US3564102A - Wire heating apparatus - Google Patents

Wire heating apparatus Download PDF

Info

Publication number
US3564102A
US3564102A US683037A US3564102DA US3564102A US 3564102 A US3564102 A US 3564102A US 683037 A US683037 A US 683037A US 3564102D A US3564102D A US 3564102DA US 3564102 A US3564102 A US 3564102A
Authority
US
United States
Prior art keywords
wire
heating
temperature
ceramic
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US683037A
Inventor
Sheridan S Cannaday
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Physical Sciences Corp
Original Assignee
Physical Sciences Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US46576A external-priority patent/US3257245A/en
Application filed by Physical Sciences Corp filed Critical Physical Sciences Corp
Application granted granted Critical
Publication of US3564102A publication Critical patent/US3564102A/en
Assigned to MARINE MIDLAND BANK, AS AGENT reassignment MARINE MIDLAND BANK, AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GULTON INDUSTRIES, INC.
Anticipated expiration legal-status Critical
Assigned to GULTON INDUSTRIES, INC. reassignment GULTON INDUSTRIES, INC. RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MARINE MIDLAND BANK, N.A., AS AGENT
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D11/00Continuous processes; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/04Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
    • B21C37/042Manufacture of coated wire or bars
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1906Control of temperature characterised by the use of electric means using an analogue comparing device
    • G05D23/1909Control of temperature characterised by the use of electric means using an analogue comparing device whose output amplitude can only take two discrete values
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/22Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element being a thermocouple
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D5/00Control of dimensions of material
    • G05D5/02Control of dimensions of material of thickness, e.g. of rolled material
    • G05D5/03Control of dimensions of material of thickness, e.g. of rolled material characterised by the use of electric means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/065Insulating conductors with lacquers or enamels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0014Devices wherein the heating current flows through particular resistances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0019Circuit arrangements

Definitions

  • Patented [73] Assignee Feb. 16, 1971 By mesne assignments to Physical seieaeaamisnah Original application Apr. 19, 1963, Ser. No. 277,975, now Patent No. 3,043,659, which is a division of application Ser. No. 46,576, Aug. 1, 1960, now Patent No.
  • This invention relates to a method of covering a metal body with a ceramic coating. While the invention is broadly applicable for its purposes, it has special utility for forming a ceramiccbating that will withstand flexure of the body, for example, a ceramic coating on a flexible wire. T
  • the invention is described herein as directed to the production of a ceramic-coated wire for use in electrical circuits.
  • This description will provide adequate guidance for application of the invention to other specific purposes.
  • -A ceramic-coated electrical conductor is highly advantageous for its ability to withstand'high temperatures.
  • the usual ceramic coating will not withstand prolonged exposure to radiation from a nuclear reactor without deterioration of its mechanical and electrical properties.
  • a special feature of the invention is the provision of a ceramic coating that is capable of prolonged service under particle bombardment. 1
  • the invention is based on certain discoveries which are vital for the production of a ceramic-coated wire for use in electrical devices.
  • a ceramic coating of a suitable composition may be tenaciou sly bonded to a metal that is capable of forming a tenaciously adherent oxide film by oxida-' tion, a chemical bond being achieved by fusing the ceramic material to the oxide film.
  • Aluminum and nickel are two metals that form such a film.
  • a mechanical bond, in addition to the chemical bond, may be obtained by using a ceramic material that has a smaller coefficient of thermal expansion than the metal of the wire. The mechanical bond is caused by thermal contraction of the metal into interlocking engagement with the minute portions of the: ceramic that'extend into the minute surface recesses of the metal.
  • the combination of the chemical bond of the ceramic with the oxide film and the mechanical bond by thermal contraction results in tenacious adherence of-theceramic to themetal wire.
  • the second discovery is that a ceramic coating of a suitable composition applied. to the surface of a metal wire may be heated briefly to a temperature thatwill result in a minutely knobby surface texture. Under a microscope the surface seems to comprise numerous contiguous nodules of convex or bulbousconfiguration. Ordinarily, a ceramic or glasslike layer on a metal wire will shatter if the wire is bent.
  • the advantage of the nodular surface configuration is that when the metal to which the ceramic is bonded is bent or flexed, fractures occur in generally radial directions at the junctures of the nodules.
  • a third discovery is that, fortuitously, the temperature and the duration of a heating operation may be selected-to cause both of these effects to occur simultaneously.
  • a metal wire may be moved longitudinally through a heating zone for fusing of the ceramic to the oxide film and simultaneous formation of the required nodular surface configuration.
  • a person skilled in the art may easily carry out a simple trial and error procedure for finding an operative combination of rate of wire travel, length of the heating zone, and temperature of the heating zone.
  • the temperature required is usually relatively high. In some instances the temperature is higherthan the melting point of the wire, but the duration of the exposure to the heat is too short for the metal of the wire to be heated to its melting point.
  • the wire travels at a'constant rate through five successive zones in sequence.
  • the wire In the first zone the wire is coated with ,a liquid suspension of finely divided ceramic material; the second zone is a heating zone in which the ceramic coating is fired; in the third zone the wire is cooled in preparation for repeating the first two steps; in the fourth zone the wire is coated a second time with the liquid suspension; and in the fifih zone the newly added ceramic is firedto add to the thickness of the ceramic layer.
  • the first problem is to keep the temperatures in the two heating zones with a narrow operating range.
  • the second problem arises from the fact that softening of the wire by the high temperature makes the wire prone to stretch in response to even an exceedingly low tension force.
  • the second problem is to propel the wire through the two heating zones without placing the wire under any significant degree of tension thereby to prevent stretching of the heated wire.
  • the first problem of temperature control is accomplished in each heating zone by employing a heating resistor with a main source of current and an auxiliary source of current.
  • the main source of current is adjusted to maintain the resistor at just under the desired temperature and the auxiliary source of current is operated intermittently as required to maintain a slightly higher desired temperature.
  • Operation of the auxiliary current source is controlled automatically in response to a sensing means in the form of a thermocouple that is located adjacent the heating 'element in position to receive direct radiation from the heating element. The positioning of the thermocouple in this manner makes the thermocouple highly sensitive to temperature changes of the heating element and reduces the time lag in the operation of the auxiliary current source.
  • thermocouple to control a single source of current with the thermocouple cutoff from direct radiation of heat from the heating element would permit the temperature of the heating element to vary through a range as wide as 50 F.
  • the second problem of avoiding appreciable tension in the traveling wire is accomplished by providing a first wire-engaging means at the end of the processing path to pull the wire through the successive zones at a given rate and by further providing a second wire-engaging means near the entrance to-the path for moving the wire at the same rate.
  • a feature of the invention is the concept of providing means to sense the differential between the two rates for close control of the second wire-engaging means.
  • FIG. 1 is a somewhat diagrammatic side elevational view of the presently preferred embodiment of the apparatus for carrying out the process of applying a ceramic coating to a metal wire;
  • FIG. 2 is a transverse section taken as indicated by the line 2-2'of FIG. 1 showing how a thermocouple may be positioned in a heating zone to receive direct radiation from a heating element in the heating zone;
  • FIG. 3 is a fragmentary horizontal section taken as indicated at line 3-3 of FIG. 2 to show how the thermocouple may be positioned in a recess of the refractory material of the furnace, the recess being adjacent the longitudinal passage through which the wire travels; Y
  • FIG. 4 is a diagrammatic view showing how a heating element may comprise a series of three carbon rods assembled end to end;
  • FIG. 5 is a fragmentary elevational view showing the construction of the second wire-engaging means that is near the entrance to the processing path;
  • FIG. 6 is a plan view of the structure shown in FIG. 5 as shown along the line 6-6;
  • FIG. 7 is a sectional view of a power-actuated unit for coating the traveling wire with a suspension of finely divided ceramic material
  • FIG. 8 is a perspective view of the upper roller in the unit shown in FIG. 7;
  • FIG. 9 is a perspective view of the lower roller shown in FIG. 7;
  • FIG. 10 is a perspective view of the rotary agitator shown in FIG. 7;
  • FIG. 11 is a wiring diagram of a control system that is used for regulating the temperature in each of the two heating zones;
  • FIG. I2 is a greatly enlarged schematic sectional view of the ceramic layer on the wire
  • FIG. 13 is a greatly enlarged section along the line 13-13 of FIG. 12 showing how the ceramic layer fuses into the oxide film on the surface of the metal wire;
  • FIG. 14 is a view similar to FIG. 12 showing how the ceramic behaves on the outer side of a bend in the completed wire.
  • FIG. 15 is a similar view showing how the ceramic layer behaves on the inner side of a bend in the wire.
  • the principal parts of the apparatus shown in the side elevation in FIG. 1 include: a support structure in the form of an elevated metal framework supported by vertical columns 22; a first furnace 24 on the framework, which furnace has a longitudinal passage 25 therethrough (FIG. 2 and 3) for a traveling length of the wire, the wire being indicated by the letter W, a first coating unit 26 to apply the ceramic mixture to the surface of the traveling wire before the wire enters the first furnace; a cooling unit 28 to cool the coated wire as it leaves the first furnace; a second furnace 30 similar to the first furnace and formed with a similar passage therethrough for the traveling wire; and a second coating unit 32 to apply a second coating of the ceramic mixture to the wire before the wire enters the second furnace 30.
  • the two furnaces 24 and 30 are of identical construction, each comprising essentially an elongated mass of refractory material. As best shown in FIG. 2, each of the two furnaces may be made in separate sections comprising refractory blocks which may be separated sections comprising refractory blocks which may be separated for access to the passage 25 through which the wire travels.
  • the furnace comprises two longitudinal blocks of refractory material indicated 34 and 35, respectively.
  • the refractory mass of each furnace is further, provided with longitudinal bores 36 to house longitudinal heating elements 38 in the form of electrical resistors. In the construction shown there are four longitudinal bores 36, all at the same spacing from the longitudinal wire passage 25.
  • each of the heating elements 38 may comprise three resistor rods 38a, 38b, and 380 positioned end to end and connected to serve as a single resistor.
  • the middle resistor rod 38b has the highest resistance to reach a higher temperature than the resistor rods 38a and 380.
  • Associated with the first furnace 24 is an indicating pyrometer 44 and associated with the second furnace 30 is a similar indicating pyrometer 45.
  • the heating circuits for each of the two furnaces are identical and of the character indicated by the wiring diagram in FIG. 11.
  • a main transformer is connected on its primary side to a pair of leads 48 from a suitable electromotive source and an auxiliary transformer 50 is connected on its primary side to an electrornotive source by leads 52.
  • the secondary coil 54 of the main transformer 46 and the secondary coil 55 of the auxiliary transformer 50 are connected together in series and are in series with an ammeter 56 and with the heating elements of the furnace which are represented by the resistor 38.
  • a potentiometer is provided for adjustment of the voltage developed by the main transformer 46.
  • a potentiometer resistor 58 interconnects the two terminals of the secondary coil 54.
  • a wiper or brush 60 adjustable along the potentiometer resistor is connected to the secondary coil 55 of the auxiliary transformer 50.
  • thermocouple 62 of the indicating pyrometer 44 of the furnace is connected both to the indicating pyrometer and to an amplifier 64.
  • the output of the amplifier 64 is connected to a coil 65 of a relay 66 having a pair of contactors 68 to control the energization of the auxiliary transformer 50.
  • the potential that is required to energize the heating element 38 to the desired degree is approximately 30 volts. It has been found, however, that if a single transformer is employed to produce this voltage, there is considerable transient variation in the temperature produced in the furnace. The temperature may vary as much as 50 F., whereas the variation should be well within 10 F.
  • the invention achieves the desired regulation by using the main transformer 46 to delivery 25 volts to the heating circuit and by energizing the auxiliary transformer to add 5 volts periodically as necessary.
  • the thermocouple 62 senses the temperature in the furnace produced by the heating elements and causes the relay 66 to be operated intennittently as required.
  • the indicating pyrometer 45 has an adjustable pointer 70 to indicate the temperature desired in the furnace, and has a second pointer 72 that is responsive to the thermocouple 62 to indicate the actual temperature in the furnace.
  • thermocouple 62 may be mounted in the corresponding furnace in any suitable manner.
  • the thermocouple 62 is mounted in a recess 74 (FIG. 3) in the wall of the passage 25 through which the wire ⁇ V" travels.
  • a small transverse passage 75 extends from the recess 74 to one of the heating elements 38 so that the thermocouple is exposed to direct radiation from the heating element for quick response to change in temperature of the heating element. It has been found that this arrangement in which the thermocouple sees one of the heating elements and in which the thermocouple controls only a marginal amount of voltage keeps the temperature within the desired range.
  • Each of the coating units 26 and 32 may be of the construction shown in FIG. 8-11.
  • the coating unit comprises a receptacle 76 for the coating mixture which is of the configuration of an upright cylinder with a peripheral wall 78 and a bottom wall 80.
  • the bottom wall 80 is convex or conical in configuration.
  • the traveling wire W passes through the receptacle diametrically thereof, the peripheral wall 78 being apertured for that purpose.
  • the coating material is a slip comprising an aqueous suspension of finely divided ceramic particles. Since the ceramic particles are of relatively high density, there is a strong tendency for the particles to settle and, moreover, if the mixture is permitted to stand with the particles settled, its viscosity increases with the passage of time.
  • the traveling wire W" passes between a first or upper roller 82 and a second or lower roller 84, both of which rollers may advantageously be made of nylon.
  • the upper roller 82 is secured by a pin 85 to an upper transverse shaft 86 that is journaled in suitable bearings 88.
  • the lower roller 84 is secured by a pin 90 to a shaft 92 that is journaled in bearings 94and is sealed by suitable 0- rings 95.
  • the two rollers 82 and 84 have mutually contacting peripheral surfaces so that the lower roller continuously feeds the mixture to the upper roller.
  • One of the rollers is grooved to receive the traveling wire and in the construction shown the upper roller 82 is provided with a circumferential groove 96 for this purpose.
  • the upper roller 82 may be generally cylindrical in configuration and the lower roller 84 may be generally spherical in configuration.
  • the material of the lower roller 84 is cutaway to form diametrical ribs 98 at its opposite ends which serve as agitator vanes when the roller is rotated while submerged in the coating mixture.
  • the lower roller 84 may be formed with a series of inclined bores 97 for further agitation of the mixture.
  • the space between the lower roller 84 and the bottom wall 80 of the coating receptacle is substantially completely occupied'by an agitator member inthe form of a rotary blade 100 that rotates on the axis of the receptacle.
  • the upper edge 102 of the rotary blade 100 conforms to the profile of the roller 84 and the lower edge 104 conforms to the convex or conical configuration of the bottom wall 80v of the receptacle. It is apparent that the interior of the receptacle below the axis of the lower shaft 92 is completely taken up by the lower roller 84 and the rotary blade 100 so that there is no possibility of settling of the ceramic particles.
  • the opposite halves of the rotary blade 100 are suitably inclined relative to the direction of rotation of the rotary blade to have an upward propelling effect to urge the liquidsuspension continuously against the underside of the lower roller 84.
  • the coating receptacle is replenished to bring the liquid suspension up to the liquid level indicated by the dotted line 105.
  • the liquid level may drop well below the lower shaft 92 with no eflect on the manner in which the two cooperating rollers apply the mixture to the traveling wire.
  • a feature of the coating unit is the concept of the two rollers 82 and 84 rotating in opposite peripheral directions relative to the traveling wire, the lower periphery of the upper roller traveling in the direction of the wire and the upper periphery of the lower roller traveling in the opposite direction.
  • the liquid mixture that follows the periphery of the lower roller meets head-on the material that follows the upper roller. It has been found that this action compensates for the tendency of the applied coating to be too thick on the underside of the wire and results in a coating of uniform thickness.
  • any suitable means may be provided to drive the two rollers and the agitator blade 100.
  • the rotai'y agitator blade is mounted on a vertical shaft 106 which is equipped with an O-ring 108 and is connected by a coupling member 110 with a motor 112 (FIG. 1).
  • the lower transverse shaft 92 is connected by a coupling member 114 with a second motor 115.
  • the opposite ends of the lower shaft 92 carry gears 116 outside of the coating receptacle and these gears mesh with corresponding pinions 118 that are mounted on corresponding spindles 120.
  • the pinions 118 mesh in turn with corresponding gears 122 on the opposite ends of the upper shaft 86.
  • the coating receptacle is provided with a removable cover 124 that may be made of transparent plastic to permit convenient observation of the interior of the receptacle.
  • the upper shaft 86 carrying the upper roller 82 is journaled in the cover 94 so that the upper roller 82 and the corresponding gears 122 are removed with the cover to make the interior of the receptacle fully accessible.
  • thumb screws 125 maybe loosened to free the receptacle from a fixed support plate 126 and then the bottom 80 may be unscrewed and removed along with the agitator blade 100 to expose all of the each and working parts for cleaning.
  • a pair of spaced parallel guard plates 128 is positioned transversely of the traveling wire at each end of the two furnaces 24 and 30, respectively, each guard plate being suitably slotted to clear the traveling wire.
  • the pairs of guard plates not only protect personnel by preventing accidental touching of the heating element 38 but also serve as shields to reduce the amount of radiated heat that reaches the two coating units 26 and 32 as well as the central cooling unit 28.
  • the cooling unit 28 may be omitted if provision is made for sufflciently exposing the coatedwire to the atmosphere;
  • the cooling unit 28 comprises a housing through which the wire travels, the housing being provided with a transverse passage 130 through which cooling air is propelled by a blower 132 with the air stream directed transversely across the traveling wire.
  • MECHANISM FOR DRIVING THE WIRE It is apparent that the wire is driven along a predetermined processing path through five zones in sequence, namely: a first coating zone represented by the first coating unit 26; a first heating zone represented by the first furnace 24; a cooling zone represented by the cooling unit 28; a fourth zone where the wire is coated by the second coating unit 32; and a fifth zone which is the heating zone provided by the second furnace 30. It is essential that the wire be guided accurately through the successive zones at a constant rate.
  • any appreciable tensioning of the wire is to be avoided since the wire is softened in the two heating zones to such an extent as to make it very susceptible to stretching.
  • the problem of moving the wire along the processing path without tensioning the wire to any significant degree is solved by providing a first wire'engaging means at the end of the processing path to pull the wire through the five zones and by further providing a second wire-engaging means at the beginning of the processing path to avoid any significant resistance to the pulling force created by the first wire-engaging means.
  • the first wire-engaging means at the end of the processing path comprises a power-driven pickup reel in cooperation with a relatively large flanged wheel 142 and two smaller flanged wheels 14-4 and 145.
  • Wire. from the end of the processing path passes around approximately 180 of the large flanged wheel 142, then passes around l80 of the small flanged wheel 144 and returns toagain pass around approximately I80of the larger wheel 142.
  • the larger wheel 142 is driven by an adjustable variable speed motor 143.
  • the wire then passes under the small flanged wheel 145 and through a level wind mechanism to reach the pickup reel 140.
  • the level wind mechanism is of a familiar type, comprising a slotted member 146 through which the wire travels and a pair of parallel shafts 148.
  • the slotted member 146 engages helical grooves in the two shafts 148 for reciprocation of the slotted member longitudinally of the two shafts.
  • the pickup reel 140 is actuated by a variable speed torque motor 150.
  • the torque motor 150 may be an induction motor, the voltage of which is controlled by a potentiometer 152 having an adjustment knob 154.
  • the rate at which the wire is pulled'along the processing path is determined by the adjustment of the variable speed motor 143 and the tension of the wire between the wheel 142 and the pickup reel 140 is determined by the adjustment of the potentiometer 152.
  • the second wire-engaging means at the entrance to the processing path comprises a relatively large power-actuated flanged wheel 155 in combination with three smaller flanged guide wheels 156, 158, and 160, and a floating flanged wheel 162.
  • This second wir-engaging means drives the wire from a supply reel 164 which is frictionally retarded in a well-known manner so that it turns only as fast as the wire is pulled by the second wireengaging means.
  • the wire withdrawn from the supply reel 164 passes under the guide wheel 156, passes around approximately 350 of the circumference of the large wheel 155, and then passes under the guide wheel 158, over the guide wheel 160, and under the floating wheel 162 to pass upward over a relatively large guide wheel 165 at the beginning of the processing path.
  • the large flanged wheel 155 is driven by a 2-speed motor 166 under the control of a normally open pressure-sensitive switch 168. In the absence of operation of the switch 168 the motor 166 drives the large flanged wheel 155 at a peripheral speed that is slightly under the speed at which the drive motor 143 pulls the wire. When the switch 168 is operated the motor speed is boosted to a rate to drive the wire at a higher rate than the wire is pulled by the pickup reel 142.
  • the floating wheel 162 is carried by one arm of a lever 170 that pivots on a fulcrum 172.
  • the second arm of the lever 170 is formed with an offset 174 for operation of the switch 168 and is further formed at its end with a hook to receive a counterweight 175.
  • the counterweight 175 exactly balances the weight of the floating wheel 162.
  • the floating wheel 162, however, is gravitationally-biased downwardly to a slight degree and for this purpose one or more small ring-shaped weights 176 may be placed on an upwardly extending pin on the lever 170.
  • the gravitationally-biased floating wheel 162 offsets the traveling wire to form a downwardly extending loop 180 in the wire.
  • the loop 180 measures the slack in the wire and the behavior of the loop reflects the differential between the rate at which the wire is pulled by the pickup reel of the first wire-engaging means and the rate at which the wire is propelled by the motor-driven flanged wheel 155 of the second wireengaging means.
  • the floating wheel .162 in sensing the changes in the slack of the wire senses the differential between the effective rates of the two respective wire-engaging means.
  • the wire along the processing path is engaged by a first pair of rollers 182 and 184 before the wire reaches the first coating unit 26.
  • a second pair of rollers 185 and 186 engage the wire at the end of the first furnace 24.
  • a third pair of rollers 188 and 190 engage the wire at the end of the second furnace 30.
  • the three pairs of rollers serve various purposes.
  • the rollers support the traveling wire and are adjustable for precisely locating the path of travel of the wire.
  • the three pairs of rollers provide three null points along the processing path to reduce the freedom for the traveling wire to vibrate.
  • the first pair of rollers 182--184 and the .last pair of rollers 188-190 slightly offset the wire to create slight but desirable local resistance that tends to keep the wire from sagging excessively in the runs between the successive pairs of rollers.
  • the pair of rollers 185- 186 also have the useful function of dissipating the heat of the traveling wire and these rollers may be made of aluminum for this purpose. Heat dissipation in this manner at the end of the first heating zone is important in the larger sizes of wire because of their greater tendency to retain heat.
  • ingredients are mixed together in a finely divided state and are heated to a temperature on the order of 2100 F, to form a homogenous mass.
  • the fused material is permitted to cool and is then ground to pass through a 400-mesh screen.
  • the finely divided particles are then mixed with water.
  • the ceramic coating produced on a wire by this material provides good insulation at 1000 F. and, unlike ceramics that contain boron, is relatively immune to exposure by nuclear flux.
  • a conventional ceramic of this character has a high content of silica and, therefore, is glassy and brittle.
  • the present formula has a high lead content and a relatively small silica content, the lead giving the ceramic an important degree of flexibility and resilience.
  • aluminum wire is coated with ceramic.
  • the bare wire is found to measure 0.159 inches in diameter and the ceramic coating produces a final diameter of 0.168 inches. 1! has been found that aluminum wire generally has a film of aluminum oxide that is adequate for the purpose of the invention, the film being created by normal exposure of the wire to the atmosphere prior to;the coating operation.
  • variable speed drive motor 143 associated with the wheel 142 is adjusted to pull the wire along the processing path at a rate of approximately 12 feet per minute.
  • the length of the central resistor rod 38b of the resistor 38 in each of the two furnaces 24 and 311 is approximately 7 inches, which may be considered as the dimension in length of each of the two heating zones. With the wire traveling at 12 feet per minute it is exposed to each of these heating zones for slightly under 3 seconds. 5 1
  • Each of the two furnaces is adjusted to maintain a temperature of 1510 to 1520 F. in the respective heating zone. At this adjustment approximately 14.6 amperes of current flow through each of the two heating circuits of the respective furnaces. It is to be noted that the melting point of the aluminum wire is 1220 F. and that each of the heating zones is approximately 300 F. above the melting point of the metal of the wire. The wire travels so fast through the two heating zones, however, that the metal of the wire approaches but does not reach its melting point.
  • the tension weight 176 that is selected in this instance to give the floating wheel 162 the desired gravitational bias weighs 30 grams. This downward bias of the floating wheel 162 is sufficient to take up slack in the traveling wire but is not large enough to place the wire under any significant amount of tension.
  • the motor 166 operates at its low speed the peripheral speed of the large flanged wheel is slightly less than 12 feet per minute with the result that the downwardly hanging loop of wire 180 which is engaged by the floating wheel 162 progressively shortens to elevate the floating wheel.
  • the progressive elevation of the floating wheel 162 causes the offset 174 in the lever to close the switch 168 to increase the peripheral speed of the large flanged wheel 155 to more than 12 feet per minute. At this increased speed the wire loop lengthens with consequent lowering of the floating wheel 162 until the switch 168 opens to slow down the motor 166.
  • the motor 166 is intermittently run at the higher speed as required to continuously feed the wire to the processing path without placing the wire under tension.
  • the wire is in contact with 10 less than the full circumference of the large flanged wheel 155 and that the two small flanged wheels 156 and 158 are offset from each other, as shown in FIG. 6, for free movement of the wire around the flanged wheel.
  • any tendency of the wire to around the large wheel 155 results in slippage of the wire relative to the wheel.
  • the wire around the flanged wheel 155 tends to loosen when the floating wheel 162 moves downward and consequently the frictional engagement of the wheel with the wire is lessened to cause the wire to slip relative to the wheel.
  • the wire may be coated in a single operation, it is advantageous to coat and fire the traveling wire twice. Repeating the coating operation results in a ceramic layer of the desired thickness and also lessens the internal stresses in the finished ceramic. Repeating the coating operation is also desirable to insure that the wire is completely covered by the ceramic.
  • the ceramic coating is bonded to an oxide film that is, in turn, tenaciously adherent to the wire. 1n the second place, there is an additional physical or mechanical bond between the ceramic and the metal of the wire. In the third place, the ceramic coating is of nodular character.
  • the metal of the wire is indicated by reference numeral 192 and the ceramic coating is indicated by reference numeral 194.
  • the profile of the roughness of the metal surface is somewhat exaggerated to emphasize the fact that there are numerous minute irregular recesses in the surface of the metal into which portions of the ceramic penetrate.
  • FIG. 13 shows on a greatly enlarged scale the aluminum oxide film 195 on the surface of the aluminum wire.
  • the ceramic 194 penetrates or fuses into tthe oxide film 195, as indicated by the relatively large arrows in FIG. 13 and, on the other hand, the oxide film fuses into the ceramic as indicated by the small arrows.
  • the mutual fusion involves complex chemical reactions and changes the composition of both the ceramic and the oxide film, the final result being tenacious chemical bonding of the ceramic to the oxide film. Since the oxide film is tenaciously adherent to the metal 192, the result is that the ceramic layer is bonded to the metal.
  • the third factor is the production of a ceramic layer of nodular character, the ceramic layer being characterized by minute nodules or knobs 196.
  • the ceramic is heated to a certain degree, depending on the particular ceramic mixture,
  • the ' maximum surface tension is developed to cause the rounded 'nodules 196 to form.
  • the required surface tension is not created if the temperature of the ceramic is either too low or too high.
  • the nodular configuration of the ceramic may be achieved within the range of temperature and the duration of the heating step that are requiredfor the desired degree of fusion between the ceramic and the oxide film. In practice, it is a relatively simple matter to vary the speed of travel of the wire and the temperature in the two heating zones until the desired adjustment is found by trial and error.
  • nodules 196 tend to separate and fan out on the outside of the curve, as indicated in FIG. 14.
  • the nodules tend to separate or diverge because the least resistance to cleavage is at the junctures of the nodules 196 and the fractures tend to occur radially largely because of the combined effectiveness of the physical and chemical bonding of the inner portion of the ceramic to the metal.
  • FIG. 15 shows how the nodules 196 tend to converge and crowd together on the inner side of the curvature of the wire. Because of the high lead content of the ceramic there is a certain degree of resiliency in the nodules 196 which permits slight lateral compression of the nodules. In addition, the ceramic material pulverizes and drops away from the surfaces of mutual pressure contact between contiguous nodules for reduction in the width of the nodules as required to accommodate the inside curve of the wire.
  • the finished wire may be wound on a mandrel of a diameter as small as five times the diameter of the wire without destroying the protective ceramic coating.
  • the nickel wire is first processed for the creation of the required oxide film 195.
  • the bare nickel wire may be run through the two fumaces 24 and 30 with the two coating units 26 and 32 removed. With the temperature of the heating zones adjusted at approximately l700 F., a satisfactory oxide film will be formed on the wire at the usual speed of travel of the wire.
  • the coating operation is then carried out in substantially the same manner as heretofore described in detail, but at a higher temperature.
  • the heating of the nickel wire is far under the melting point, the melting point of nickel being approximately 265I F. Since it is the surface metal that is important, the process may be used for wire of any metal if the wire is clad with aluminum or nickel. If nickel-clad copper wire is used, the temperature in the two heating zones far exceeds the melting point of copper but the duration of exposure of the wire to the heating zone is insufficient to cause the copper to reach its melting point.
  • Means to heat a wire to a predetermined temperature at which the wire tends to stretch in response to tension com prising; means to move the wire longitudinally along a given path through a heating zone; a first wire-engaging means included in said wire-moving means near the end of said path-to pull the wire at a rate for the wire to attain said given temperature in said heating zone; means near the beginning of said path to push the wire at a rate to avoid appreciable tension in the wire; heating means in said heating zone; means to energize said heating means; means to sense the temperature in said heating zone; and means responsive to said temperature sensing means to regulate said energizing means to maintain a substantially constant temperature in the heating zone.
  • Means to heat a wire to a predetermined temperature at which the wire tends to stretch in response to tension comprising; means to move the wire longitudinally along a given path through a heating zone; a first wire-engaging means included in said wire-moving means near the end of said path to pull the wire at a rate for the wire to attain said given temperature in said heating zone; means near the beginning of said path to push the wire at a rate to avoid appreciable tension in the wire; heating means in said heating zone; a first energizing means to energize said heating means to a degree less than necessary to heat the wire to said predetermined temperature; a second energizing means to energize said heating means to an additional degree sufiicient to raise the temperature of the wire above said predetemiined temperature; means to sense the degree to which said heating means is energized; and means responsive to said sensing means to turn said second energizing means on and off to keep the heating zone at substantially said desired temperature.
  • a furnace for processing a traveling wire comprising; a first main transformer with a secondary coil for energizing said heating element means to less than the degree required to maintain said predetermined temperature; an auxiliary transformer with a secondary coil in series with the secondary coil of the main transformer for additionally energizing said heating element means to greater than said degree, the two seconand surrounding said tunnel, and a heat sensing element mounted in the mass adjacent said opening.
  • thermocouple mounted in a recess in the wall of the tunnel, and further including a passage extending from the recess to one of the heating elements.
  • a furnace as defined in claim 4 wherein the mass comprises at least one paid of interfitted blocks.

Abstract

A furnace for processing a traveling wire to avoid tensioning to any significant degree and to maintain a substantially constant temperature. A refractory mass is formed with a tubular opening for providing a passageway for the wire. A pulling device is located at the other end for pushing the wire therethrough. A number of heating elements are enclosed in the mass surrounding the opening and are energized by a pair of transformers to maintain a predetermined temperature range.

Description

United States Patent [72] Inventor Sheridan S. Cannaday Pasadena, Calif.
[21] Appl.No. 683,037
22 Filed Aug.31,l967
[45] Patented [73] Assignee Feb. 16, 1971 By mesne assignments to Physical seieaeaamisnah Original application Apr. 19, 1963, Ser. No. 277,975, now Patent No. 3,043,659, which is a division of application Ser. No. 46,576, Aug. 1, 1960, now Patent No.
[54] WIRE HEATING APPARATUS 6 Claims, 15 Drawing Figs.
[52] US. Cl 13/20,
264/174 [51] lnt.Cl. 1105b 3/62 [50] Field oi'Search 264/171,
[56] References Cited UNITED STATES PATENTS 2,156,352 5/1939 Peterson l3/20- 2,506,244 5/1950 Stopka 264/174(X) 2,596,284 5/1952 Peters..... I 264/174(X) 2,637,755 5/1953 lpsen 13/20 Primary Examiner-Bernard A. Gilheany Assistant Examiner-H. B. Gilson Anorneys- Patrick J. Schlesinger, Charles B. Lepchinsky and Jay M. Cantor ABSTRACT: A furnace for processing a traveling wire to avoid tensioning to any significant degree and to maintain a substantially constant temperature. A refractory mass is formed with a tubular opening for providing a passageway for the wire. A pulling device is located at the other end for pushing the wire therethrough. A number of heating elements are enclosed in the mass surrounding the opening and are energized by a pair of transformers to maintain a predetermined temperature range.
,mtmmrm slam 3564.102
SHEET 1' BF 3 PATEHTED FEB 1 6 :57: v v
v I saw 30F3 wravran.
arr/M0! 500017 I WIRE IIEATINGAPPARATUS This application is a division of application Ser. No.
277,975, filed Apr. 19, 1963, for Wire Coating Apparatus,
now Pat. No. 3,403,659, which 'was a division of Ser. No. 46,576, filed Aug. 1, 1960, which is now Pat. No. 3,257,245. This invention relates to a method of covering a metal body with a ceramic coating. While the invention is broadly applicable for its purposes, it has special utility for forming a ceramiccbating that will withstand flexure of the body, for example, a ceramic coating on a flexible wire. T
For the purpose of disclosure, the invention is described herein as directed to the production of a ceramic-coated wire for use in electrical circuits. This description will provide adequate guidance for application of the invention to other specific purposes. -A ceramic-coated electrical conductor is highly advantageous for its ability to withstand'high temperatures. The usual ceramic coating, however, will not withstand prolonged exposure to radiation from a nuclear reactor without deterioration of its mechanical and electrical properties. In this regard, a special feature of the invention is the provision of a ceramic coating that is capable of prolonged service under particle bombardment. 1 The invention is based on certain discoveries which are vital for the production of a ceramic-coated wire for use in electrical devices. One discovery is that a ceramic coating of a suitable composition may be tenaciou sly bonded to a metal that is capable of forming a tenaciously adherent oxide film by oxida-' tion, a chemical bond being achieved by fusing the ceramic material to the oxide film. Aluminum and nickel are two metals that form such a film. A mechanical bond, in addition to the chemical bond, may be obtained by using a ceramic material that has a smaller coefficient of thermal expansion than the metal of the wire. The mechanical bond is caused by thermal contraction of the metal into interlocking engagement with the minute portions of the: ceramic that'extend into the minute surface recesses of the metal. The combination of the chemical bond of the ceramic with the oxide film and the mechanical bond by thermal contraction results in tenacious adherence of-theceramic to themetal wire.
, .The second discovery is that a ceramic coating of a suitable composition applied. to the surface of a metal wire may be heated briefly to a temperature thatwill result in a minutely knobby surface texture. Under a microscope the surface seems to comprise numerous contiguous nodules of convex or bulbousconfiguration. Ordinarily, a ceramic or glasslike layer on a metal wire will shatter if the wire is bent. The advantage of the nodular surface configuration, however, is that when the metal to which the ceramic is bonded is bent or flexed, fractures occur in generally radial directions at the junctures of the nodules. Thus, when a wire covered with a ceramic of this character is bent to a small radius the minute nodules on the outside of the bend fan out substantially radially of the curvature of the wire. At the same time the nodules on the inner side of the bend crowd together.
A third discovery is that, fortuitously, the temperature and the duration of a heating operation may be selected-to cause both of these effects to occur simultaneously. Thus, a metal wire may be moved longitudinally through a heating zone for fusing of the ceramic to the oxide film and simultaneous formation of the required nodular surface configuration. A person skilled in the art may easily carry out a simple trial and error procedure for finding an operative combination of rate of wire travel, length of the heating zone, and temperature of the heating zone.
The temperature required is usually relatively high. In some instances the temperature is higherthan the melting point of the wire, but the duration of the exposure to the heat is too short for the metal of the wire to be heated to its melting point.
In the preferred practice of the invention the wire travels at a'constant rate through five successive zones in sequence. In the first zone the wire is coated with ,a liquid suspension of finely divided ceramic material; the second zone is a heating zone in which the ceramic coating is fired; in the third zone the wire is cooled in preparation for repeating the first two steps; in the fourth zone the wire is coated a second time with the liquid suspension; and in the fifih zone the newly added ceramic is firedto add to the thickness of the ceramic layer.
Two serious problems arise in carrying out this process. The first problem is to keep the temperatures in the two heating zones with a narrow operating range. The second problem arises from the fact that softening of the wire by the high temperature makes the wire prone to stretch in response to even an exceedingly low tension force. The second problem is to propel the wire through the two heating zones without placing the wire under any significant degree of tension thereby to prevent stretching of the heated wire.
The first problem of temperature control is accomplished in each heating zone by employing a heating resistor with a main source of current and an auxiliary source of current. The main source of current is adjusted to maintain the resistor at just under the desired temperature and the auxiliary source of current is operated intermittently as required to maintain a slightly higher desired temperature. Operation of the auxiliary current source is controlled automatically in response to a sensing means in the form of a thermocouple that is located adjacent the heating 'element in position to receive direct radiation from the heating element. The positioning of the thermocouple in this manner makes the thermocouple highly sensitive to temperature changes of the heating element and reduces the time lag in the operation of the auxiliary current source.
The use of an auxiliary source to supply only a marginal portion of the necessary current combined with the use of a highly responsive thermocouple makes it possible to control the temperature of the heating zone within a range of variation on the order of 5 F. In contrast, the use of a thermocouple to control a single source of current with the thermocouple cutoff from direct radiation of heat from the heating element would permit the temperature of the heating element to vary through a range as wide as 50 F.
As will be explained, the second problem of avoiding appreciable tension in the traveling wire is accomplished by providing a first wire-engaging means at the end of the processing path to pull the wire through the successive zones at a given rate and by further providing a second wire-engaging means near the entrance to-the path for moving the wire at the same rate. In this regard, a feature of the invention is the concept of providing means to sense the differential between the two rates for close control of the second wire-engaging means.
The various features and advantages of the invention may be understood from the following detailed description and the accompanying drawings.
In the drawings, which are to be regarded as merely illustrative:
FIG. 1 is a somewhat diagrammatic side elevational view of the presently preferred embodiment of the apparatus for carrying out the process of applying a ceramic coating to a metal wire;
FIG. 2 is a transverse section taken as indicated by the line 2-2'of FIG. 1 showing how a thermocouple may be positioned in a heating zone to receive direct radiation from a heating element in the heating zone;
FIG. 3 is a fragmentary horizontal section taken as indicated at line 3-3 of FIG. 2 to show how the thermocouple may be positioned in a recess of the refractory material of the furnace, the recess being adjacent the longitudinal passage through which the wire travels; Y
FIG. 4 is a diagrammatic view showing how a heating element may comprise a series of three carbon rods assembled end to end;
FIG. 5 is a fragmentary elevational view showing the construction of the second wire-engaging means that is near the entrance to the processing path;
FIG. 6 is a plan view of the structure shown in FIG. 5 as shown along the line 6-6;
FIG. 7 is a sectional view of a power-actuated unit for coating the traveling wire with a suspension of finely divided ceramic material;
FIG. 8 is a perspective view of the upper roller in the unit shown in FIG. 7;
FIG. 9 is a perspective view of the lower roller shown in FIG. 7;
FIG. 10 is a perspective view of the rotary agitator shown in FIG. 7;
FIG. 11 is a wiring diagram of a control system that is used for regulating the temperature in each of the two heating zones;
FIG. I2 is a greatly enlarged schematic sectional view of the ceramic layer on the wire;
FIG. 13 is a greatly enlarged section along the line 13-13 of FIG. 12 showing how the ceramic layer fuses into the oxide film on the surface of the metal wire;
FIG. 14 is a view similar to FIG. 12 showing how the ceramic behaves on the outer side of a bend in the completed wire; and
FIG. 15 is a similar view showing how the ceramic layer behaves on the inner side of a bend in the wire.
The principal parts of the apparatus shown in the side elevation in FIG. 1 include: a support structure in the form of an elevated metal framework supported by vertical columns 22; a first furnace 24 on the framework, which furnace has a longitudinal passage 25 therethrough (FIG. 2 and 3) for a traveling length of the wire, the wire being indicated by the letter W, a first coating unit 26 to apply the ceramic mixture to the surface of the traveling wire before the wire enters the first furnace; a cooling unit 28 to cool the coated wire as it leaves the first furnace; a second furnace 30 similar to the first furnace and formed with a similar passage therethrough for the traveling wire; and a second coating unit 32 to apply a second coating of the ceramic mixture to the wire before the wire enters the second furnace 30.
The two furnaces 24 and 30 are of identical construction, each comprising essentially an elongated mass of refractory material. As best shown in FIG. 2, each of the two furnaces may be made in separate sections comprising refractory blocks which may be separated sections comprising refractory blocks which may be separated for access to the passage 25 through which the wire travels. In the construction shown the furnace comprises two longitudinal blocks of refractory material indicated 34 and 35, respectively. The refractory mass of each furnace is further, provided with longitudinal bores 36 to house longitudinal heating elements 38 in the form of electrical resistors. In the construction shown there are four longitudinal bores 36, all at the same spacing from the longitudinal wire passage 25.
As indicated diagrammatically in FIG. 4, each of the heating elements 38 may comprise three resistor rods 38a, 38b, and 380 positioned end to end and connected to serve as a single resistor. The middle resistor rod 38b has the highest resistance to reach a higher temperature than the resistor rods 38a and 380. Associated with the first furnace 24 is an indicating pyrometer 44 and associated with the second furnace 30 is a similar indicating pyrometer 45.
Preferably, the heating circuits for each of the two furnaces are identical and of the character indicated by the wiring diagram in FIG. 11. In FIG. 11, which relates to the first furnace 24, a main transformer is connected on its primary side to a pair of leads 48 from a suitable electromotive source and an auxiliary transformer 50 is connected on its primary side to an electrornotive source by leads 52. The secondary coil 54 of the main transformer 46 and the secondary coil 55 of the auxiliary transformer 50 are connected together in series and are in series with an ammeter 56 and with the heating elements of the furnace which are represented by the resistor 38. Preferably, a potentiometer is provided for adjustment of the voltage developed by the main transformer 46. For this purpose a potentiometer resistor 58 interconnects the two terminals of the secondary coil 54. A wiper or brush 60 adjustable along the potentiometer resistor is connected to the secondary coil 55 of the auxiliary transformer 50.
The thermocouple 62 of the indicating pyrometer 44 of the furnace is connected both to the indicating pyrometer and to an amplifier 64. The output of the amplifier 64 is connected to a coil 65 of a relay 66 having a pair of contactors 68 to control the energization of the auxiliary transformer 50.
The potential that is required to energize the heating element 38 to the desired degree is approximately 30 volts. It has been found, however, that if a single transformer is employed to produce this voltage, there is considerable transient variation in the temperature produced in the furnace. The temperature may vary as much as 50 F., whereas the variation should be well within 10 F. The invention achieves the desired regulation by using the main transformer 46 to delivery 25 volts to the heating circuit and by energizing the auxiliary transformer to add 5 volts periodically as necessary. The thermocouple 62 senses the temperature in the furnace produced by the heating elements and causes the relay 66 to be operated intennittently as required. The indicating pyrometer 45 has an adjustable pointer 70 to indicate the temperature desired in the furnace, and has a second pointer 72 that is responsive to the thermocouple 62 to indicate the actual temperature in the furnace.
The thermocouple 62 may be mounted in the corresponding furnace in any suitable manner. In the present practice of the invention the thermocouple 62 is mounted in a recess 74 (FIG. 3) in the wall of the passage 25 through which the wire \V" travels. A small transverse passage 75 extends from the recess 74 to one of the heating elements 38 so that the thermocouple is exposed to direct radiation from the heating element for quick response to change in temperature of the heating element. It has been found that this arrangement in which the thermocouple sees one of the heating elements and in which the thermocouple controls only a marginal amount of voltage keeps the temperature within the desired range.
Each of the coating units 26 and 32 may be of the construction shown in FIG. 8-11. The coating unit comprises a receptacle 76 for the coating mixture which is of the configuration of an upright cylinder with a peripheral wall 78 and a bottom wall 80. In the particular construction shown the bottom wall 80 is convex or conical in configuration. The traveling wire W passes through the receptacle diametrically thereof, the peripheral wall 78 being apertured for that purpose.
The coating material is a slip comprising an aqueous suspension of finely divided ceramic particles. Since the ceramic particles are of relatively high density, there is a strong tendency for the particles to settle and, moreover, if the mixture is permitted to stand with the particles settled, its viscosity increases with the passage of time.
Inside the coating receptacle the traveling wire W" passes between a first or upper roller 82 and a second or lower roller 84, both of which rollers may advantageously be made of nylon. The upper roller 82 is secured by a pin 85 to an upper transverse shaft 86 that is journaled in suitable bearings 88. In like manner the lower roller 84 is secured by a pin 90 to a shaft 92 that is journaled in bearings 94and is sealed by suitable 0- rings 95. The two rollers 82 and 84 have mutually contacting peripheral surfaces so that the lower roller continuously feeds the mixture to the upper roller. One of the rollers is grooved to receive the traveling wire and in the construction shown the upper roller 82 is provided with a circumferential groove 96 for this purpose.
As indicated in FIG. 7, the upper roller 82 may be generally cylindrical in configuration and the lower roller 84 may be generally spherical in configuration. In the construction shown the material of the lower roller 84 is cutaway to form diametrical ribs 98 at its opposite ends which serve as agitator vanes when the roller is rotated while submerged in the coating mixture. In addition the lower roller 84 may be formed with a series of inclined bores 97 for further agitation of the mixture.
v The space between the lower roller 84 and the bottom wall 80 of the coating receptacle is substantially completely occupied'by an agitator member inthe form of a rotary blade 100 that rotates on the axis of the receptacle. The upper edge 102 of the rotary blade 100 conforms to the profile of the roller 84 and the lower edge 104 conforms to the convex or conical configuration of the bottom wall 80v of the receptacle. It is apparent that the interior of the receptacle below the axis of the lower shaft 92 is completely taken up by the lower roller 84 and the rotary blade 100 so that there is no possibility of settling of the ceramic particles. As indicated in FIG. 10, preferably the opposite halves of the rotary blade 100 are suitably inclined relative to the direction of rotation of the rotary blade to have an upward propelling effect to urge the liquidsuspension continuously against the underside of the lower roller 84.
. Periodically, the coating receptacle is replenished to bring the liquid suspension up to the liquid level indicated by the dotted line 105. The liquid level may drop well below the lower shaft 92 with no eflect on the manner in which the two cooperating rollers apply the mixture to the traveling wire.
A feature of the coating unit is the concept of the two rollers 82 and 84 rotating in opposite peripheral directions relative to the traveling wire, the lower periphery of the upper roller traveling in the direction of the wire and the upper periphery of the lower roller traveling in the opposite direction. By virtjue of this arrangement the liquid mixture that follows the periphery of the lower roller meets head-on the material that follows the upper roller. It has been found that this action compensates for the tendency of the applied coating to be too thick on the underside of the wire and results in a coating of uniform thickness.
Any suitable means may be provided to drive the two rollers and the agitator blade 100. In the present arrangementthe rotai'y agitator blade is mounted on a vertical shaft 106 which is equipped with an O-ring 108 and is connected by a coupling member 110 with a motor 112 (FIG. 1). The lower transverse shaft 92 is connected by a coupling member 114 with a second motor 115. The opposite ends of the lower shaft 92 carry gears 116 outside of the coating receptacle and these gears mesh with corresponding pinions 118 that are mounted on corresponding spindles 120. The pinions 118 mesh in turn with corresponding gears 122 on the opposite ends of the upper shaft 86.
' The coating receptacle is provided with a removable cover 124 that may be made of transparent plastic to permit convenient observation of the interior of the receptacle. The upper shaft 86 carrying the upper roller 82 is journaled in the cover 94 so that the upper roller 82 and the corresponding gears 122 are removed with the cover to make the interior of the receptacle fully accessible. With the cover 124 removed in this manner thumb screws 125 maybe loosened to free the receptacle from a fixed support plate 126 and then the bottom 80 may be unscrewed and removed along with the agitator blade 100 to expose all of the each and working parts for cleaning.
' Preferably, a pair of spaced parallel guard plates 128 is positioned transversely of the traveling wire at each end of the two furnaces 24 and 30, respectively, each guard plate being suitably slotted to clear the traveling wire. The pairs of guard plates not only protect personnel by preventing accidental touching of the heating element 38 but also serve as shields to reduce the amount of radiated heat that reaches the two coating units 26 and 32 as well as the central cooling unit 28.
The cooling unit 28 may be omitted if provision is made for sufflciently exposing the coatedwire to the atmosphere; The cooling unit 28 comprises a housing through which the wire travels, the housing being provided with a transverse passage 130 through which cooling air is propelled by a blower 132 with the air stream directed transversely across the traveling wire. 1
MECHANISM FOR DRIVING THE WIRE It is apparent that the wire is driven along a predetermined processing path through five zones in sequence, namely: a first coating zone represented by the first coating unit 26; a first heating zone represented by the first furnace 24; a cooling zone represented by the cooling unit 28; a fourth zone where the wire is coated by the second coating unit 32; and a fifth zone which is the heating zone provided by the second furnace 30. It is essential that the wire be guided accurately through the successive zones at a constant rate.
Any appreciable tensioning of the wire is to be avoided since the wire is softened in the two heating zones to such an extent as to make it very susceptible to stretching. The problem of moving the wire along the processing path without tensioning the wire to any significant degree is solved by providing a first wire'engaging means at the end of the processing path to pull the wire through the five zones and by further providing a second wire-engaging means at the beginning of the processing path to avoid any significant resistance to the pulling force created by the first wire-engaging means.
The first wire-engaging means at the end of the processing path comprises a power-driven pickup reel in cooperation with a relatively large flanged wheel 142 and two smaller flanged wheels 14-4 and 145. Wire. from the end of the processing path passes around approximately 180 of the large flanged wheel 142, then passes around l80 of the small flanged wheel 144 and returns toagain pass around approximately I80of the larger wheel 142. The larger wheel 142 is driven by an adjustable variable speed motor 143. The wire then passes under the small flanged wheel 145 and through a level wind mechanism to reach the pickup reel 140. The level wind mechanism is of a familiar type, comprising a slotted member 146 through which the wire travels and a pair of parallel shafts 148. The slotted member 146 engages helical grooves in the two shafts 148 for reciprocation of the slotted member longitudinally of the two shafts.
The pickup reel 140 is actuated by a variable speed torque motor 150. The torque motor 150 may be an induction motor, the voltage of which is controlled by a potentiometer 152 having an adjustment knob 154. The rate at which the wire is pulled'along the processing path is determined by the adjustment of the variable speed motor 143 and the tension of the wire between the wheel 142 and the pickup reel 140 is determined by the adjustment of the potentiometer 152.
The second wire-engaging means at the entrance to the processing path comprises a relatively large power-actuated flanged wheel 155 in combination with three smaller flanged guide wheels 156, 158, and 160, and a floating flanged wheel 162. This second wir-engaging means drives the wire from a supply reel 164 which is frictionally retarded in a well-known manner so that it turns only as fast as the wire is pulled by the second wireengaging means.
The wire withdrawn from the supply reel 164 passes under the guide wheel 156, passes around approximately 350 of the circumference of the large wheel 155, and then passes under the guide wheel 158, over the guide wheel 160, and under the floating wheel 162 to pass upward over a relatively large guide wheel 165 at the beginning of the processing path. The large flanged wheel 155 is driven by a 2-speed motor 166 under the control of a normally open pressure-sensitive switch 168. In the absence of operation of the switch 168 the motor 166 drives the large flanged wheel 155 at a peripheral speed that is slightly under the speed at which the drive motor 143 pulls the wire. When the switch 168 is operated the motor speed is boosted to a rate to drive the wire at a higher rate than the wire is pulled by the pickup reel 142.
The floating wheel 162 is carried by one arm of a lever 170 that pivots on a fulcrum 172. The second arm of the lever 170 is formed with an offset 174 for operation of the switch 168 and is further formed at its end with a hook to receive a counterweight 175. The counterweight 175 exactly balances the weight of the floating wheel 162. The floating wheel 162, however, is gravitationally-biased downwardly to a slight degree and for this purpose one or more small ring-shaped weights 176 may be placed on an upwardly extending pin on the lever 170.
By virtue of this arrangement the gravitationally-biased floating wheel 162 offsets the traveling wire to form a downwardly extending loop 180 in the wire. In effect, the loop 180 measures the slack in the wire and the behavior of the loop reflects the differential between the rate at which the wire is pulled by the pickup reel of the first wire-engaging means and the rate at which the wire is propelled by the motor-driven flanged wheel 155 of the second wireengaging means. Thus, the floating wheel .162 in sensing the changes in the slack of the wire senses the differential between the effective rates of the two respective wire-engaging means.
The wire along the processing pathis engaged by a first pair of rollers 182 and 184 before the wire reaches the first coating unit 26. A second pair of rollers 185 and 186 engage the wire at the end of the first furnace 24. Finally, a third pair of rollers 188 and 190 engage the wire at the end of the second furnace 30.
The three pairs of rollers serve various purposes. The rollers support the traveling wire and are adjustable for precisely locating the path of travel of the wire. The three pairs of rollers provide three null points along the processing path to reduce the freedom for the traveling wire to vibrate. The first pair of rollers 182--184 and the .last pair of rollers 188-190 slightly offset the wire to create slight but desirable local resistance that tends to keep the wire from sagging excessively in the runs between the successive pairs of rollers. The pair of rollers 185- 186 also have the useful function of dissipating the heat of the traveling wire and these rollers may be made of aluminum for this purpose. Heat dissipation in this manner at the end of the first heating zone is important in the larger sizes of wire because of their greater tendency to retain heat.
OPERATlON 70 to 76 percent by weight,
lead oxide silicon dioxide 10 to 14 percent by weight,
bismuth trioxide 10 percent, and
zinc oxide percent.
These ingredients are mixed together in a finely divided state and are heated to a temperature on the order of 2100 F, to form a homogenous mass. The fused material is permitted to cool and is then ground to pass through a 400-mesh screen. The finely divided particles are then mixed with water.
The ceramic coating produced on a wire by this material provides good insulation at 1000 F. and, unlike ceramics that contain boron, is relatively immune to exposure by nuclear flux. A conventional ceramic of this character has a high content of silica and, therefore, is glassy and brittle. The present formula has a high lead content and a relatively small silica content, the lead giving the ceramic an important degree of flexibility and resilience.
in a typical operation of the described apparatus 26-gauge aluminum wire is coated with ceramic. The bare wire is found to measure 0.159 inches in diameter and the ceramic coating produces a final diameter of 0.168 inches. 1! has been found that aluminum wire generally has a film of aluminum oxide that is adequate for the purpose of the invention, the film being created by normal exposure of the wire to the atmosphere prior to;the coating operation.
The variable speed drive motor 143 associated with the wheel 142 is adjusted to pull the wire along the processing path at a rate of approximately 12 feet per minute. The length of the central resistor rod 38b of the resistor 38 in each of the two furnaces 24 and 311 is approximately 7 inches, which may be considered as the dimension in length of each of the two heating zones. With the wire traveling at 12 feet per minute it is exposed to each of these heating zones for slightly under 3 seconds. 5 1
Each of the two furnaces is adjusted to maintain a temperature of 1510 to 1520 F. in the respective heating zone. At this adjustment approximately 14.6 amperes of current flow through each of the two heating circuits of the respective furnaces. It is to be noted that the melting point of the aluminum wire is 1220 F. and that each of the heating zones is approximately 300 F. above the melting point of the metal of the wire. The wire travels so fast through the two heating zones, however, that the metal of the wire approaches but does not reach its melting point.
The tension weight 176 that is selected in this instance to give the floating wheel 162 the desired gravitational bias weighs 30 grams. This downward bias of the floating wheel 162 is sufficient to take up slack in the traveling wire but is not large enough to place the wire under any significant amount of tension. When the motor 166 operates at its low speed the peripheral speed of the large flanged wheel is slightly less than 12 feet per minute with the result that the downwardly hanging loop of wire 180 which is engaged by the floating wheel 162 progressively shortens to elevate the floating wheel.
The progressive elevation of the floating wheel 162 causes the offset 174 in the lever to close the switch 168 to increase the peripheral speed of the large flanged wheel 155 to more than 12 feet per minute. At this increased speed the wire loop lengthens with consequent lowering of the floating wheel 162 until the switch 168 opens to slow down the motor 166. Thus, the motor 166 is intermittently run at the higher speed as required to continuously feed the wire to the processing path without placing the wire under tension.
It is important to note that the wire is in contact with 10 less than the full circumference of the large flanged wheel 155 and that the two small flanged wheels 156 and 158 are offset from each other, as shown in FIG. 6, for free movement of the wire around the flanged wheel. There is a certain regulating effect inherent in this arrangement in that any tendency of the wire to around the large wheel 155 results in slippage of the wire relative to the wheel. Thus, when the wire tends to tighten around the wheel in reaction to the lifting of the floating wheel 162, the wheel effectively engages the wire to increase the rate at which the wire is'fed to the floating wheel. On the other hand, the wire around the flanged wheel 155 tends to loosen when the floating wheel 162 moves downward and consequently the frictional engagement of the wheel with the wire is lessened to cause the wire to slip relative to the wheel.
While the wire may be coated in a single operation, it is advantageous to coat and fire the traveling wire twice. Repeating the coating operation results in a ceramic layer of the desired thickness and also lessens the internal stresses in the finished ceramic. Repeating the coating operation is also desirable to insure that the wire is completely covered by the ceramic.
As heretofore noted, three factors are involved in the successful coating of the traveling wire with ceramic, and make it possible for the first time to apply a ceramic coating to aluminum wire. in the first place, the ceramic coating is bonded to an oxide film that is, in turn, tenaciously adherent to the wire. 1n the second place, there is an additional physical or mechanical bond between the ceramic and the metal of the wire. In the third place, the ceramic coating is of nodular character. These three factors may be appreciated by referring to FIGS. 11 to 15.
, In FIGS. 12-15 the metal of the wire is indicated by reference numeral 192 and the ceramic coating is indicated by reference numeral 194. The profile of the roughness of the metal surface is somewhat exaggerated to emphasize the fact that there are numerous minute irregular recesses in the surface of the metal into which portions of the ceramic penetrate.
r With reference to the first factor, FIG. 13 shows on a greatly enlarged scale the aluminum oxide film 195 on the surface of the aluminum wire. When the coated traveling wire is fired in the correct manner the ceramic 194 penetrates or fuses into tthe oxide film 195, as indicated by the relatively large arrows in FIG. 13 and, on the other hand, the oxide film fuses into the ceramic as indicated by the small arrows. The mutual fusion involves complex chemical reactions and changes the composition of both the ceramic and the oxide film, the final result being tenacious chemical bonding of the ceramic to the oxide film. Since the oxide film is tenaciously adherent to the metal 192, the result is that the ceramic layer is bonded to the metal.
- 7 The importance of close temperature control may be appreciated when it is considered that underfiring the traveling wire results in insufficient mutual fusion between the ceramic and the oxide film and consequent failure of the ceramic to bond to the wire. On the other hand, overfiring with excessive penetration of the ceramic into the oxide film causes the oxide film to disappear into the ceramic with consequent failure of together, the minute recesses inthe surface of the metal contract faster than the ceramic to engage the corresponding portions of the ceramic in a positive manner. It is this contraction or the metal recesses that results in the mechanical or physical bond between the metal and the ceramic.
I The third factor is the production of a ceramic layer of nodular character, the ceramic layer being characterized by minute nodules or knobs 196. When the ceramic is heated to a certain degree, depending on the particular ceramic mixture,
' maximum surface tension is developed to cause the rounded 'nodules 196 to form. The required surface tension is not created if the temperature of the ceramic is either too low or too high. Fortuitously, the nodular configuration of the ceramic may be achieved within the range of temperature and the duration of the heating step that are requiredfor the desired degree of fusion between the ceramic and the oxide film. In practice, it is a relatively simple matter to vary the speed of travel of the wire and the temperature in the two heating zones until the desired adjustment is found by trial and error.
The importance of the nodular configuration of the ceramic layer may be appreciated by considering FIGS. 14 and 15. When the wire is bent to a radius the nodules 196 tend to separate and fan out on the outside of the curve, as indicated in FIG. 14. The nodules tend to separate or diverge because the least resistance to cleavage is at the junctures of the nodules 196 and the fractures tend to occur radially largely because of the combined effectiveness of the physical and chemical bonding of the inner portion of the ceramic to the metal.
FIG. 15 shows how the nodules 196 tend to converge and crowd together on the inner side of the curvature of the wire. Because of the high lead content of the ceramic there is a certain degree of resiliency in the nodules 196 which permits slight lateral compression of the nodules. In addition, the ceramic material pulverizes and drops away from the surfaces of mutual pressure contact between contiguous nodules for reduction in the width of the nodules as required to accommodate the inside curve of the wire.
Because of the described behavior of the ceramic coating under flexure of the wire, the finished wire may be wound on a mandrel of a diameter as small as five times the diameter of the wire without destroying the protective ceramic coating. If
the wire is subsequently straightened out, the divergent gaps shown in FIG. 14 close together and similar gaps develop between the nodules shown in FIG. 15, the protective and insulating effectiveness of the ceramic coating being maintained.
If a nickel wire is to be coated with ceramic, the nickel wire is first processed for the creation of the required oxide film 195. For this purpose the bare nickel wire may be run through the two fumaces 24 and 30 with the two coating units 26 and 32 removed. With the temperature of the heating zones adjusted at approximately l700 F., a satisfactory oxide film will be formed on the wire at the usual speed of travel of the wire. The coating operation is then carried out in substantially the same manner as heretofore described in detail, but at a higher temperature.
It is to be noted that the heating of the nickel wire is far under the melting point, the melting point of nickel being approximately 265I F. Since it is the surface metal that is important, the process may be used for wire of any metal if the wire is clad with aluminum or nickel. If nickel-clad copper wire is used, the temperature in the two heating zones far exceeds the melting point of copper but the duration of exposure of the wire to the heating zone is insufficient to cause the copper to reach its melting point.
My description in specific detail of the selected practices of the invention will suggest various changes, substitutions and other departures from my disclosure within the spirit and scope of the appended claims.
Iclaim:
1. Means to heat a wire to a predetermined temperature at which the wire tends to stretch in response to tension, com prising; means to move the wire longitudinally along a given path through a heating zone; a first wire-engaging means included in said wire-moving means near the end of said path-to pull the wire at a rate for the wire to attain said given temperature in said heating zone; means near the beginning of said path to push the wire at a rate to avoid appreciable tension in the wire; heating means in said heating zone; means to energize said heating means; means to sense the temperature in said heating zone; and means responsive to said temperature sensing means to regulate said energizing means to maintain a substantially constant temperature in the heating zone.
2. Means to heat a wire to a predetermined temperature at which the wire tends to stretch in response to tension, comprising; means to move the wire longitudinally along a given path through a heating zone; a first wire-engaging means included in said wire-moving means near the end of said path to pull the wire at a rate for the wire to attain said given temperature in said heating zone; means near the beginning of said path to push the wire at a rate to avoid appreciable tension in the wire; heating means in said heating zone; a first energizing means to energize said heating means to a degree less than necessary to heat the wire to said predetermined temperature; a second energizing means to energize said heating means to an additional degree sufiicient to raise the temperature of the wire above said predetemiined temperature; means to sense the degree to which said heating means is energized; and means responsive to said sensing means to turn said second energizing means on and off to keep the heating zone at substantially said desired temperature.
3. In a furnace for processing a traveling wire; the combination of an elongated refractory mass with a longitudinal passage therethrough to enclose the traveling wire; heating element means enclosed in said mass in spaced relation to said passage; and means to energize said heating element means to maintain said passageat a predetermined temperature, said means to energize said heating element means comprising; a first main transformer with a secondary coil for energizing said heating element means to less than the degree required to maintain said predetermined temperature; an auxiliary transformer with a secondary coil in series with the secondary coil of the main transformer for additionally energizing said heating element means to greater than said degree, the two seconand surrounding said tunnel, and a heat sensing element mounted in the mass adjacent said opening.
5. A furnace as defined in claim 4 wherein the heat sensing element is a thermocouple mounted in a recess in the wall of the tunnel, and further including a passage extending from the recess to one of the heating elements.
6. A furnace as defined in claim 4 wherein the mass comprises at least one paid of interfitted blocks.

Claims (6)

1. Means to heat a wire to a predetermined temperature at which the wire tends to stretch in response to tension, comprising; means to move the wire longitudinally along a given path through a heating zone; a first wire-engaging means included in said wire-moving means near the end of said path to pull the wire at a rate for the wire to attain said given temperature in said heating zone; means near the beginning of said path to push the wire at a rate to avoid appreciable tension in the wire; heating means in said heating zone; means to energize said heating means; means to sense the temperature in said heating zone; and means responsive to said temperature sensing means to regulate said energizing means to maintain a substantially constant temperature in the heating zone.
2. Means to heat a wire to a predetermined temperature at which the wire tends to stretch in response to tension, comprising; means to move the wire longitudinally along a given path through a heating zone; a first wire-engaging means included in said wire-moving means near the end of said path to pull the wire at a rate for the wire to attain said given temperature in said heating zone; means near the beginning of said path to push the wire at a rate to avoid appreciable tension in the wire; heating means in said heating zone; a first energizing means to energize said heating means to a degree less than necessary to heat the wire to said predetermined temperature; a second energizing means to energize said heating means to an additional degree sufficient to raise the temperature of the wire above said predetermined temperature; means to sense the degree to which said heating means is energized; and means responsive to said sensing means to turn said second energizing means on and off to keep the heating zone at substantially said desired temperature.
3. In a furnace for processing a traveling wire; the combination of an elongated refractory mass with a longitudinal passage therethrough to enclose the traveling wire; heating element means enclosed in said mass in spaced relation to said passage; and means to energize said heating element means to maintain said passage at a predetermined temperature, said means to energize said heating element means comprising; a first main transformer with a secondary coil for energizing said heating element means to less than the degree required to maintain said predetermined temperature; an auxiliary transformer with a secondary coil in series with the secondary coil of the main transformer for additionally energizing said heating element means to greater than said degree, the two secondary coils being in series with the heating element means; switch means to control the secondary transformer; means exposed to the heat radiated from said heating element means to sense the temperature thereof; and means responsive to said sensing means to operate said switch means for energizing said auxiliary transformer when the energization of the heating element means drops below said degree, and vice versa.
4. A furnace for processing a traveling wire comprising a mass of refractory material, a tunnel therethrough for passage of a wire, a plurality of heating elements enclosed in said mass and surrounding said tunnel, and a heat sensing element mounted in the mass adjacent said opening.
5. A furnace as defined in claim 4 wherein the heat sensing element is a thermocouple mounted in a recess in the wall of the tunnel, and further including a passage extending from the recess to one of the heating elements.
6. A furnace as defined in claim 4 wherein the mass compriseS at least one paid of interfitted blocks.
US683037A 1960-08-01 1967-08-31 Wire heating apparatus Expired - Lifetime US3564102A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US46576A US3257245A (en) 1960-08-01 1960-08-01 Wire coating apparatus
US277975A US3403659A (en) 1960-08-01 1963-04-19 Wire coating apparatus
US68303867A 1967-08-31 1967-08-31
US68303767A 1967-08-31 1967-08-31

Publications (1)

Publication Number Publication Date
US3564102A true US3564102A (en) 1971-02-16

Family

ID=27489080

Family Applications (1)

Application Number Title Priority Date Filing Date
US683037A Expired - Lifetime US3564102A (en) 1960-08-01 1967-08-31 Wire heating apparatus

Country Status (1)

Country Link
US (1) US3564102A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2156352A (en) * 1937-12-09 1939-05-02 Thomas F Peterson Heating device
US2506244A (en) * 1945-06-28 1950-05-02 Spolek Pro Chemickou A Lutni V Method of producing ceramic bodies having longitudinal passages
US2596284A (en) * 1949-09-15 1952-05-13 Petcar Res Corp Method of forming thermistor by impregnation
US2637755A (en) * 1950-02-16 1953-05-05 Harold N Ipsen Electric heating apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2156352A (en) * 1937-12-09 1939-05-02 Thomas F Peterson Heating device
US2506244A (en) * 1945-06-28 1950-05-02 Spolek Pro Chemickou A Lutni V Method of producing ceramic bodies having longitudinal passages
US2596284A (en) * 1949-09-15 1952-05-13 Petcar Res Corp Method of forming thermistor by impregnation
US2637755A (en) * 1950-02-16 1953-05-05 Harold N Ipsen Electric heating apparatus

Similar Documents

Publication Publication Date Title
US3058840A (en) Induction strip heating apparatus
US2448008A (en) Controlled induction heating
US3238024A (en) Method and apparatus for the zonemelting of nonconductive or poorly conductive substances
GB590458A (en) Improvements in or relating to the treatment of silicon
US2561462A (en) Electromagnetic core and manufacture thereof
US3403659A (en) Wire coating apparatus
US3564102A (en) Wire heating apparatus
US3519182A (en) Wire coating apparatus
EP0304844A2 (en) Method for manufacturing float glass
US1684800A (en) Centrifugal liquid crucible
RU96119846A (en) DEVICE AND METHOD FOR EXTENSION OF OPTICAL FIBER
US3192302A (en) Power control for electric glass melting furnace
US2067436A (en) Apparatus for heat-treating steel
US2252756A (en) Apparatus for glass manufacture
US1386645A (en) Electrically-heated strip and wire tempering and annealing device
US3375318A (en) Method and an arrangement for measuring and controlling electrode positions in electric furnaces and the like
US1959344A (en) Process of heat treating steel
GB605776A (en) Improvements in or relating to apparatus for the heat-treatment of metal strip or other elongated metal member
US2687289A (en) Apparatus for heat-treating on thermometers
US3762912A (en) Refining process and apparatus
JPS56121939A (en) Method and apparatus for heating inflammable liquid at constant temperature safely
JPH0773074B2 (en) Electric heating device
US1872990A (en) Induction electric furnace
JPS6364813B2 (en)
US4944786A (en) Apparatus for manufacturing thermal print head

Legal Events

Date Code Title Description
AS Assignment

Owner name: MARINE MIDLAND BANK, AS AGENT

Free format text: SECURITY INTEREST;ASSIGNOR:GULTON INDUSTRIES, INC.;REEL/FRAME:004761/0969

Effective date: 19870416

AS Assignment

Owner name: GULTON INDUSTRIES, INC.

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:MARINE MIDLAND BANK, N.A., AS AGENT;REEL/FRAME:005041/0020

Effective date: 19880223