contains both liquid and solid matter, such as is generally found in a waste disposal system. As shown, the pump and filter assembly fill is an integral, a self-contained unit with a first flexible connection 34 to a source of pneumatic fluid, in this application, compressed air, and with a second flexible connection 356, which carries the flushing liquid to the flush input line of an appropriate toilet assembly, such as has been shown in the prior art set forth. above.
A modified pump and filter assembly 30' is shown in greater detail in llG. 3, which is a side sectional view of a preferred embodiment according to the present invention which is adapted to be mounted below a storage tank. As shown, a pair of rectangular members are joined at a perimeter flange 40. A first rectangular member 42, which is on the driving side of the pump, is provided with a fitting 44 to which is connected a flexible hose 4-6, that leads to the source of pneumatic fluid.
(air) under pressure.
An internal diaphragm 48 isolates a driving chamber 50 from a driven chamber 52 and maybe made of a metal or other impervious material. The diaphragm 48 is mounted in the flange dil, either by extending the diaphragm 43 into the flange dill and capturing it therebetween, or, a flexing strip 4% of a more flexible material having a much higher resistance to fatigue and stress is bonded to the diaphragm 48 and is held by the flange A second rectangular member 54 completes the pump portion and forms the driven chamber 52 of the pump.
in the embodiment of FIG. 3, the pump is driven by compressed air and, accordingly, a return spring 56 is provided to bias the diaphragm into a first or rest position, representing the quiescent portion of the pumping cycle. A reciprocating rod member is concentrically mounted with respect to the return spring and has a disc-shaped fitting 69 at one end,
which is fastened to the diaphragm 48. The diaphragm is provided with a cup-shaped indentation 64 to receive the return spring 56. At the opposite end of the spring 56, a corresponding cup-shaped indentation 66 is provided in the second member 54'- through which the reciprocating rod member 98 extends and which retains the return spring 56 in position.
An outlet fitting 68 is provided through which filtered liquid can be provided, through a flexible line 70, to the flush inlet of the toilet. A unidirectional flow valve 72 permits the flush line 70 to have filtered fluid standing therein at all times. The cupshaped indentation 6'6 provides, external to the pump a filter cylinder which is connected to a filter plate '76. A plurality of circular apertures 78 are formed in the filter plate 76, into which are fitted a corresponding plurality of needle members 80.
The needle members fill have a cross-sectional area that is only slightly less than the area of the corresponding aperture 78, an annular fiow space 82 is provided of limited area. The plurality of needle members and apertures 78 function as a filter since, in general, the annular space $2 provided is suffrciently small to exclude most particulate matter that may be found in the storage tank and yet enable an adequate flow of filtered liquid to the pump 30.
The plurality of needle members 80 are fixedly mounted on a reciprocating plate 84 which is attached to the reciprocating rod member 58. The reciprocating rod member 58 extends through the aperture 86 of the cup-shaped indentation 056 and some clearance is provided, as between the rod member 58 and the aperture 86. A second, unidirectional flow valve 88 is positioned to permit a flow of filtered liquid into the driven chamber 52 from the inner volume of the cup 66.
In operation, air under pressure is connected to the pneumatic line 46, is applied to the driving chamber 56, forcing the diaphragm 4 upward, as viewed in FIG. 3. Motion of the diaphragm 48, assuming no fluid within the driven chamber 52, compresses the return spring 56 and moves the reciprocating arm 58 and the attached needle members 80 upward and through the apertures 78 of the filter plate 76, into the volume of the storage tank.
The diaphragm 48 is driven upward until a final position is reached, as indicated in H0. 3, determined by the height of the cup-shaped indentations 64, 66. After the predetermined period of time, the connection to the pressurized source is broken and the line 46 is then vented to atmosphere, permitting a reduction of the pressure in the driving chamber 5b.
The diaphragm 48 then moves downward, under the force of the return spring 56. The increase in volume resulting thereby produces a pressure differential between the fluid in the storage tank and the driven chamber 52. Liquid then flows through the annular filtering spaces 82 between the needle members 80 and the filter apertures '73 and through the unidirectional valve 80 into the driven chamber 32.
At the same time, the reciprocating arm 5% moves downward, pulling the needle members 80 through the filter apertures '78, thereby removing any matter which might be adhering to the needle members 80. At the completion of the return stroke, the diaphragm 48 is at the rest position again shown in dashed lines and the driven chamber 52 is now filled with filtered liquid. Since the return or fill stroke is different from the pump or flush stroke, the flow rate of fluid through the filter is not critical.
On the next operation of the pump, the compressed air is again applied to the driving chamber fill and the diaphragm $33 is driven upward at any desired velocity. The filtered fluid then in the chamber 52. flows through the unidirectional valve 72 into the outlet fitting 68 and into the flush ring of a toilet and the stored volume of fluid flushes the toilet.
At the same time, a limited amount of fluid flows through the aperture 86 surrounding the reciprocating member 525, and this limited flow of fluid is forced through the apertures of the filter plate 76 thereby clearing the apertures 73 while the needle members 8f) are moving upward. it will be seen that any matter tending to clog the filter apertures 7% during the intake stroke is both mechanically and hydraulically propelled away from the apertures fifi, on the pumping stroke.
The driven chamber 52 can hold a volume of liquid sufiicient to completely flush the toilet during the pumping stroke and, in a typical system may be as much as two gallons of fluid. it will be noted that as soon as the pumping, or flush stroke is completed, the return, or fill stroke is instituted and the pump is refilled with fluid for the next operation. Since the rate of fill need. not be as great as the rate of flow during the flush cycle, the filter need not draw solids toward the filter plate. An appropriate bleed vent to atmosphere in the operating mechanism selectively determines the time required for the filling stroke, so that the complete cycle time from flush to flush can be kept as brief or as long as is desirable.
The reciprocating action of the filter needle members 89 with respect to the filter aperture 78 keeps the filtering area clear, and the back ilow of fluid during the pumping stroke helps to remove potentially clogging material from the vicinity of the filter opening. Also, the extent to which the needle members till project into the storage tank volume after the completion of the return stroke, determines the extent to which potentially clogging material of a relatively impermeable nature can be kept form the vicinity of the filtering openings.
Turning next to FIG. 4, there is shown a front view of the filter plate 76, the filter apertures 78, and the corresponding needle members 80. The size of the filter annulus 82 formed by concentrically fitting a needle member 80 into a filter aperture 78 can be varied and is determined only by the number of annuli provided andthe size of the smallest particle which may be passed by the filter without objection. If the fill time is extended, the filter can be relatively fine since a slower rate of flow will not adversely affect the flush portion of the cycle.
FlG. 5 shows, in somewhatgreater detail, the arrangement of the filter plate 76, the apertures 78, the needle members 80 fitting therein and the annuli 32. Also, shown in dashed lines is the position of the needle members 80 relative to the filter plate 76 during a pumping stroke of the diaphragm 4%. With reference to, FIG. 5, it can be seen that other variations are possible in which the needle members fill-might be provided with a cleaning collar or other appropriate fitting,vso that at the end of a pumping stroke, the filter apertures 78 could be substantially occupied by the needle member 80 forcibly driving out foreign particulate matter.
Turning next to FIG. 6, there is shown a possible alternative embodiment in which a reciprocating arm 58' drives reciprocating filter plate l76 that contains filter apertures A corresponding plurality of filter needle members 180 is fixedly mounted with respect to the filter assembly. In all other respects the operation of the pump and filter assembly is substantially the same as the embodiments illustrated in FIGS. 3, 4} and 5.
The difference in operation is that the coupling of the reciprocating arm 58' to the filter plate 176 is by means of a suitable linkage 196) to which is connected appropriate driving arms W2. A filter cylinder 174 is provided with a flexible, collapsible portion 325, so that the volume inside the filter cylinder can be changed during the reciprocation of the filter plate 1%.
0n a pump stroke, with the arm member 58' moving to the right, the filter plate 176 is moved to the left and the filter cylinder 17 3 is collapsed upon itself partially reducing the volume therein and resulting in an enhanced flow of fluid to the right, thereby clearing the apertures 1'78 and the filter plate 1'76. During the intake stroke, the reciprocating rod 58 moves to the left and the reciprocating filter plate 1'76 moves to the right. 0n the pump stroke, the limited flow of fluid from the pump into the filter cylinder 174 has an enhanced effect on cleaning the apertured plate in that the collapsing of the filtercylinder 1'74 also results in a l'low of fluid to the right.
it will be understood by those skilled in the art that particular pump arrangement illustrated herein is merely exemplary and that the present structure could easily be modified for use with a vacuum system by placing a return spring in the driving space of the pump. Other modifications will be evident to those skilled in the art.
Turning to H0. 7, there is shown an improved trigger-type valve mechanism which is suitable for use as a flush valve in a sanitary system according to the present invention. An intake port M2 is connected to a source of compressed air and an outlet port 104 is connected to the driving side of the pump filter through the flexible tubing to. A tee section 106 is provided in the flexible tubing 46. The valve body 108 is provided with a control chamber 110, that is-coupled to a small, pressure accumulator tank 112. Compressed air is supplied to the tank 112 through a controllable restriction 11 from a flexible connection 116 to the tee 106. v
A spool valve 118 permits the outlet port 104 to communicate either with an exhaust chamber 120 or an air supply chamber 122 in a first and second configuration, respectively.
.An iron piston124 is connected to the spool valve 118 and cooperates with a permanent magnet 126 in the control chamber to hold the spool valve 118 in the second or operating configuration, in which the air supply is applied to the pump.
A pushbutton plunger 128 ismounted in the end of the valve housing 108 and, in this embodiment, is adapted to contact the opposite end of the spool valve 118. A return spring 130 biases the pushbutton 128 out of contact with the spool valve 118 and a pin 132 retains the pushbutton 128 in the valve body 108. Normally, the spool valve 118 is in the first configuration shown in FIG. 7 coupling the pump to the exhaust chamber which communicates to atmosphere through an adjustably controllable restriction 134.
To operate the valve assembly 100, the pushbutton 128 is depressed, forcing the spool valve 118 into its second, flush configuration. The piston 124 is thereby moved into operative proximity of the permanent magnet 126 which securely holds the piston and spool valve 118. Air from the supply is transmitted to the pump through the outlet port 104 and the flexible tubing 6 and a pumping cycle is initiated. The pushbutton 123, when released, returns to its normally extended position under the force of the return spring 13%.
While the full air pressure is being applied to drive the pump, the air under pressure is also applied through the tee 106 and through the controllable restriction 114 into the accumulator tank 112 which is connected to the control chamber 110 in which the piston 124 is being held by the permanent magnet 126. As the pressure builds in the tank 112, the pneumatic force in the control chamber llll exerted upon the piston 124 eventually is sufficient to overcome the magnetic attraction between the piston 124 and the permanent magnet 126 at which time the piston and spool valve 118 are moved into the first or fill configuration. Since the attractive force of a magnet is based upon an inverse cube law relationship, aforce of magnitude sufficient to break the magnetic attraction between the piston and magnet is, after the piston has moved slightly, more than sufficient to drive the valve into the first configuration. It will be appreciated that once the magnetic attraction is overcome, the valve might be considered as a snap action valve.
In the first configuration of the trigger-type valve ltlll, the pressure applied to the pump and the tank 112 is permitted to vent to atmosphere through the exhaust chamber lflll and the controllable restriction 134. As the pressure drops, the pump operates in the fill portion of the cycle and filtered liquid is drawn into the driven chamber.
The operatingv cycle divides into a first or flush part, during which the pump is energized to provide a flushing liquid to the toilet, and a second or fill-part, during which the pump is refilled with filtered liquid. Depending, of course, upon the air pressure of the source of compressed air, the duration of the flush and fill portions of the cycle are separately adjustable by adjusting the pneumatic flow through the restrictions 114 and 13$. For example, the volume of flushing liquid provided the toilet can be controlled somewhat by shortening the flushing part of the cycle by admitting air to the accumulator tank M2 at a greater rate. Similarly, the time available for refilling the pump is controlled by regulating the rate of air flow through exhaust restriction 132.
The valve lliil, in operation, is monostable in that actuation of the pushbutton 128 causes the valve to continue to operate for a predetermined period of time whether or not the button 12-73 is released. The period is determined by the setting of restriction EM, after which the spool valve flllb snaps back to the stabie, first configuration. As long as air under pressure is applied to the pump, air under pressure is also being applied to the piston chamber to force the valve into the first configuration. Gnce in the first configuration, the air pressure applied to the supply chamber 122 tends to maintain the needle valve seated in the first configuration since a greater surface area is provided for seating the valve than on the piston side of the spool valve 118.
in the alternative embodiment of FIG. 8, a pump assembly Elli" includes a diaphragm pump 23% which is partially driven by fluid from the flush line, and partly by the action of an impeller p'urnp assembly 232, which is the primary pumping element of the system. A return spring 256 is provided to bias a diaphragm 24% into a first or rest position, representing a relatively quiescent portion of the pumping cycle.
The impeller pump assembly 232 includes an electric motor 25% which may be substantially identical in placement and operation to the electric motor shown in the above-described patent to liatona, et al., and is connected to a drive shaft 260, which operates a rotating impeller member 262 in an appropriate pump cavity 264. Operation of the electric motor 253 causes the impeller 262 to rotate, drawing fluid from the driven chamber 252 into a pump outlet fitting 268 which applies driven f-luid through a flexible line 2'70. Fluid is also applied to the outlet 272.
As shown, the upper surface of the second rectangular member 254 is fitted with a plurality of filter apertures 278 and a corresponding plurality of-needle member 289 are fitted therein. The needle members 278 are mounted on a plate member 284 which is held against the diaphragm 248 by the return spring 265, one end of which rests in a groove 276 provided for that purpose in the plate member 284.
in operation, the diaphragm 24b normally biased into the driving chamber 250 and the return spring 256 is fully extended. Depending upon the levelof fluid in a tank 32', filtered liquid will stand in the flushing system at that height and, generally, will be above the outlet 268 of the impeller pump 232. W hen the electric motor 258 is energized, the drive shaft 26% rotates to drive the impeller 262, which forces filtered fluid up through the outlet 263 and into the first and second flexible connections 27b, 2
The action of the impeller 262 reduces the fluid pressure in the driven chamber 22 and the diaphragm 248 begins to move upwards. Further, the needle members 2% are set in motion through the apertures 278. Part of the output of the impeller 262 is fed back through the outlet 272 into the flexible line 2 36, which tends to drive the diaphragm 248 towards the upper surface of the driven chamber 252.
The volume of fluid flow into the flexible lines 270, 2 36 exceeds the fluid storage capability of the driven chamber 252. Accordingly, while the needle members 286) are moving outward through the apertures 278, the reduced fluid pressure within the driven chamber 252 causes an infiow of liquid from the tank 32, through the filter in a direction opposite to the motion of the needle members Ztill.
When sufficient liquid has been pumped into the driving chamber 250, the diaphragm 248 advances to its limit of travel which is determined, either by the compressed height of the return spring 256, or by the upturned portion of the diaphragm edges. A timing device (not shown) on the motor 258 continues to operate the impeller pump 232 until a of the impeller pump 232'are furnished through the needle aperture filter combination.
When the impeller pump 232 stops, the weight cit the liquid standing in the discharge line 270, and the force of the return spring 2% combined, fill the driven chamber 252 and the diaphragm 2% is forced downward, reversing the travel of the needles 2% through the apertures 27d, thereby cleaning" the needles 2W3. If the fluid standing in the discharge line is insufiicient to till the chamber 252, additional fluid will then be drawn in through the filter so long as a pressure differential exists as between the driven chamber 22 and the fluid standing in the tank 32.
In addition, fluid is expelled from the driving chamber 2%, back through the first flexible line 270 and into the impeller pump outlet 268. Generally, the volume of the fluid in the discharge line 270 plus the volume of fluid stored in the driving chamber 250, will exceed the volume of the driven chamber 252, even with the diaphragm 2 58 in its extreme rearward position. Under those circumstances, a backflow will take place, from the driven chamber 252, through the filter and into the tank 32', thereby cleaning the area in the vicinity of the filter apertures 2'78 and needles 280.
Thus, there have been shown and described novel pumpfiltcr combinations especially useful in recirculating sanitary systems and incorporating a novel, snap action, fluid valve. Variations and modifications will occur to those skilled in the art and, accordingly, the scope of the invention should be limited only by the claims appended below:
lclaim:
l. A pump filter comprising:
a. pumping means having an intake and including a source of reciprocating motion;
b. filter plate means interposed between said pumping means intake and a supply of liquid to be filtered and pumped, said filter plate means having at least one aperture communicating with the supply;
c. needle means including at least one needle member positioned in said aperture to restrict the flow of liquid thercthrough;
d. motion transmission means for coupling said source of reciprocating motion to said filter plate and needle means for imparting relative motion therebetween;
whereby said needle member and said plate aperture are in motion relative to each other, and whereby all fluid flow into said pumping means intake is through said aperture partially blocked by said needle member acting in combination as a filter.
2. Apparatus as in claim 1, above, further including flow control means for permitting a back flow of liquid through the pumping means intake during the pumping portion of an operating cycle, whereby fluid is forced through said filter plate and into the supply during relative motion, tending to clear the area of foreign matter in the vicinity of the filter plate means.
3. Apparatus of claim 1, above, wherein said pumping means is a reciprocating pump and said source of reciprocating motion provides a first stroke corresponding to a pump intake stroke and a second stroke corresponding to a pumping stroke.
4. Apparatus of claim ,3, wherein said needle member is coupled to said source of reciprocating motion and whereby said needle member reciprocates relative to said filter plate means, for cleaning said needle member and said aperture.
5. Apparatus as in claim 4, above, wherein the direction of motion of said needle member at all times opposes the direction of liquid flow as between said pumping means intake and the source of liquid, whereby said. needle member tends to move foreign matter away from said aperture during pump intake stroke and tends to be cleaned by fluid flow during a pumping stroke.
6. Apparatus as in claim 3, above, wherein said filter plate means are coupled to said motion transmission means, whereby said aperture rcciprocates relative to said needle member.

Claims (6)

1. A pump filter comprising: a. pumping means having an intake and including a source of reciprocating motion; b. filter plate means interposed between said pumping means intake and a supply of liquid to be filtered and pumped, said filter plate means having at least one aperture communicating with the supply; c. needle means including at least one needle member positioned in said aperture to restrict the flow of liquid therethrough; d. motion transmission means for coupling said source of reciprocating motion to said filter plate and needle means for imparting relative motion therebetween; whereby said needle member and said plate aperture are in motion relative to each other, and whereby all fluid flow into said pumping means intake is through said aperture partially blocked by said needle member acting in combination as a filter.
2. Apparatus as in claim 1, above, further including flow control means for permitting a back flow of liquid through the pumping means intake during the pumping portion of an operating cycle, whereby fluid is forced through said filter plate and into the supply during relative motion, tending to clear the area of foreign matter in the vicinity of the filter plate means.
3. Apparatus of claim 1, above, wherein said pumping means is a reciprocating pump and said source of reciprocating motion provides a first stroke corresponding to a pump intake stroke and a second stroke corresponding to a pumping stroke.
4. Apparatus of claim 3, wherein said needle member is coupled to said source of reciprocating motion and whereby said needle member reciprocates relative to said filter plate means, for cleaning said needle member and said aperture.
5. Apparatus as in claim 4, above, wherein the direction of motion of said needle member at all times opposes the direction of liquid flow as between said pumping means intake and the source of liquid, whereby said needle member tends to move foreign matter away from said aperture during a pump intake stroke and tends to be cleaned by fluid flow during a pumping stroke.
6. Apparatus as in claim 3, above, wherein said filter plate means are coupled to said motion transmission means, whereby said aperture reciprocates relative to said needle member.
US829486A 1968-06-14 1969-06-02 Filter and pump for a recirculating sanitary system Expired - Lifetime US3567032A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US73723268A 1968-06-14 1968-06-14
US82948669A 1969-06-02 1969-06-02
US8938570A 1970-11-13 1970-11-13

Publications (1)

Publication Number Publication Date
US3567032A true US3567032A (en) 1971-03-02

Family

ID=27376292

Family Applications (2)

Application Number Title Priority Date Filing Date
US829486A Expired - Lifetime US3567032A (en) 1968-06-14 1969-06-02 Filter and pump for a recirculating sanitary system
US00089385A Expired - Lifetime US3708806A (en) 1968-06-14 1970-11-13 Filter and pump for a recirculating sanitary system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US00089385A Expired - Lifetime US3708806A (en) 1968-06-14 1970-11-13 Filter and pump for a recirculating sanitary system

Country Status (5)

Country Link
US (2) US3567032A (en)
BE (1) BE734496A (en)
FR (1) FR2010915A1 (en)
GB (3) GB1280874A (en)
NL (1) NL163289C (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0057426A2 (en) * 1981-02-04 1982-08-11 BASF Aktiengesellschaft Device for the separation of grinding bodies and ground suspension in a wet grinding machine
US4985148A (en) * 1990-02-08 1991-01-15 Fibresep Ltd. Improved separator tank construction
US5045188A (en) * 1990-03-16 1991-09-03 Tsai Irwin Y Recirculating toilet water system with self-purging valve operable by a restoring spring
US5133983A (en) * 1989-03-23 1992-07-28 Patzner Gmbh & Co. Espresso machine and method of making espresso by using said machine
WO1999010073A1 (en) * 1997-08-25 1999-03-04 Antoun Gregory S High efficiency backflush system for a filter
WO2002042229A1 (en) 2000-11-27 2002-05-30 Biological Systems, Inc. A method for bacterially treating small-tank toilet systems and an apparatus for using same
US20050103698A1 (en) * 2003-11-14 2005-05-19 Eberly Christopher N. System for stormwater environmental control
US20100084348A1 (en) * 2007-02-27 2010-04-08 Samatrix Limited Cleaning device
US20160107111A1 (en) * 2014-10-15 2016-04-21 Mag Aerospace Industries Inc Method and system for management of grey water in an aircraft
US9902497B2 (en) 2014-01-21 2018-02-27 Mag Aerospace Industries, Llc Method and system for managing the grey water in an aircraft
ES2720174A1 (en) * 2018-01-18 2019-07-18 Alte Tech S L U SYSTEM OF RECOVERY AND REUSE OF BLACK WATERS IN WASHBASINS OF VEHICLES AND WASHBASIN MODULE COMPRISING SUCH SYSTEM (Machine-translation by Google Translate, not legally binding)
CN114475931A (en) * 2022-01-26 2022-05-13 江西朝阳机械有限公司 Marine sealed excrement and urine storage device with rubbing crusher constructs
WO2023041147A1 (en) 2021-09-15 2023-03-23 Gumis D.O.O. Separator for hazardous waste material from sanitary wastewater, with a self-cleaning ability

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH565579A5 (en) * 1973-03-22 1975-08-29 Ziolkowski Roman
US3842448A (en) * 1973-03-29 1974-10-22 S Kahn Apparatus for recycling a fluid for use in a dental cuspidor
US4083067A (en) * 1976-01-29 1978-04-11 Diamond Shamrock Corporation Recirculating toilet and method
US4246665A (en) * 1979-05-11 1981-01-27 International Water Saving Systems, Inc. Non-polluting toilet system
US4411030A (en) * 1980-10-16 1983-10-25 Aisin Seiki Kabushiki Kaisha Apparatus for drying genitals and the posterior parts of human body
US4702826A (en) * 1986-02-03 1987-10-27 Rotex, Inc. Screen cleaner for particle size analyzer
WO1987007665A1 (en) * 1986-06-06 1987-12-17 Norbert Garich Sanitary installation and toilet carriage
US5035811A (en) * 1989-09-21 1991-07-30 United Technologies Corporation Filter pump system
DE4025498C2 (en) * 1990-08-11 1995-03-09 Grundfos Int Suction filter
CN117398739B (en) * 2023-09-18 2024-04-09 江阴普朗克科技有限公司 Preparation equipment for positive electrode material of sodium ion battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1877449A (en) * 1930-08-15 1932-09-13 Fulcher Frank Christian Filtering or fine straining apparatus for liquids
US2321786A (en) * 1942-03-07 1943-06-15 Wotton Edward Device for cleaning side wall ports in cylinders
US3429445A (en) * 1967-12-01 1969-02-25 Koehler Dayton Self-cleaning filter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3079612A (en) * 1959-07-06 1963-03-05 Monogram Prec Ind Inc Sewage handling apparatus
US2994434A (en) * 1959-10-29 1961-08-01 Nestor E Moseres Filter or screen cleaning assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1877449A (en) * 1930-08-15 1932-09-13 Fulcher Frank Christian Filtering or fine straining apparatus for liquids
US2321786A (en) * 1942-03-07 1943-06-15 Wotton Edward Device for cleaning side wall ports in cylinders
US3429445A (en) * 1967-12-01 1969-02-25 Koehler Dayton Self-cleaning filter

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0057426A2 (en) * 1981-02-04 1982-08-11 BASF Aktiengesellschaft Device for the separation of grinding bodies and ground suspension in a wet grinding machine
US4421642A (en) * 1981-02-04 1983-12-20 Basf Aktiengesellschaft Device for separating grinding medium and milled suspension in a wet comminuting machine
EP0057426A3 (en) * 1981-02-04 1984-05-16 Basf Aktiengesellschaft Device for the separation of grinding bodies and ground suspension in a wet grinding machine
US5133983A (en) * 1989-03-23 1992-07-28 Patzner Gmbh & Co. Espresso machine and method of making espresso by using said machine
US4985148A (en) * 1990-02-08 1991-01-15 Fibresep Ltd. Improved separator tank construction
US5045188A (en) * 1990-03-16 1991-09-03 Tsai Irwin Y Recirculating toilet water system with self-purging valve operable by a restoring spring
WO1999010073A1 (en) * 1997-08-25 1999-03-04 Antoun Gregory S High efficiency backflush system for a filter
US5893973A (en) * 1997-08-25 1999-04-13 Antoun; Gregory S. High efficiency backflush system for a filter
WO2002042229A1 (en) 2000-11-27 2002-05-30 Biological Systems, Inc. A method for bacterially treating small-tank toilet systems and an apparatus for using same
US6743361B1 (en) 2000-11-27 2004-06-01 Biological Systems, Inc. Method for bacterially treating tank toilet systems and apparatus for using same
US20050103698A1 (en) * 2003-11-14 2005-05-19 Eberly Christopher N. System for stormwater environmental control
US7470361B2 (en) 2003-11-14 2008-12-30 Eberly Christopher N System for stormwater environmental control
US7780855B2 (en) 2003-11-14 2010-08-24 Eberly Christopher N Method for pre-engineering a system for environmental control of storm water
US20100084348A1 (en) * 2007-02-27 2010-04-08 Samatrix Limited Cleaning device
US8038889B2 (en) * 2007-02-27 2011-10-18 Samatrix Limited Cleaning device
US9902497B2 (en) 2014-01-21 2018-02-27 Mag Aerospace Industries, Llc Method and system for managing the grey water in an aircraft
US20160107111A1 (en) * 2014-10-15 2016-04-21 Mag Aerospace Industries Inc Method and system for management of grey water in an aircraft
ES2720174A1 (en) * 2018-01-18 2019-07-18 Alte Tech S L U SYSTEM OF RECOVERY AND REUSE OF BLACK WATERS IN WASHBASINS OF VEHICLES AND WASHBASIN MODULE COMPRISING SUCH SYSTEM (Machine-translation by Google Translate, not legally binding)
WO2023041147A1 (en) 2021-09-15 2023-03-23 Gumis D.O.O. Separator for hazardous waste material from sanitary wastewater, with a self-cleaning ability
CN114475931A (en) * 2022-01-26 2022-05-13 江西朝阳机械有限公司 Marine sealed excrement and urine storage device with rubbing crusher constructs
CN114475931B (en) * 2022-01-26 2023-04-18 江西朝阳机械有限公司 Marine excrement and urine seals storage device with rubbing crusher constructs

Also Published As

Publication number Publication date
DE1930458B2 (en) 1975-07-10
GB1280872A (en) 1972-07-05
NL6909113A (en) 1969-12-16
US3708806A (en) 1973-01-09
BE734496A (en) 1969-11-17
FR2010915A1 (en) 1970-02-20
GB1280874A (en) 1972-07-05
GB1280873A (en) 1972-07-05
DE1930458A1 (en) 1970-01-29
NL163289B (en) 1980-03-17
NL163289C (en) 1980-08-15

Similar Documents

Publication Publication Date Title
US3567032A (en) Filter and pump for a recirculating sanitary system
DE68927589T2 (en) Vacuum toilet system
US5620309A (en) Fluid pump priming system
US2785638A (en) Force pump for slurries
US3834535A (en) Swimming pool filtering system
US4524794A (en) Air release and anti-siphon valve
US3820658A (en) Self cleaning filter apparatus and system
US3634891A (en) Self-contained recirculating sanitary system
JPS58501867A (en) Improved pump
GB971476A (en) Means and method for backwashing filter bed
US3874822A (en) Electromagnetic plunger pump
US4162549A (en) Filtering elements
JPH0585698B2 (en)
US4120424A (en) Liquid dispensing pump
US3298319A (en) Pumping system for slurry and other solutions
US2630069A (en) Automatic control unit for deep well jet pumps
US2421237A (en) Air charger for jet pumps
US2866555A (en) Cylinder level control for comminuting devices and method for comminuting
US3722850A (en) Snap action valve
US5045188A (en) Recirculating toilet water system with self-purging valve operable by a restoring spring
US2792011A (en) Flood control means
US3742713A (en) Hydraulic control actuator
GB2165591A (en) Submersible high pressure pump apparatus
GB2122262A (en) Improvements in and relating to fluidic pumps
US2289772A (en) Convertible pumping system

Legal Events

Date Code Title Description
AS Assignment

Owner name: HELLER FINANCIAL, INC.

Free format text: SECURITY INTEREST;ASSIGNOR:MAG AEROSPACE INDUSTRIES, INC., A CORP. OF DE;REEL/FRAME:006198/0529

Effective date: 19920626

AS Assignment

Owner name: MAG AEROSPACE INDUSTRIES, INC., CALIFORNIA

Free format text: RELEASE AND REASSIGNMENT OF SECURITY INTEREST;ASSIGNOR:HELLER FINANCIAL, INC.;REEL/FRAME:008354/0071

Effective date: 19961202