US3556997A - Compositions with sulfinyl-containing alkenylsuccinates - Google Patents

Compositions with sulfinyl-containing alkenylsuccinates Download PDF

Info

Publication number
US3556997A
US3556997A US853217A US3556997DA US3556997A US 3556997 A US3556997 A US 3556997A US 853217 A US853217 A US 853217A US 3556997D A US3556997D A US 3556997DA US 3556997 A US3556997 A US 3556997A
Authority
US
United States
Prior art keywords
radical
carbon atoms
oil
sulfinyl
anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US853217A
Inventor
Norman A Leister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm and Haas Co
Original Assignee
Rohm and Haas Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm and Haas Co filed Critical Rohm and Haas Co
Application granted granted Critical
Publication of US3556997A publication Critical patent/US3556997A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/08Use of additives to fuels or fires for particular purposes for improving lubricity; for reducing wear
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2493Organic compounds containing sulfur, selenium and/or tellurium compounds of uncertain formula; reactions of organic compounds (hydrocarbons, acids, esters) with sulfur or sulfur containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M1/00Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants
    • C10M1/08Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants with additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/08Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium containing a sulfur-to-oxygen bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M3/00Liquid compositions essentially based on lubricating components other than mineral lubricating oils or fatty oils and their use as lubricants; Use as lubricants of single liquid substances
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/108Residual fractions, e.g. bright stocks
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/024Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings having at least two phenol groups but no condensed ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/123Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/144Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/146Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings having carboxyl groups bound to carbon atoms of six-membeered aromatic rings having a hydrocarbon substituent of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/22Acids obtained from polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • C10M2207/304Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids derived from the combination of monohydroxy compounds, dihydroxy compounds and dicarboxylic acids only and having no free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/06Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an acyloxy radical of saturated carboxylic or carbonic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/06Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an acyloxy radical of saturated carboxylic or carbonic acid
    • C10M2209/062Vinyl esters of saturated carboxylic or carbonic acids, e.g. vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/082Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/086Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/102Polyesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/109Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/044Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms having cycloaliphatic groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/062Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups bound to the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/066Arylene diamines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • C10M2215/224Imidazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/022Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/022Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group
    • C10M2217/023Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group the amino group containing an ester bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/028Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a nitrogen-containing hetero ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/022Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/024Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/108Phenothiazine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2221/02Macromolecular compounds obtained by reactions of monomers involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • C10M2227/061Esters derived from boron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/06Groups 3 or 13
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/14Group 7
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/16Groups 8, 9, or 10
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/12Gas-turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/12Gas-turbines
    • C10N2040/13Aircraft turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Definitions

  • novel sulfinyl-containing alkenylsuccinates of this invention are useful as dispersants, corrosion inhibitors and antiwear agents particularly in lubricating oil and fuel compositions.
  • the novel sulfinyl compounds are prepared by reacting (1) an alkenylsuccinic anhydride, an alkenylsuccinic acid or an alkenylsuccinamic acid and (2) at least one sulfinyl-containing hydroxy compound having the formulas:
  • y is an integer from 1 to about 50 or more and n is an integer from 1 to 40,
  • R is selected from the group consisting of (a) an alkyl radical containing from 1 to 24 carbon atoms, (b) an aryl radical (c) an aralkyl radical wherein the alkyl portion of the radical contains from 1 to 4 carbon atoms and (d) an alkaryl radical wherein the alkyl portion contains from 1 to 24 carbon atoms,
  • R is an alkylene radical having 2 to 5 carbon atoms
  • R and R are alkylene radicals having 2 to 5 carbon atoms, a phenylene radical or a (Cl-C4, alkyl substituted phenylene radical with the proviso that n is 1 when R and R, are phenylene or (C -C alkyl substituted phenylene.
  • the combustion products of the fuel may cause excessive wear, especially when the engine is operating under relatively ice cold conditions which results in an accumulation of moisture and acid products on the engine surfaces. This accumulation promotes wear on various engine parts.
  • novel compounds of this invention are prepared by reacting an alkenylsuccinic anhydride, alkenylsuccinic acid or alkenylsuccinamic acid and at least one sulfinylcontaining hydroxy compound.
  • the compounds of this invention are useful as dispersants in lubricating oil and fuel systems. They may be used in the range of about 0.005 to 15% by weight of the oil or fuel composition.
  • the compounds of this invention as evaluated according to several standard tests, exhibit outstanding activity as dispersants.
  • novel sulfinyl-containing alkenyl succinates are prepared by reacting (1) an alkenylsuccinic anhydride, an alkenylsuccinic acid or an alkenylsuccinamic acid and (2) at least one sulfinyl-containing hydroxy compound of the following formulas:
  • y is an integer from 1 to about 50 or more and n is an integer from 1 to 40 or more and preferably from 1 to 10,
  • R is selected from the group consisting of (a) an alkyl hydrocarbon radical containing. from 1 to 24 carbon atoms, (b) an aryl hydrocarbon radical (c) an aralkyl hydrocarbon radical wherein the alkyl portion of the radical contains from 1 to 4 carbon atoms and (d) an alkaryl hydrocarbon radical wherein the alkyl portion contains from 1 to 24 carbon atoms,
  • R is an alkylene radical having 2 to 5 carbon atoms and having at least 2 carbon atoms extending in a chain between the adjoined S and O atoms,
  • R and R are alkylene radicals having 2 to 5 carbon atoms and having at least 2 carbon atoms extending in a chain between the adjoined S and O atoms, a phenylene radical or lower alkyl substituted phenylene radical with the proviso that n is 1 when R, and R are phenylene or lower alkyl substituted phenylene.
  • the alkenylsuccinic compound may also be reacted with a mixture of various proportions of the sulfinylcontaining hydroxy compounds described in Formulas A, B and C.
  • Sulfinyl-containing hydroxy compounds with in the scope of Formulas A and B, when employed concurrently -with one or more Formula C alcohols, will act as chain terminators in the polyester reaction.
  • R groups are selected from straight chain and branched aliphatic hydrocarbon radicals such as methyl, ethyl, propyl, t-butyl, amyl, isohexyl, octyl, isooctyl, tertiary octyl, nonyl, decyl, dodecyl, t-dodecyl, t-tetradecyl, hexadecyl, t-hexadecyl, eicosyl, tetracosyl, phenyl, napthyl, tolyl, t-butylphenyl, t-octylphenyl, tdodecylphenyl, octadecylphenyl, tetrocosylphenyl, benzyl, and phenylethyl.
  • Typical R alkylene groups are ethylene, propylene and butylene.
  • R and R groups are ethylene, propylene, butylene, phenyl, 3,5 dimethylphenyl and 3,5 ditertiarybutylphenyl.
  • Formula A compounds are well known.
  • the R radical of Formula A may represent a mixture of different alkylene groups and these groups may be provided by employing as reactants, in the preparation of the Formula A compound, mixtures of alkylene oxides such as ethylene oxide, propylene oxide and 1,2 butylene oxide.
  • Formula C type compounds are also described in the literature.
  • the sulfides corresponding to the compounds of Formula C are disclosed in US. Pat. 2,582,605 and these sulfides may be oxidized to sulfoxides by employing such conventional oxidation agents as hydrogen peroxide and peracids.
  • Representative peracids include peracetic acid, persulfuric acid and perbenzoic acid.
  • Formula B compounds are prepared by the co-condensation of a Formula A and Formula C compound.
  • the condensation reaction is accelerated by employing a condensation catalyst such as a strong mineral acid, i.e., sulfuric acid.
  • aromatic sulfoxides that may be used include: bis(3-t-butyl,4-hydroxyphenyl)sulfoxide and bis(3,5-dimethyl,4-hydroxyphenyl)sulfoxide
  • R represents an alkenyl radical containing about 12 to 200 carbon atoms and preferably from 30 to 200 carbon atoms. Therefore R will have a molecular weight of about to about 2800. This compound is obtained by reacting maleic acid with an appropriate polyolefin.
  • A is alkyl of 1 to 24 carbon atoms, phenyl, naphthyl, benzyl or alkyl-substituted phenyl, naphthyl or benzyl in which the total alkyl substituents contain up to 24 carbon atoms, and
  • B is hydrogen or alkyl of l to 24 carbon atoms.
  • a groups are methyl, ethyl, butyl, tbutyl, octyl, t-octyl, dodecyl, t-octadecyl, tetracosyl, phenyl, naphthyl, benzyl, butylphenyl octylphenyl, dodecylphenyl, dioctylphenyl, butylnaphthyl, butylbenzl, and octylbenzyl.
  • B may be hydrogen, methyl, butyl, octyl, dodecyl, octadecyl, eicosyl, and tetracosyl.
  • either A or B represents a t-alkyl radical with the remaining substituent being hydrogen.
  • Each of A and B may represent a single alkyl group or a mixture of alkyl groups.
  • either A or B may represent a mixture of t-alkyl groups containing 12 to 15 carbon atoms averaging 13 carbon atoms or a mixture of 18 to 24 carbon atoms.
  • Another preferred embodiment is when either A or B is a t-butyl radical and the remaining substituent is hydrogen.
  • the reaction between the Formula D and Formula E compounds to produce alkenylsuccinamic acids is conducted at a temperature of about 0 C. to 200 C., and preferably from 60 C. to 120 C.
  • the R group of Formula D is derived by polymerizing an olefin containing 2 to 18 carbon atoms, preferably 2 to 8 carbon atoms, by addition polymerization from substantially pure olefins.
  • These olefins may be either gaseous or liquid under normal conditions and frequently are obtained from the cracking of petroleum and other hydrocarbons.
  • Fractions containing olefinically unsaturated open-chain hydrocarbons are readily available over a wide range of molecular weights and derived from olefins of 2 to 18 carbon atoms.
  • the preferred olefins are those from 2 to 8 carbon atoms with particular emphasis on the olefin embodiments containing 4 carbon atoms. It is, of course, preferred to employ relatively pure olefins from which sulfur, cyclic compounds and other impurities have been removed.
  • Mixtures of various olefins, from ethylene to octadecene, may be used or individual embodiments, as desired. Mixtures of specific olefins, from ethylene to pentene, may be advantageously employed. Particularly advantageous for the present purposes are mixtures of the various butenes. Butenes most commonly used comprise both straight and branched chain members. It is also possible, and frequently desirable, to employ a particular isomer, such as isobutylene, but for the purposes of this invention, separation or isolation of particular isomers is not essential. Thus, the mixtures readily available to the chemical industry are especially useful for the purposes of the present invention.
  • the olefinic polymers employed as starting materials vary from rather fluid liquids to rather viscous liquids at normal temperatures.
  • Typical olefinic polymers are those prepared from ethylene, propylene, isobutene, l-butene, 2-butene, lpentene, 2-pentene, l-hexene, l-octene, 2-octene, l-decene, l-dodecene, 2-dodecene and l-octadecene.
  • R has been structurally presented as attached to a specific carbon atom with respect to formula (D), it will be understood by those skilled in the art that the R group may be positioned on the other carbon atom that is alpha to the other carbonyl group.
  • the R group enters the molecule concerned by a reaction involving maleic anhydride and, therefore, could be attached to either of the carbon atoms alpha to the carboxyl group. This invention encompasses fully this aspect.
  • the polyolefin is first reacted with maleic anhydride at temperatures of about 200 to 250 C. for a period of about 6 to 16 hours, as desired.
  • the maleic anhydride is used in excess, preferably about 1.5 to 3 times the stoichiometric amount. The use of excess maleic anhydride tends to maximize yields.
  • the polyolefin reacts with maleic anhydride to form a succinic anhydride derivative which can be separated from the excess maleic anhydride by vacuum distillation or similar treatment.
  • the product can be diluted with xylene or similar solvent and filtered.
  • the alkenylsuccinates of this invention are prepared by reacting an alkenylsuccinic anhydride, acid or amic acid with either a sulfinyl-containing monohydric alcohol (defined in Formulas A or B), a sulfinyl-containing dihydric compound (defined in Formula C) or mixtures of both.
  • a sulfinyl-containing monohydric alcohol defined in Formulas A or B
  • a sulfinyl-containing dihydric compound defined in Formula C
  • the resultant monoester and diester products may be represented by the following formulas:
  • R, R R and y represent the groups defined above.
  • the acid group in Formula F may be esterified by reaction with any alkanol or phenol according to standard techniques and as described in U.S. application Ser. No. 412,237, filed Nov. 18, 1964.
  • Formula (F) and (G) esters may be prepared by reacting the alkenylsuccinic anhydride, acid or alkenylsuccinamic acid with the desired Formula (A) or (B) monohydroxy compound at temperatures of from 25 to 220 C., and preferably from 60 to 150 C. until esterification proceeds to the desired extent.
  • Employing an inert organic solvent in this reaction is discretionary.
  • the resultant product is a polyester which may be represented generally by the following formula:
  • R, R R and 11 represent the groups defined above and 2 represents the repeating unit of the polyester and may be an integer from 1 to 50 or more.
  • the re actants of this product may be heated at a temperature range of from to 220 C. and preferably from to C.
  • An inert organic solvent is necessary to azeotrope Water from the reaction. Suitable solvents are selected from aromatic hydrocarbons, aliphatic hydrocarbons and halogenated hydrocarbons.
  • the esterification reactions may be conducted in a mineral oil solution or dispersion or in combination with the inert organic solvent. Preferred solvents include benzene, toluene and xylene. Cessation of the evolution of water indicated substantial completion of the reaction.
  • Another type of product within the scope of this invention is obtained by reacting one equivalent by weight of a dihydric compound as described in Formula C and two equivalents by weight of an alkenylsuccinic anhydride 7 or acid.
  • This reaction product may be represented by the following formula:
  • one equivalent by weight of a dihydric compound of Formula C may be reacted with two equivalents by weight of an alkenylsuccinamic acid.
  • the mole ratio of the alkenylsuccinic anhydride, acid or amic acid to the sulfinyl hydroxy compound may vary from about 1:0.5 to 1:2 or more. Therefore about one-half equivalent to about two moles of sulfinyl hydroxy compound per mole of acid compound is employed.
  • the compounds of this invention are useful as dispersants in lubricating oil and fuel systems. They may be used in the range of about 0.005 to 15% by weight of the oil or fuel composition and may be incorporated therein according to standard techniques. In fuels, the range is 0.005 to preferably 0.01 to 2%, by weight of the fuel composition. In lubricants, the range is 0.1 to preferably 0.1 to 10%, by weight of the lubricant composition.
  • the compounds of the present invention as evaluated according to several known tests, exhibit out-- standing activity as dispersants.
  • API SERVICE MS SEQUENCE V-A TEST This test evaluates the sludge dispersant characteristics of a lubricant under low and medium temperature operating conditions.
  • a single cylinder oil test engine is operated under conditions described in ASTM Special Technical Publication No. 315, published by the American Society for Testing and Materials, 1916 Race St., Philadelphia, Pa. 19103.
  • the engine may be rated at any time during the course of the test.
  • the 7 parts rated for sludge are the rocker arm assembly, rocker arm cover plate, valve deck, timing gear cover, push rod cover plate, push rod chamber and oil pan.
  • PANEL COKER TEST This test is described in the record of the Fifth World Petroleum Congress (1959) in an article by R. N. Jolie, Laboratory Screening Test for Lubricating Oil Detergents and Dispersants.
  • a sample of a compound under test is dissolved in a 170 SUS Mid-Continent Solvent Extracted Neutral containing 1% of a thermally unstable zinc dialkyldithiophosphate.
  • the blend is placed in a heated sump and is splashed against a heated panel held at 570 F. for 2 hours. Gain in weight of the panel is determined and compared with oil without the test compound.
  • the fuels contemplated are distillate fuels that boil from 75 to 750 F. which includes gasolines, along with jet and diesel fuels and furnace oils.
  • the present compounds are particularly useful in fuels that boil up to about 600 F., that is, the normal gasolines and jet fuels and similar liquid hydrocarbon fuels.
  • Lubricating compositions of this invention may be based on mineral oils or on synthetic lubricants.
  • the mineral oils may vary over a wide range of viscosity, such as 1 to cs. at 210 F. These oils may be of naphthenic or paraffinic nature or may be of various mixtures. They may be distillates or mixtures of neutral oils and bright stocks.
  • the lubricants may be bodied or gelled and used as greases, if desired.
  • the oils may vary from spindle oils or hydraulic oils to oils for reciprocating aircraft engines. They include oils for sparking combustion and compression ignition engines, varying from grades identified as S.A.E. 5 to S.A.E. 50. Other types of lubricants are also included, such as hydraulic and automatic transmission fluids.
  • the synthetic lubricants include esters, such as dioctyl, dinonyl or diisodecyl adipates, azelates or sebacates, polyethers and silicones. When use as hydraulic fluids is contemplated, phosphate esters are included as a base.
  • a base there may also be used as a base, a transmission fluid, hydraulic fluid, gear oil or grease.
  • compositions of this invention there may be used one or more other additives, such as anti-oxidants, antifoam agents, antirust agents, antiwear agents, heavy duty detergents, pour-point depressants, viscosity index improvers, or other type of additive.
  • additives such as anti-oxidants, antifoam agents, antirust agents, antiwear agents, heavy duty detergents, pour-point depressants, viscosity index improvers, or other type of additive.
  • dithiophosphates such as zinc, barium or nickel dialkyldithiophosphate
  • sulfurized oils such as sulfurized sperm oil and sulfurized terpenes
  • phenols sulfides alkylaryl sulfonates
  • petroleum sulfonates whether normal or with alkaline reserve, such as calcium, barium or magnesium petroleum sulfonates
  • a turbo prop lubricant may be prepared by blending the compounds of this invention with di-2-ethylhexyl sebacate and a mixture of polyesters formed by condensing 2-ethyl-l,3-hexane-diol and sebacic acid into the polyesters with 2-ethylhexanol, there being an average of about 3 glycol units per molecule.
  • This composition may also contain antioxidant, stabilizer or other useful addit1ves.
  • EXAMPLE 4 A mixture of 139 parts of polybutenylsuccinic anhydride with an anhydride content of 0.72 millimole/ g. (prepared from maleic anhydride and polybutene of molecular weight 950), 36.8 parts of benzylsulfinyl ethanol and 400 parts of xylene was heated at refiux (about 150 C.) until the theoretical amount of water of reaction was collected in an attached separator. The final product was obtained by vacuum stripping and filtration. Its acidity was 0.02 millimolelg, indicating essentially complete conversion to the diester.
  • EXAMPLE 5 A mixture of 362 parts of polybutenylsuccinic anhydride with an anhydride content of 0.276 millimole/ gm. (prepared from maleic anhydride and polybutene of molecular weight 2200), 70.2 parts of n-dodecylsulfinylpolyethoxyethanol (containing an average of ten ethoxy units) and 150 parts of toluene was stirred and heated at -100 C. for twelve hours. At the end of this time, complete reaction to the half-acid ester had been eiiected as indicated by the complete disappearance of the anhydride band in the infrared spectrum. The final product was obtained by vacuum stripping of the volatile components at C. and filtering.
  • EXAMPLE 6 A half-acid ester was made from 391 parts of polybutenylsuccinic anhydride, with an anhydride content of 0.49 millimole/ gm. (prepared from maleic anhydride and polybutene of MW 1300), and 137.5 parts of an ethyl polysulfinylether alcohol of Formula B (where R is ethyl, R R and R are ethylene and n is 5), by heating and stirring the components at -145 for twelve hours. At the end of this time the homogeneous solution was vacuum stripped and filtered. The product had an acidity of 0.46 millimole/gm. and a sulfur content of 6.73%
  • a composition comprising a major proportion of a lubricating oil and a minor proportion, sufficient to impart dispersant properties, of the reaction product of (1) a compound selected from the group consisting of an alkenylsuccinic anhydride and an alkenylsuccinic acid and (2) at least one sulfinyl-containing hydroxy compound selected from those of the following formulas:
  • R is selected from the group consisting of (a) an alkyl hydrocarbon radical containing from 1 to 24 carbon atoms, (b) an aryl hydrocarbon radical (c) an aralkyl hydrocarbon radical wherein the alkyl portion of the radical contains from 1 to 4 carbon atoms and (d) an alkaryl hydrocarbon radical wherein the alkyl portion contains from 1 to 24 carbon atoms.
  • R is an alkylene radical having 2 to 5 carbon atoms and having at least 2 carbon atoms extending in a chain between the adjoined S and O atoms, and
  • R and R are alkylene radicals having 2 to 5 carbon atoms and having at least 2 carbon atoms extending in a chain between the adjoined S and O atoms, a phenylene radical or lower alkyl substituted phenylene radical with the proviso that n is 1 when R and R are phenylene or lower alkyl substituted phenylene.
  • composition according to claim 1 wherein said compound (1) is an alkenylsuccinic anhydride and said compound (2) is selected from Formula C wherein R and R are ethylene and n is an integer from 1 to 10.
  • a composition comprising a major proportion of a liquid fuel and a minor proportion, sufficient to impart dispersant properties, of the reaction product of (1) a compound selected from the group consisting of an alkenylsuccinic anhydride and an alkenylsuccinic acid (2) at least one sulfinyl-containing hydroxy compound selected from those of the following formulas:
  • R is selected from the group consisting of (a) an alkyl hydrocarbon radical containing from 1 to 24 carbon atoms, (b) an aryl hydrocarbon radical (c) an aralkyl hydrocarbon radical wherein the alkyl portion of the radical contains from 1 to 4 carbon atoms and (d) an alkaryl hydrocarbon radical wherein the alkyl portion contains from 1 to 24 carbon atoms.
  • R is an alkylene radical having 2 to 5 carbon atoms and having at least 2 carbon atoms extending in a chain between the adjoined S and O atoms, and
  • R and R are alkylene radicals having 2 to 5 carbon atoms and having at least 2 carbon atoms extending in a chain between the adjoined S and O atoms, a phenylene radical or lower alkyl substituted phenylene radical with the priviso that n is 1 wheren R and R are phenylene or lower alkyl substituted phenylene. 5.
  • said compound (1) is an alkenylsuccinic anhydride and said compound (2) is selected from Formula A.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Lubricants (AREA)

Abstract

THE NOVEL SULFINYL-CONTAINING ALKENYLSUCCINATES OF THIS INVENTION ARE USEFUL AS DISPERANTS, CORROSION INHIBITORS AND ANTIWEAR AGENTS PARTICULARLY IN LUBRICATING OIL AND FUEL COMPOSITIONS. THE NOVEL SULFINYL COMPOUNDS ARE PREPARED BY REACTING (1) AN ALKENYLSUCCINIC ANHYDRIDE, AN ALKENYLSUCCINIC ACID OR AN ALKENYLSUCCINAMIC ACID AND (2) AT LEAST ONE SULFINYL-CONTAINING HYDROXY COMPOUND HAVING THE FORMULAS:

R1-SO-(R2-O)Y-H, R1-SO-R2-(O-R3-SO-R4)N-OH OR

HO-(R3-SO-R4-O)N-H

WHEREIN Y IS AN INTEGER FROM 1 TO ABOUT 50 OR MORE AND N IS AN INTEGER FROM 1 TO 40, R1 IS SELECTED FROM THE GROUP CONSISTING OF (A) AN ALKYL RADICAL CONTAINING FROM 1 TO 24 CARBON ATOMS, (B) AN ARYL RADICAL (C) AN ARALKYL RADICAL WHEREIN THE ALKYL PORTION OF THE RADICAL CONTAINS FROM 1 TO 4 CARBON ATOMS AND (D) AN ALKARYL RADICAL WHEREIN THE ALKYL PORTION CONTAINS FROM 1 TO 24 CARBON ATOMS, R2 IS AN ALKYLENE RADICAL HAVING 2 TO 5 CARBON ATOMS, AND R3 AND R4 ARE ALKYLENE RADICALS HAVING 2 TO 5 CARBON ATOMS, A PHENYLENE RADICAL OR A (C1-C4) ALKYL SUBSTITUTED PHENYLENE RADICAL WITH THE PROVISO THAT N IS 1 WHEN R3 AND R4 ARE PHENYLENE OR (C1-C4) ALKYL SUBSTITUTED PHENYLENE.

Description

United States Patent O 3,556,997 COMPOSITIONS WITH SULFINYL-CONTAINING ALKENYLSUCCINATES Norman A. Leister, Huntingdon Valley, Pa., assignor to Rohm and Haas Company, Philadelphia, Pa., a corporation of Delaware N Drawing. Original application June 14, 1967, Ser. No. 645,869. Divided and this application Aug. 26, 1969, Ser. No. 853,217
Int. Cl. C01m 1/38 US. Cl. 252-48.6 Claims ABSTRACT OF THE DISCLOSURE The novel sulfinyl-containing alkenylsuccinates of this invention are useful as dispersants, corrosion inhibitors and antiwear agents particularly in lubricating oil and fuel compositions. The novel sulfinyl compounds are prepared by reacting (1) an alkenylsuccinic anhydride, an alkenylsuccinic acid or an alkenylsuccinamic acid and (2) at least one sulfinyl-containing hydroxy compound having the formulas:
y is an integer from 1 to about 50 or more and n is an integer from 1 to 40,
R is selected from the group consisting of (a) an alkyl radical containing from 1 to 24 carbon atoms, (b) an aryl radical (c) an aralkyl radical wherein the alkyl portion of the radical contains from 1 to 4 carbon atoms and (d) an alkaryl radical wherein the alkyl portion contains from 1 to 24 carbon atoms,
R is an alkylene radical having 2 to 5 carbon atoms, and
R and R are alkylene radicals having 2 to 5 carbon atoms, a phenylene radical or a (Cl-C4, alkyl substituted phenylene radical with the proviso that n is 1 when R and R, are phenylene or (C -C alkyl substituted phenylene.
This application is a divisional application of my earlier filed and copending application Ser. No. 645,869, filed June 14, 1967, and entitled, Sulfinyl-Containing Alkenylsuccinates.
BACKGROUND OF THE INVENTION Internal combustion engines used for vehicles engaged in short run travel (i.e., the so-called stop-and-go driving) do not reach their most efficient operating tempera ture. Therefore large amounts of undesirable products produced by incomplete combustion of the fuel and oilinsoluble oxidation products from lubricants and other sources accumulate within the internal combustion engine. If these undesirable products deposit on the engine parts, the result is a further reduction of the engines efliciency. To prevent the accumulation of foreign matter and the deposition of sludge, a dispersant is employed as an additive to the lubricating oil so that the oil-insoluble foreign matter and sludge will remain suspended in the oil and not deposit on any of the vital engine parts.
In addition to the problem of engine deposits, the combustion products of the fuel may cause excessive wear, especially when the engine is operating under relatively ice cold conditions which results in an accumulation of moisture and acid products on the engine surfaces. This accumulation promotes wear on various engine parts.
SUMMARY OF THE INVENTION It is an object of this invention to prepare novel com pounds that may be incorporated into lubricating oils or liquid hydrocarbon fuels for the purpose of dispersing sludge, inhibiting corrosion and acting as antiwear agents.
The novel compounds of this invention are prepared by reacting an alkenylsuccinic anhydride, alkenylsuccinic acid or alkenylsuccinamic acid and at least one sulfinylcontaining hydroxy compound. The compounds of this invention are useful as dispersants in lubricating oil and fuel systems. They may be used in the range of about 0.005 to 15% by weight of the oil or fuel composition. The compounds of this invention, as evaluated according to several standard tests, exhibit outstanding activity as dispersants.
DETAILED DESCRIPTION OF THE INVENTION The novel sulfinyl-containing alkenyl succinates are prepared by reacting (1) an alkenylsuccinic anhydride, an alkenylsuccinic acid or an alkenylsuccinamic acid and (2) at least one sulfinyl-containing hydroxy compound of the following formulas:
wherein y is an integer from 1 to about 50 or more and n is an integer from 1 to 40 or more and preferably from 1 to 10,
R is selected from the group consisting of (a) an alkyl hydrocarbon radical containing. from 1 to 24 carbon atoms, (b) an aryl hydrocarbon radical (c) an aralkyl hydrocarbon radical wherein the alkyl portion of the radical contains from 1 to 4 carbon atoms and (d) an alkaryl hydrocarbon radical wherein the alkyl portion contains from 1 to 24 carbon atoms,
R is an alkylene radical having 2 to 5 carbon atoms and having at least 2 carbon atoms extending in a chain between the adjoined S and O atoms,
R and R are alkylene radicals having 2 to 5 carbon atoms and having at least 2 carbon atoms extending in a chain between the adjoined S and O atoms, a phenylene radical or lower alkyl substituted phenylene radical with the proviso that n is 1 when R, and R are phenylene or lower alkyl substituted phenylene.
The alkenylsuccinic compound may also be reacted with a mixture of various proportions of the sulfinylcontaining hydroxy compounds described in Formulas A, B and C. Sulfinyl-containing hydroxy compounds with in the scope of Formulas A and B, when employed concurrently -with one or more Formula C alcohols, will act as chain terminators in the polyester reaction.
Representative R groups are selected from straight chain and branched aliphatic hydrocarbon radicals such as methyl, ethyl, propyl, t-butyl, amyl, isohexyl, octyl, isooctyl, tertiary octyl, nonyl, decyl, dodecyl, t-dodecyl, t-tetradecyl, hexadecyl, t-hexadecyl, eicosyl, tetracosyl, phenyl, napthyl, tolyl, t-butylphenyl, t-octylphenyl, tdodecylphenyl, octadecylphenyl, tetrocosylphenyl, benzyl, and phenylethyl.
Typical R alkylene groups are ethylene, propylene and butylene.
Representative R and R groups are ethylene, propylene, butylene, phenyl, 3,5 dimethylphenyl and 3,5 ditertiarybutylphenyl.
Formula A compounds are well known. The R radical of Formula A may represent a mixture of different alkylene groups and these groups may be provided by employing as reactants, in the preparation of the Formula A compound, mixtures of alkylene oxides such as ethylene oxide, propylene oxide and 1,2 butylene oxide. Formula C type compounds are also described in the literature. The sulfides corresponding to the compounds of Formula C are disclosed in US. Pat. 2,582,605 and these sulfides may be oxidized to sulfoxides by employing such conventional oxidation agents as hydrogen peroxide and peracids. Representative peracids include peracetic acid, persulfuric acid and perbenzoic acid. Conventional techniques are employed to oxidize the sulfide compound to the equivalent sulfinyl compound. Formula B compounds are prepared by the co-condensation of a Formula A and Formula C compound. The condensation reaction is accelerated by employing a condensation catalyst such as a strong mineral acid, i.e., sulfuric acid.
Typical examples of sulfinyl-containing hydroxy compounds Within the scope of Formula A are listed below and in certain instances the particular formulas are illustrated.
H 2-(methylSulfinyDethanol CH S CHzCHzOH II 2- (ethylsulfinyl) ethanol H 0 H S CHzCHgO H i 2- (isobutylsulllnyl) ethanol CH; CH 0 H2 S CH CH2 0 H II 2- (t-butylsulfinyl) ethanol (0 H 3 C S C H2 0 H2 0 H 2- (t-tetradeeylsulfinyl) ethanol ll 2- (ethylsulfinylethoxy) ethanol CHaCHz S CHzOHzO OH C 1120 H 2- (phenylsulfinyl) ethanol l 2 (benzylsulfinyl) ethanol O-C Hz S CHZCHZOH 2-(n-octylsulfinylisopropoxy) isopropanol H CH 2'[t-hexadecy1sulfiny1(polyethoxy)dethauol 2-[n-dodecylsulfinyl (polyethoxy) Methanol 1] 01211255 (OH CIIzOHoH 2-[t-octadecylsulfin l(polyethoxy) ]ethano1 0 C1s a7 g (CH2C H20) 4011 ?r[tetracosylsulfinyl (polyethoxy) w (p olyprop oxy) nhsopropanol E C24H40 S (CH2CHzO)m(CHzCHO)20H 3- (butylsulfinyl propanol 3- (amylsulfinyl) propanol 3 -(dodecylsulfiny1)propanol 2- [t-tetradecylsulfinyl polyethoxy) ethanol 2- [t-hexadecylsulfinyl (polyethoxy ethanol 4- ethylsulfinyl) butanol 4- (n-dodecylsulfinyl) butanol Representative examples of Formula B type sulfinylcontaining hydroxy compounds are:
2- (ethylsulfinylethoxyethylsulfinyl) ethanol Other Formula B alcohols are:
2- (n-dodecylsulfinylethoxyethylsulfinyl) ethanol 2- [phenylsulfinyltri(ethoxyethylsulfinyl) ]ethanol and 3- (ethylsulfinylethoxypropylsulfinyl) propanol Other aromatic sulfoxides that may be used include: bis(3-t-butyl,4-hydroxyphenyl)sulfoxide and bis(3,5-dimethyl,4-hydroxyphenyl)sulfoxide The alkenylsuccinic anhydride reactant is of the formula RCH C CHz-C wherein R represents an alkenyl radical containing about 12 to 200 carbon atoms and preferably from 30 to 200 carbon atoms. Therefore R will have a molecular weight of about to about 2800. This compound is obtained by reacting maleic acid with an appropriate polyolefin.
wherein A is alkyl of 1 to 24 carbon atoms, phenyl, naphthyl, benzyl or alkyl-substituted phenyl, naphthyl or benzyl in which the total alkyl substituents contain up to 24 carbon atoms, and
B is hydrogen or alkyl of l to 24 carbon atoms.
Representative A groups are methyl, ethyl, butyl, tbutyl, octyl, t-octyl, dodecyl, t-octadecyl, tetracosyl, phenyl, naphthyl, benzyl, butylphenyl octylphenyl, dodecylphenyl, dioctylphenyl, butylnaphthyl, butylbenzl, and octylbenzyl. B may be hydrogen, methyl, butyl, octyl, dodecyl, octadecyl, eicosyl, and tetracosyl. Preferably, either A or B represents a t-alkyl radical with the remaining substituent being hydrogen. Each of A and B may represent a single alkyl group or a mixture of alkyl groups. For example, either A or B may represent a mixture of t-alkyl groups containing 12 to 15 carbon atoms averaging 13 carbon atoms or a mixture of 18 to 24 carbon atoms. Another preferred embodiment is when either A or B is a t-butyl radical and the remaining substituent is hydrogen. The reaction between the Formula D and Formula E compounds to produce alkenylsuccinamic acids is conducted at a temperature of about 0 C. to 200 C., and preferably from 60 C. to 120 C.
The R group of Formula D is derived by polymerizing an olefin containing 2 to 18 carbon atoms, preferably 2 to 8 carbon atoms, by addition polymerization from substantially pure olefins. These olefins may be either gaseous or liquid under normal conditions and frequently are obtained from the cracking of petroleum and other hydrocarbons. Fractions containing olefinically unsaturated open-chain hydrocarbons are readily available over a wide range of molecular weights and derived from olefins of 2 to 18 carbon atoms. The preferred olefins are those from 2 to 8 carbon atoms with particular emphasis on the olefin embodiments containing 4 carbon atoms. It is, of course, preferred to employ relatively pure olefins from which sulfur, cyclic compounds and other impurities have been removed.
Mixtures of various olefins, from ethylene to octadecene, may be used or individual embodiments, as desired. Mixtures of specific olefins, from ethylene to pentene, may be advantageously employed. Particularly advantageous for the present purposes are mixtures of the various butenes. Butenes most commonly used comprise both straight and branched chain members. It is also possible, and frequently desirable, to employ a particular isomer, such as isobutylene, but for the purposes of this invention, separation or isolation of particular isomers is not essential. Thus, the mixtures readily available to the chemical industry are especially useful for the purposes of the present invention. The olefinic polymers employed as starting materials vary from rather fluid liquids to rather viscous liquids at normal temperatures.
Typical olefinic polymers are those prepared from ethylene, propylene, isobutene, l-butene, 2-butene, lpentene, 2-pentene, l-hexene, l-octene, 2-octene, l-decene, l-dodecene, 2-dodecene and l-octadecene.
While the group, R, has been structurally presented as attached to a specific carbon atom with respect to formula (D), it will be understood by those skilled in the art that the R group may be positioned on the other carbon atom that is alpha to the other carbonyl group. The R group enters the molecule concerned by a reaction involving maleic anhydride and, therefore, could be attached to either of the carbon atoms alpha to the carboxyl group. This invention encompasses fully this aspect.
The polyolefin is first reacted with maleic anhydride at temperatures of about 200 to 250 C. for a period of about 6 to 16 hours, as desired. The maleic anhydride is used in excess, preferably about 1.5 to 3 times the stoichiometric amount. The use of excess maleic anhydride tends to maximize yields. The polyolefin reacts with maleic anhydride to form a succinic anhydride derivative which can be separated from the excess maleic anhydride by vacuum distillation or similar treatment. The product can be diluted with xylene or similar solvent and filtered.
The alkenylsuccinates of this invention are prepared by reacting an alkenylsuccinic anhydride, acid or amic acid with either a sulfinyl-containing monohydric alcohol (defined in Formulas A or B), a sulfinyl-containing dihydric compound (defined in Formula C) or mixtures of both. When monohydric sulfinyl-containing alcohols are employed exclusively, the resultant monoester and diester products may be represented by the following formulas:
o 0 H II wherein R, R R and y represent the groups defined above.
The acid group in Formula F may be esterified by reaction with any alkanol or phenol according to standard techniques and as described in U.S. application Ser. No. 412,237, filed Nov. 18, 1964.
Formula (F) and (G) esters may be prepared by reacting the alkenylsuccinic anhydride, acid or alkenylsuccinamic acid with the desired Formula (A) or (B) monohydroxy compound at temperatures of from 25 to 220 C., and preferably from 60 to 150 C. until esterification proceeds to the desired extent. Employing an inert organic solvent in this reaction is discretionary.
When sulfinyl-containing dihydric compounds are employed, the resultant product is a polyester which may be represented generally by the following formula:
wherein R, R R and 11 represent the groups defined above and 2 represents the repeating unit of the polyester and may be an integer from 1 to 50 or more. The re actants of this product may be heated at a temperature range of from to 220 C. and preferably from to C. An inert organic solvent is necessary to azeotrope Water from the reaction. Suitable solvents are selected from aromatic hydrocarbons, aliphatic hydrocarbons and halogenated hydrocarbons. The esterification reactions may be conducted in a mineral oil solution or dispersion or in combination with the inert organic solvent. Preferred solvents include benzene, toluene and xylene. Cessation of the evolution of water indicated substantial completion of the reaction.
Another type of product within the scope of this invention is obtained by reacting one equivalent by weight of a dihydric compound as described in Formula C and two equivalents by weight of an alkenylsuccinic anhydride 7 or acid. This reaction product may be represented by the following formula:
Similarly, one equivalent by weight of a dihydric compound of Formula C may be reacted with two equivalents by weight of an alkenylsuccinamic acid.
In the esterification reactions represented by the above formulas the mole ratio of the alkenylsuccinic anhydride, acid or amic acid to the sulfinyl hydroxy compound may vary from about 1:0.5 to 1:2 or more. Therefore about one-half equivalent to about two moles of sulfinyl hydroxy compound per mole of acid compound is employed.
The compounds of this invention are useful as dispersants in lubricating oil and fuel systems. They may be used in the range of about 0.005 to 15% by weight of the oil or fuel composition and may be incorporated therein according to standard techniques. In fuels, the range is 0.005 to preferably 0.01 to 2%, by weight of the fuel composition. In lubricants, the range is 0.1 to preferably 0.1 to 10%, by weight of the lubricant composition. The compounds of the present invention, as evaluated according to several known tests, exhibit out-- standing activity as dispersants.
The following describes some of the tests employed in evaluating the compounds of the present invention:
API SERVICE MS SEQUENCE V-A TEST This test evaluates the sludge dispersant characteristics of a lubricant under low and medium temperature operating conditions. A single cylinder oil test engine is operated under conditions described in ASTM Special Technical Publication No. 315, published by the American Society for Testing and Materials, 1916 Race St., Philadelphia, Pa. 19103.
The engine may be rated at any time during the course of the test. The 7 parts rated for sludge (CRC Merit, l0=clean) are the rocker arm assembly, rocker arm cover plate, valve deck, timing gear cover, push rod cover plate, push rod chamber and oil pan.
PANEL COKER TEST This test is described in the record of the Fifth World Petroleum Congress (1959) in an article by R. N. Jolie, Laboratory Screening Test for Lubricating Oil Detergents and Dispersants. A sample of a compound under test is dissolved in a 170 SUS Mid-Continent Solvent Extracted Neutral containing 1% of a thermally unstable zinc dialkyldithiophosphate. The blend is placed in a heated sump and is splashed against a heated panel held at 570 F. for 2 hours. Gain in weight of the panel is determined and compared with oil without the test compound.
SUNDSTRAND PUMP TEST In this test for distillate fuel oils, 1 liter of fuel oil containing 4 grams of synthetic sludge is treated with the additive. The oil is circulated for an hour through a Sundstrand oil burner pump containing a 100-mesh strainer. The sludge deposit is collected and weighed (Nelson, Osterhaut and Schwindeman, Ind. Eng. Chem., 48,1892 (1956)).
As will be clearly understood in the art, the fuels contemplated are distillate fuels that boil from 75 to 750 F. which includes gasolines, along with jet and diesel fuels and furnace oils. The present compounds are particularly useful in fuels that boil up to about 600 F., that is, the normal gasolines and jet fuels and similar liquid hydrocarbon fuels.
Lubricating compositions of this invention may be based on mineral oils or on synthetic lubricants. The mineral oils may vary over a wide range of viscosity, such as 1 to cs. at 210 F. These oils may be of naphthenic or paraffinic nature or may be of various mixtures. They may be distillates or mixtures of neutral oils and bright stocks. The lubricants may be bodied or gelled and used as greases, if desired. The oils may vary from spindle oils or hydraulic oils to oils for reciprocating aircraft engines. They include oils for sparking combustion and compression ignition engines, varying from grades identified as S.A.E. 5 to S.A.E. 50. Other types of lubricants are also included, such as hydraulic and automatic transmission fluids.
The synthetic lubricants include esters, such as dioctyl, dinonyl or diisodecyl adipates, azelates or sebacates, polyethers and silicones. When use as hydraulic fluids is contemplated, phosphate esters are included as a base.
In the present composition, there may also be used as a base, a transmission fluid, hydraulic fluid, gear oil or grease.
In the compositions of this invention, there may be used one or more other additives, such as anti-oxidants, antifoam agents, antirust agents, antiwear agents, heavy duty detergents, pour-point depressants, viscosity index improvers, or other type of additive. For example, there may be employed one or more of the dithiophosphates, such as zinc, barium or nickel dialkyldithiophosphate, sulfurized oils, such as sulfurized sperm oil and sulfurized terpenes, phenols, sulfides alkylaryl sulfonates, petroleum sulfonates, whether normal or with alkaline reserve, such as calcium, barium or magnesium petroleum sulfonates, polymers and copolymers from alkyl acrylates, methacrylate, itaconates or fumarates or vinyl carboxylates and mixtures thereof, copolymers of acrylic esters and polar monoethylenically unsaturated compounds, such as N-vinyl-2-pyrrolidinone, vinyl-pyridines, aminoalkyl acrylates or methacrylates or polyethylene-glycol acrylic esters, polybutenes, alkylphenoalkylene oxide condensates, alkenylsuccinic anhydrides, various silicones and alkyl or aryl phosphates, such as tricresyl phosphates.
There may also be used 4,4'-methylenebis-2,6-di-tertbutylphenol, trialkylphenols, tris(dimethylaminomethyl) phenol, phenothiazine, naphthylamines, N-sec-'butyl-N, N-dimethyl-p-phenylene-diamine, alkaline earth alkylphenates, alkaline earth salicylates, calcium phenylstearate, alkylamines, especially C C alkylamines, cyclic amines, alkyl and aryl imidazolines and alkenylsuccinic anhydrides reacted with amines and then with boron compounds, such as boron oxide, boron halides and boron esters.
A turbo prop lubricant may be prepared by blending the compounds of this invention with di-2-ethylhexyl sebacate and a mixture of polyesters formed by condensing 2-ethyl-l,3-hexane-diol and sebacic acid into the polyesters with 2-ethylhexanol, there being an average of about 3 glycol units per molecule. This composition may also contain antioxidant, stabilizer or other useful addit1ves.
The compounds, compositions and method of the present invention may be more fully understood from the following examples which are offered by way of illustration and not by way of limitation. Parts by weight are used throughout.
EXAMPLE 1 A mixture of 409 parts of polybutenylsuccinic anhydride having an anhydride content of 0.502 millimole/ gm. (prepared from maleic anhydride and polybutene of molecular weight 1300), 62.6 parts of ethyl sulfinyl ethanol and 400 parts of xylene was heated at C. in a reaction vessel equipped with a stirrer, reflux condenser and water separator. Heating at the reflux temperature was continued for eight hours at which time the theoretical quantity of water had been collected. The final product was obtained after removal of the volatile components and excess reagents by stripping at 150 C./ 0.5 mm. Hg and filtering. Percent S=2.52 (theory=2.86).
In the Panel Coker Test, a blend containing 1.0% of the above product gives a deposit weight of 111 mg. The same oil without the additive gives a deposit weight of 322 mg.
In the Sundstrand Pump Test at .01 gram in 100 ml. of oil, the weight of sludge is 31 mg., while the oil without any additive gives 225 mg.
1.6 parts of the above product is blended with 1.0 part of a conmiercial zinc dialkyl dithiophosphate, 6.0 parts of a commercial polymethacrylate VI improver into 91.4 parts of a 170 SUS Mid-Continent Solvent Extracted Neutral Oil. The viscosity of this blend is 11.2 cSt. at 210 F. and 62.5 cSt. at 100 F. with a viscosity index of 146. The ASTM pour point is 30 F. This blend is evaluated in the Sequence V-A test giving a sludge rating at the end of 75 hours of engine operation of 66.7 (70.0=clean). The value for the reference oil alone is 39.7.
EXAMPLE 2 A mixture of 447 parts of the polybutenylsuccinic anhydride described in Example 1 and 59.2 parts of ethyl sulfinyl polyethoxyethanol (containing an average of 3.2 ethoxy units) was heated with stirring at 70-90 for six hours. At the end of this time the infrared spectrum of the reaction solution showed no anhydride band indicating the reaction to the desired half-acid ester Was complete. The final product after filtration contained 1.35% S (theory=1.35).
In the Panel Coker Test, a blend containing 1.0% of the above product gives a deposit weight of 56 mg. The same oil without the additive gives a deposit weight of 322 mg.
In the Sundstrand Pump Test at .01 gram in 100 ml. of oil, the weight of sludge is 110 mg., while the oil without any additive gives 230 mg.
EXAMPLE 3 The half-acid ester from the polybutenylsuccinic anhydride described in Example 1 and ethyl sulfinyl polyethoxyethanol (containing an average of 10.3 ethoxy units) was made by mixing equimolar quantities of the reactants according to the procedure in Example 2. The final product contained 1.02% S (theory=1.06).
In the Panel Coker Test, a blend containing 1.0% of the above product gives a deposit weight of 44 mg. The same oil without the additive gives a deposit weight of 322 mg.
In the Sundstrand Pump Test at .01 gram in 100 ml. of oil, the weight of sludge is 16. mg., while the oil without any additive gives 230 mg.
EXAMPLE 4 A mixture of 139 parts of polybutenylsuccinic anhydride with an anhydride content of 0.72 millimole/ g. (prepared from maleic anhydride and polybutene of molecular weight 950), 36.8 parts of benzylsulfinyl ethanol and 400 parts of xylene was heated at refiux (about 150 C.) until the theoretical amount of water of reaction was collected in an attached separator. The final product was obtained by vacuum stripping and filtration. Its acidity was 0.02 millimolelg, indicating essentially complete conversion to the diester.
In the Panel Coker Test, a blend containing 1.0% of the above product gives a deposit weight of 32 mg. The same oil without the additive gives a deposit weight of 322 mg.
In the Sundstrand Pump Test at .01 gram in 100 ml. of oil, the weight of sludge is 26 mg., while the oil without any additive gives 230 mg.
EXAMPLE 5 A mixture of 362 parts of polybutenylsuccinic anhydride with an anhydride content of 0.276 millimole/ gm. (prepared from maleic anhydride and polybutene of molecular weight 2200), 70.2 parts of n-dodecylsulfinylpolyethoxyethanol (containing an average of ten ethoxy units) and 150 parts of toluene was stirred and heated at -100 C. for twelve hours. At the end of this time, complete reaction to the half-acid ester had been eiiected as indicated by the complete disappearance of the anhydride band in the infrared spectrum. The final product was obtained by vacuum stripping of the volatile components at C. and filtering.
In the Panel Coker Test, a blend containing 1.0% of the above product gives a deposit weight of 80 mg. The same oil without the additive gives a deposit weight of 322 mg.
In the Sundstrand Pump Test at 0.01 gram in 100 ml. of oil, the weight of sludge is 16 mg., while the oil without any additive gives 230 mg.
3.0 parts of the above product is blended with 1.0 part of a commercial zinc dialkyl dithiophosphate, 6.4 parts of a commercial polymethacrylate VI improver and 2.0 parts of a basic calcium sulfonate (TBN=300) into 87.6 parts of a 150 SUS Mid-Continent Solvent Extracted Neutral Oil. The viscosity of this blend is 11.26 cst. at 210 F. and 79.3 cst. at 100 F. with a viscosity index of 143. The ASTM pour point is 40 F. This blend is evaluated in the Sequence V-A test giving a sludge rating at the end of 75 hours of engine operation of 68.2 (70.0=clean). The value for the reference oil alone is 39.7.
EXAMPLE 6 A half-acid ester was made from 391 parts of polybutenylsuccinic anhydride, with an anhydride content of 0.49 millimole/ gm. (prepared from maleic anhydride and polybutene of MW 1300), and 137.5 parts of an ethyl polysulfinylether alcohol of Formula B (where R is ethyl, R R and R are ethylene and n is 5), by heating and stirring the components at -145 for twelve hours. At the end of this time the homogeneous solution was vacuum stripped and filtered. The product had an acidity of 0.46 millimole/gm. and a sulfur content of 6.73%
(theory=7.35).
In the Panel Coker Test, a blend containing 1.0% of the above product gives a deposit weight of 63 mg. The same oil without the additive gives a deposit weight of 322 mg.
In the Sundstrand Pump Test at .01 gram in 100 ml. of oil, the weight of sludge is 41 mg., while the oil without any additive gives 240 mg.
EXAMPLE 7 A mixture of 500 parts of a polybutenylsuccinic an hydride with an anhydride content of 0.22 millimole/ gm. (made from maleic anhydride and polybutene of molecular weight 2400) and 80.2 parts of the sulfinyl alcohol of Example 6 was heated and stirred at for twelve hours. The half-acid ester product was vacuum stripped and filtered. Acidity=0.4l millimole/gm., percent 8:3.98 (theory=4.3).
In the Panel Coker Test, a blend containing 1.0% of the above product gives a deposit weight of 39 mg. The same oil without the additive gives a deposit weight of 322 mg.
In the Sundstrand Pump Test at .01 gram in 100 ml. of oil, the weight of sludge is 18 mg., while the oil without any additive gives 240 mg.
EXAMPLE 8 A half-acid ester was prepared from 491 parts of a polybutenylsuccinic anhydride, with an anhydride content of 0.217 millimole/gm. (made from maleic anhydride and polybutene of molecular weight 2200), and 141 parts of a polysulfinylether alcohol of Formula B (where R is ethyl, R R and R are ethylene and n is 10) by heating and stirring the two reactants at C. for ten hours. The product was vacuum stripped and filtered. Acidity=0.l6 millimole/ gm.
1 1 In the Panel Coker Test, a blend containing 1.0% of the above product gives a deposit weight of 82 mg. The same oil without the additive gives a deposit weight of 322 mg.
In the Sundstrand Pump Test at .01 gram in 100 ml. of oil, the weight of sludge is 146 mg, while the oil without any additive gives 240 mg.
EXAMPLE 9 An equimolar mixture of 514 parts of the polybutenylsuccinic anhydride of Example 6 and 34.6 parts of sulfinyl diethanol dissolved in 300 parts of xylene was refluxed at 160 for six hours using a water separator. At the end of this time the theoretical amount of water had been collected indicating conversion to the desired polyester was efiected. The product was isolated after vacuum stripping at 130 and filtering. Percent S=l.6l (theory=1.60).
In the Panel Coker Test, a blend containing 1.0% of the above product gives a deposit weight of 91 mg. The same oil without the additive gives a deposit of 322 mg.
In the Sundstrand Pump Test at .01 gram in 100 ml. of oil, the weight of sludge is 152 mg., while the oil without any additive gives 240 mg.
EXAMPLE A mixture of 225 parts of the polybutenyl succinic anhydride of Example 1 and 23.8 parts of a dihydric polysulfinylether of Formula C (where R and R are ethylene and n is an average of 3.4) was heated and stirred at 130 C. for 16 hours in order to effect complete reaction to the desired acid-ester. At the end of this time the mixture was completely homogeneous and its infrared spectrum showed essentially no anhydride bands. Analysis of the final product indicated percent S=2.43 (theory: 2.33), acidity=0.45 millimole/gm.
In the Panel Coker Test, a blend containing 1.0% of the above product gives a deposit weight of 38 mg. The same oil without the additive gives a deposit weight of 322 mg. i
In the Sundstrand Pump Test at .01 gram in 100 ml. of oil, the weight of sludge is 9 mg., while the oil without any additive gives 205 mg.
1.6 parts of the above product is blended with 1.0 part of a commercial zinc dialkyl dithiophosphate, 5.9 parts of a commercial polymethacrylate VI improver into 91.5 parts of a 170 SUS Mid-Continent Solvent Extracted Neutral Oil. The viscosity of this blend is 11.06 est. at 210 F. and 60.65 cst. at 100 F. with a viscosity index of 147. The ASTM pour point is F. This blend is evaluated in the Sequence V-A test giving a sludge rating at the end of 75 hours of engine operation of 65.3 (70.0=clean). The value for the reference oil alone is 39.7.
EXAMPLE 11 A polyester was prepared by refluxing for six hours at 130-140 a toluene solution of 208 parts of the polybutenylsuccinic anhydride of Example 1 and 62.3 parts of a dihydric polysulfinylether of Formula C (where R and R are ethylene and n is an average of 4.8). The system was equipped with a water separator and at the end of the six hour reaction time the theoretical amount of water of reaction had been collected. The reaction mixture was vacuum stripped and filtered and the final product contained 5.5% S (theory=6.05).
In the Panel Coker Test, a blend containing 1.0% of the above product gives a deposit weight of 16 mg. The same oil without the additive gives a deposit weight of 322 mg.
In the Sundstrand Pump Test at .01 gram in 100 ml. of oil, the weight of sludge is 12 mg, while the oil Without any additive gives 230 mg.
12 EXAMPLE 12 A mixture of 1390 grams of a solution in xylene of polybutenylsuccinic anhydride (prepared from maleic anhydride and polybutene of molecular weight 950), with an anhydride content of 0.720 millimole/ gram, and 130 grams of t-octylamine is stirred and heated at C. for 10 hours. Vacuum stripping of the solvents and unreacted t-octylamine produce the intermediate amic acid (percent N=0.90). Equimolar quantities of the amic acid and ethylsnlfinyl ethanol are reacted according to the procedure in Example 2 and the final product was vacuum stripped and filtered.
In the Panel Coker Test, a blend containing 1.0% of the above product gives a deposit weight of 85 mg. The same oil without the additive gives a deposit weight of 322 mg.
Similar test results were obtained when Examples 1 and 12 were repeated, except chlorinated polypropene of average number molecular weight of about 900 and a chlorine content of 3.9% Was employed in lieu of the polybutene. The polypropenylsuccinic anhydride analyzes 0.91 millimole of anhydride per gram of material.
What is claimed is:
1. A composition comprising a major proportion of a lubricating oil and a minor proportion, sufficient to impart dispersant properties, of the reaction product of (1) a compound selected from the group consisting of an alkenylsuccinic anhydride and an alkenylsuccinic acid and (2) at least one sulfinyl-containing hydroxy compound selected from those of the following formulas:
'and wherein y is an integer from 1 to 50 and n is an integer from 1 R is selected from the group consisting of (a) an alkyl hydrocarbon radical containing from 1 to 24 carbon atoms, (b) an aryl hydrocarbon radical (c) an aralkyl hydrocarbon radical wherein the alkyl portion of the radical contains from 1 to 4 carbon atoms and (d) an alkaryl hydrocarbon radical wherein the alkyl portion contains from 1 to 24 carbon atoms.
R is an alkylene radical having 2 to 5 carbon atoms and having at least 2 carbon atoms extending in a chain between the adjoined S and O atoms, and
R and R are alkylene radicals having 2 to 5 carbon atoms and having at least 2 carbon atoms extending in a chain between the adjoined S and O atoms, a phenylene radical or lower alkyl substituted phenylene radical with the proviso that n is 1 when R and R are phenylene or lower alkyl substituted phenylene.
2. A composition according to claim 1 wherein compound (1) is an alkenylsuccinic anhydride and said compound (2) is selected from Formula A.
3. A composition according to claim 1 wherein said compound (1) is an alkenylsuccinic anhydride and said compound (2) is selected from Formula C wherein R and R are ethylene and n is an integer from 1 to 10.
4. A composition comprising a major proportion of a liquid fuel and a minor proportion, sufficient to impart dispersant properties, of the reaction product of (1) a compound selected from the group consisting of an alkenylsuccinic anhydride and an alkenylsuccinic acid (2) at least one sulfinyl-containing hydroxy compound selected from those of the following formulas:
and wherein y is an integer from 1 to 50 and n is an integer from 1 R is selected from the group consisting of (a) an alkyl hydrocarbon radical containing from 1 to 24 carbon atoms, (b) an aryl hydrocarbon radical (c) an aralkyl hydrocarbon radical wherein the alkyl portion of the radical contains from 1 to 4 carbon atoms and (d) an alkaryl hydrocarbon radical wherein the alkyl portion contains from 1 to 24 carbon atoms.
R is an alkylene radical having 2 to 5 carbon atoms and having at least 2 carbon atoms extending in a chain between the adjoined S and O atoms, and
R and R are alkylene radicals having 2 to 5 carbon atoms and having at least 2 carbon atoms extending in a chain between the adjoined S and O atoms, a phenylene radical or lower alkyl substituted phenylene radical with the priviso that n is 1 wheren R and R are phenylene or lower alkyl substituted phenylene. 5. A composition according to claim 4 wherein said compound (1) is an alkenylsuccinic anhydride and said compound (2) is selected from Formula A.
References Cited UNITED STATES PATENTS 3,045,042 7/1962 Staker 25256X 3,102,863 9/1963 Herbert et a1 25248.6X 3,337,458 8/1967 Bauer et al. 25248.6 3,381,022 4/1968 Le Suer 25256X D. E. WYMAN Primary Examiner W. CANNON Assistant Examiner US. Cl. X.R. 4470; 260-485
US853217A 1967-06-14 1969-08-26 Compositions with sulfinyl-containing alkenylsuccinates Expired - Lifetime US3556997A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US64586967A 1967-06-14 1967-06-14
US85321769A 1969-08-26 1969-08-26

Publications (1)

Publication Number Publication Date
US3556997A true US3556997A (en) 1971-01-19

Family

ID=27094797

Family Applications (2)

Application Number Title Priority Date Filing Date
US645869A Expired - Lifetime US3576846A (en) 1967-06-14 1967-06-14 Sulfinyl-containing alkenylsuccinates
US853217A Expired - Lifetime US3556997A (en) 1967-06-14 1969-08-26 Compositions with sulfinyl-containing alkenylsuccinates

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US645869A Expired - Lifetime US3576846A (en) 1967-06-14 1967-06-14 Sulfinyl-containing alkenylsuccinates

Country Status (4)

Country Link
US (2) US3576846A (en)
DE (1) DE1770594A1 (en)
FR (1) FR1571621A (en)
GB (1) GB1232459A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4344853A (en) * 1980-10-06 1982-08-17 Exxon Research & Engineering Co. Functional fluid containing metal salts of esters of hydrocarbyl succinic acid or anhydride with thio-bis-alkanols as antioxidants
EP0207738A1 (en) * 1985-07-01 1987-01-07 Exxon Research And Engineering Company Solution process for preparing metal salt esters of hydrocarbyl substituted succinic acid or anhydride and alkanols
EP0240327A2 (en) 1986-03-31 1987-10-07 Exxon Chemical Patents Inc. Cyclic phosphate additives and their use in oleaginous compositions
US4702850A (en) * 1980-10-06 1987-10-27 Exxon Research & Engineering Co. Power transmitting fluids containing esters of hydrocarbyl succinic acid or anhydride with thio-bis-alkanols
EP0249783A1 (en) * 1986-05-29 1987-12-23 Phillips Petroleum Company Water soluble lubricating additives

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4122021A (en) * 1977-05-16 1978-10-24 Uniroyal, Inc. Antioxidant stabilized lubricating oils

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4344853A (en) * 1980-10-06 1982-08-17 Exxon Research & Engineering Co. Functional fluid containing metal salts of esters of hydrocarbyl succinic acid or anhydride with thio-bis-alkanols as antioxidants
US4702850A (en) * 1980-10-06 1987-10-27 Exxon Research & Engineering Co. Power transmitting fluids containing esters of hydrocarbyl succinic acid or anhydride with thio-bis-alkanols
EP0207738A1 (en) * 1985-07-01 1987-01-07 Exxon Research And Engineering Company Solution process for preparing metal salt esters of hydrocarbyl substituted succinic acid or anhydride and alkanols
US4760170A (en) * 1985-07-01 1988-07-26 Exxon Research & Engineering Co. Solution process for preparing metal salt esters of hydrocarbyl substituted succinic acid or anhydride and alkanols
EP0240327A2 (en) 1986-03-31 1987-10-07 Exxon Chemical Patents Inc. Cyclic phosphate additives and their use in oleaginous compositions
US4776969A (en) * 1986-03-31 1988-10-11 Exxon Chemical Patents Inc. Cyclic phosphate additives and their use in oleaginous compositions
EP0249783A1 (en) * 1986-05-29 1987-12-23 Phillips Petroleum Company Water soluble lubricating additives

Also Published As

Publication number Publication date
US3576846A (en) 1971-04-27
DE1770594A1 (en) 1971-11-18
FR1571621A (en) 1969-06-20
GB1232459A (en) 1971-05-19

Similar Documents

Publication Publication Date Title
US3448049A (en) Polyolefinic succinates
US3451933A (en) Formamido-containing alkenylsuccinates
US3311558A (en) N-alkylmorpholinone esters of alkenylsuccinic anhydrides
US3399141A (en) Heterocyclic esters of alkenylsuccinic anhydrides
US3876550A (en) Lubricant compositions
US3506574A (en) Lubricating oils and fuels containing graft copolymers
US3684713A (en) Compositions containing oil-soluble azo compounds
US5616816A (en) Tertiary alkyl alkylphenols and organic compositions containing same
US3525693A (en) Alkenyl succinic polyglycol ether
US5415792A (en) Overbased alkylated alkyl salicylates
CA1323723C (en) Polysuccinate esters and lubricating compositions comprising same
US3585194A (en) Formamide-containing hydroxy compounds
US3808131A (en) Coordinated metal complexes in lubricating oils and hydrocarbon fuels
US3556997A (en) Compositions with sulfinyl-containing alkenylsuccinates
US3359203A (en) Ashless dithiophosphoric acid derivatives
US3821302A (en) Olefinic ketone imines and oil compositions containing them
US2619508A (en) Polyether-alcohols containing thioether side chains
US3526661A (en) Oil-soluble multifunctional detergent-dispersant comprising an amide of a polyamine and an alkaryl keto acid
US2420893A (en) Compounded lubricating oil
US3459662A (en) Phospho-sulfurized phosphite esters and hydrocarbon compositions containing the same
EP0407541B1 (en) Sulfur-containing polymeric polyesters and additive concentrates and lubricating oils containing same
US3306856A (en) Aryl keto acid pour-point depressants and dispersants for oleaginous compositions
EP0206748A2 (en) Lubricating oil additive and lubricating oil composition containing the same
US3264216A (en) Multifunctional viscosity index improvers for lubricating oils
US3240704A (en) Lubricating compositions having oilsoluble phosphorus-containing condensation products