US3551320A - Imaging apparatus - Google Patents

Imaging apparatus Download PDF

Info

Publication number
US3551320A
US3551320A US798828*A US3551320DA US3551320A US 3551320 A US3551320 A US 3551320A US 3551320D A US3551320D A US 3551320DA US 3551320 A US3551320 A US 3551320A
Authority
US
United States
Prior art keywords
electrode
suspension
imaging
roller
over
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US798828*A
Inventor
Arthur L Krieger
Ira S Stein
Vesvolod Tulagin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Application granted granted Critical
Publication of US3551320A publication Critical patent/US3551320A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/30Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/44Radicals substituted by doubly-bound oxygen, sulfur, or nitrogen atoms, or by two such atoms singly-bound to the same carbon atom
    • C07D213/46Oxygen atoms
    • C07D213/50Ketonic radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/08Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms
    • C07D295/084Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • C07D311/26Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3
    • C07D311/34Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 3 only
    • C07D311/382,3-Dihydro derivatives, e.g. isoflavanones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/58Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/20Radicals substituted by singly bound hetero atoms other than halogen by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D335/00Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom
    • C07D335/04Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D335/06Benzothiopyrans; Hydrogenated benzothiopyrans
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G17/00Electrographic processes using patterns other than charge patterns, e.g. an electric conductivity pattern; Processes involving a migration, e.g. photoelectrophoresis, photoelectrosolography; Processes involving a selective transfer, e.g. electrophoto-adhesive processes; Apparatus essentially involving a single such process
    • G03G17/04Electrographic processes using patterns other than charge patterns, e.g. an electric conductivity pattern; Processes involving a migration, e.g. photoelectrophoresis, photoelectrosolography; Processes involving a selective transfer, e.g. electrophoto-adhesive processes; Apparatus essentially involving a single such process using photoelectrophoresis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/12Recording members for multicolour processes

Definitions

  • This invention relates in general to imaging systems and, more specifically, to a photoelectrophoretic imaging system.
  • photoelectrophoretic imaging colored particles are suspended in an insulating carrier liquid. This suspension is then placed between a pair of electrodes, subjected to a potential difference and exposed to an image to be reproduced. Ordinarily in carrying out the process theimaging suspension is placed on a transparent electrically conductive plate in the form of a thin film, and exposure is made through the bottom of this plate while a second cylindrical electrode is rolled over the top of the suspension.
  • the particles are believed to bear an initial charge when suspended in the liquid which causes them to be attracted to the transparent base electrode and to change polarity by exchanging charge with the base electrode upon exposure so that exposed particles migrate across to the roller electrode to form an image on the base electrode by particle subtraction.
  • the system may be used to produce monochromatic images by using a single color of particle in the suspension or a number of differently colored particles in the suspension which all respond to the same wavelengths of light exposure.
  • mixtures of two or more differently colored particles which are each sensitive only to light of a specific different wavelength ornarrow range of wavelengths are used.
  • a'full color image maybe produced by using a mixture of cyan, magenta and yellow particles which-respond to red, green and-blue light, respectively.
  • a still further object of the invention is to provide a photoelectrophoretic imaging system with markedly higher imaging speed.
  • An additional object of this invention is to provide a photoelectrophoretic imaging method and apparatus using low levels of image illumination.
  • Another object of the invention is to provide a photoelectrophoretic imaging system capable of forming high quality images in both black and white or other single colors and in two or more colors including full natural color.
  • the above and still further objects of the invention are achieved, generally speaking, by initially rolling a large area of an electrode into contact with the particle suspension on the optically transparent base electrode in a photoelectrophoretic imaging system and then rolling it off.
  • This type of movement is much like that on the tread of a tank and the electrode shall therefore be referred to as the tracking electrode, moving electrode is used in place of the rolling electrode in the system described supra and may take the form of an elongate web which is supplied from a roll and taken up by a second roll after it has contacted the suspension.
  • the tracking electrode may also take any other suitable form. For example, it may take the form of an elongate endless belt entrained over two or more rollers so that the belt can be tracked over the suspension.
  • the moving electrode may take the form of a very soft roller which is pressed against the transparent base electrode with the suspension thereon with sufficient pressure so as to deform the roller and provide a relatively large fiat area of contact between the roller and the base electrode.
  • the large area rolling contact or tracking electrode of this invention seems to provide some type of surprising synergistic effect on the imaging system which is not clearly understood, since this type of electrode has been found to be capable of producing images at illumination levels below 2 foot candle seconds. Accordingly, exposure time may be drastically shortened by employing the imaging system of the present invention.
  • increases in the applied voltage between the electrodes of the system of this invention can be used to modulate system efficiency much more effectively than could be done in the prior art systems.
  • FIG. 1 is a side sectional view of one of the original photoelectrophoretic imaging systems
  • FIG. 2 is a side sectional view of one embodiment of the photoelectrophoretic imaging system according to this invention.
  • FIG. 3 is a side sectional view of a second embodiment of the system of this invention.
  • FIG. 4 is a side sectional view of a third embodiment of the imaging system of this system.
  • a transparent electrode generally designated 11 which in this instance is made up of a layer of optically transparent glass 12 overcoated with a thin optically transparent layer 13 of tin oxide.
  • This oxide coated glass is commercially available under the trade name NESA glass from Pittsburgh Plate Glass Company, Pittsburgh, Pa.
  • This base electrode is referred to as the injecting electrode.
  • Coated on the layer of electrode 11 is a thin layer of finely divided photosensitive particles dispersed in an insulating carrier liquid. This suspension may also contain sensitizers and/or binders for the particles which are dissolved or suspended in the carrier liquid along with the particles.
  • Adjacent electrode 11 is a roller electrode 23 which is connected to one side of a potential source 17 through a switch 18 with the opposite side of the potential source being connected to the tin oxide coating on electrode 11 so that when switch 18 is closed an electric field is applied across the liquid suspension as electrode 23 rolls across the surface of electrode 11 in the direction indicated by the arrow in the drawing.
  • Electrode 23 is made up of a central core 24 which is preferably of fairly high electrical conductivity and is covered with a layer of blocking electrode material 26 which may, for example, by Baryta paper. Although a blocking electrode material such as 26 need not necessarily be used on the surface of electrode 23, the use of such a layer is preferred because of the importantly improved results which it is capable of producing.
  • This exposure causes exposed particles originally on electrode 11 to migrate through the liquid and adhere to the surface of the blocking electrode leaving behind a particle image on the injecting electrode surface which is a duplicate of the original transparency 19.
  • This image may then be fixed in place as, for example, by placing a lamination over its top surface or by virtue of a dissolved binder material in the carrier liquid such as a paraffin wax or other suitable binder that comes out of solution as the carrier liquid evaporates.
  • the carrier liquid itself may be a molten paraffin wax or other suitable binder in a liquid state which is self-fixing upon cooling and return to the solid state.
  • the particle image remaining on the electrode 11 may be transferred to another surface and fixed thereon, if desired.
  • the system has been found to be capable of producing either monochromatic or polychromatic images depending upon the color, sensitivity and number of different pigment suspended in the carrier liquid and the color light to which the suspension is exposed.
  • FIG. 2 there is shown one embodiment of the improved method and apparatus of this invention whereby a large broad area tracking contact is made by the blocking electrode with the imaging suspension 14 during the imaging process.
  • Like numerals have been used to identify like elements throughout FIGS. 2-4 where they correspond with the elements of the FIG. 1 device, and as can be seen from FIG. 2, this device is identical with that of FIG. 1 with th exception of the blocking electrode structure wherein a roller, generally designated 29, is employed.
  • This roller electrode 29 consists of a very soft central core 31 which may be of fairly high electrical conductivity. If a low conductivity core is used a separate electrical connection is made to the back of blocking layer 32. This core may optionally and preferably be coated with a blocking electrode material 32.
  • the blocking electrode layer may be a separate replaceable layer which is either taped on the roller or held by mechanical fasteners or any other device which is capable of releasably holding the layer on the roller; or in the alternative, the layer may be integral with the roller itself, being either adhesively bonded, laminated, spray coated or the like on the surface of the roller. It is important that during passage of roller 29 over electrode 11 that the two be held together with sufiicient force so that the roller material is compressed to provide a flat large area contact between the roller and the electrode 11.
  • FIGS. 3 and 4 two additional embodiments of the invention are illustrated except that the image projector has been left out of these figures to simplify the illustration.
  • the same NESA glass electrode 11 with a coating of the imaging suspension 14 thereon is employed and is connected to a potential source 17 through a switch 18 as in the previous figures.
  • the other sid of potential source 17 is, however, connected to a pair of rollers 36 and 37 and a hold down platen 38 within an elongate endless belt blocking electrode generally designated 39.
  • This endless belt preferably is made up of a base layer 41 with a fairly high electrical conductivity so that the electrical potential applied to the inner rollers and hold down platen will be applied uniformly from this layer through the imaging suspension as the belt passes over electrode 11.
  • the substrate 41 of belt 39 may, for example, consist of any suitable material of relatively high conductivity. Typical conductive materials are conductive rubber, metal foils of steel, aluminum, copper, brass or the like.
  • Blocking electrode layer 42 may consist of Baryta paper (a paper coated with barium sulfate suspended in gelatin) or any other suitable blocking material as defined in copending application No. 384,680. Rollers 36 and 37 and hold down platen 38 may all be mounted on the same carriage so that movement of the carriage in the direction indicated by the arrow in the drawing will cause electrode belt 39 to roll or track over the surface of electrode 11 to make the desired contact.
  • Hold down platen 38 may also be replaced with a plurality of rollers if desired so as to reduce friction while still pressing the belt surface downwardly during its passage over electrode 11.
  • Other modifications of the apparatus which will also produce a tracking contact of the endless belt 39 over electrode 11 will occur to those skilled in the art.
  • the two rollers and hold down platen may all be replaced with a reinforced block of material having a low coefficient of friction and having the shape as defined by the inside of the belt as seen in FIG. 3 and this block with the belt on its outer surface may simply be slid across electrode 11 so that the same type of tracking is caused to occur.
  • rollers may be provided with teeth running parallel to their axes adapted to engage ridges cut into the inner surface of the belt so as to provide a positive drive for the belt itself as it tracks over the electrode.
  • FIG. 4 there is seen a third embodiment of the invention in which the blocking electrode is supplied in the form of an elongate web 44 provided from a supply roll 46 and roller on a take-up roll 47 after use.
  • This web is entrained over a number of small con- 'du'ctive rollers .48 eachof which is connected to potential source..17 .so as to provide a good surce of electrical potential behind the web as it passes over electrode 11.
  • Rollers 48 along with supply and take-up reels 46 and 47, respectively, are all journaled for rotation on a mounting plate 49.
  • a 'similar mounting plate may also be provided at the near end of these reels and rollers, as seen in FIG.
  • the blocking electrode may be passed over electrode 11 a plurality of times with cleaning between passes where required so as to produce improved resolution and more faithful color rendition.
  • the photosensitive particle suspension is first coated on the conductive base electrode.
  • This suspen sion may consist of any suitable type of photoresponsive particle in an insulating carrier liquid and may, for example, comprise any one of the imaging suspensions described in the aforementioned copending applications.
  • the voltage is applied to the tracking electrode and it is rolled into contact with the suspension and a full frame exposure is made. Any suitable voltage may be applied depending upon the thickness materials used to produce a preferred field strength of from about 400 to about 1,000 volts per mil across the suspension at the time of exposure. For'example, using a 7 mil.
  • Thick plastic coated Baryta paper over a conductive neoprene (polychloroprene) backing on the tracking electrode with this electrode pressed down over the imaging suspension it has generally been found that voltages of from about 1,000 to about 5,500 volts may be employed and that ordinarily better images are produced if the applied voltage is in the higher end of this range. It has further been found, however, that if the full voltage is applied as the blocking electrode is tracked into contact with the suspension that striations are produced in the final image, and if no voltage is applied the imaging suspension is squeegeed off electrode 11.
  • the tracking electrode is closed over the whole imageearea with from about 800 to about 2,500 volts applied and then the voltage is raised to the full 4,000 to 5,000 volts to be employed for imaging.
  • Different voltages may be used, of course, with different components of varying thickness to attain approximately the same field strengths in the system.
  • a full frame exposure of the image is made and the blocking electrode is rolled out of contact with the imaging suspension in exposed areas to reveal the final image on the base electrode.
  • This image may then be fixed on the base electrode as by overcoating and used as a transparency or may be transferred to another surface and fixed thereon, as described in the copending applications referred to supra.
  • Examples I-IV four different imaging suspensions are tested in an apparatus of the type illustrated in FIG. 1; while in Examples V-VIII these same four suspensions are tested in an apparatus of the type illustrated in FIG. 3.
  • the base electrode is made up of NESA glass, as described above, and this NESA glass surface is connected in series with a switch, a potential source and the conductive portion of the blocking electrode.
  • it is connected to the conductive center of a roller having a coating of Baryta paper on its surface. The roller is approximately 2 /2" in diameter and is moved across the NESA plate at about 1.45 centimeters per second with an applied voltage of 2,500 volts.
  • a conductive neoprene belt about 7%" wide is entrained on 2" diameter steel rollers 7 /2" on center and a' layer of plastic coated water proof Baryta paper is taped over this belt. 1,500 volts is applied across the NESA glass and steel rollers while the belt is being rolled over the area of the suspension to be exposed, and when the belt has closed over the whole image area the voltage is raised to 4,500 volts and full frame exposure is made.
  • the imaging suspension consists of 7 parts by weight of photosensitive particles in Sohio odorless solvent 3440.
  • These particles are made up of equal parts by weight of metal-free phthalocyanine, Watchung red B [a barium salt of 1-(4'-methyl-5'-chloroaZobenzene-2'-sulfonic acid)-2-hydroxy-3-naphthoic acid] C.I. 15,865 and Algol Yellow G.C. [1,2,5,6-di(C,C'-diphenyl)-thiazole-anthraquinone, C.I. 67,300].
  • Watchung red B a barium salt of 1-(4'-methyl-5'-chloroaZobenzene-2'-sulfonic acid)-2-hydroxy-3-naphthoic acid
  • the 7 parts by weight of particles include equal parts of metal-free phthalocyanine, Watchung red B and 8,13-dioxodinaptho(2,1-6;2;3'd)-furan-6-carbox-pmethoxyanalide.
  • the particles are all metal-free phthalocyanine and in Examples IV and VIII the particles are all 2,9-dimethylquinacridone.
  • running tests with these suspensions on the two different imaging devices they are run at various levels of light intensity to determine the lowest light intensity which will produce a good quality image on each.
  • the minimum light intensity which will produce an image of equivalent quality in Examples V-VIII is about the minimum light exposure required for Examples I-IV.
  • An apparatus for photoelectrophoretic imaging comprising a smooth, optically transparent, first electrode adapted to support a thin layer of an imaging suspension thereon, a second electrode, means to track said second electrode on an imaging suspension on said first electrode, said tracking means being tread-like adapted to progressively roll said second electrode into contact with said suspension, hold a large area of said electrode in said contact and then roll its trailing end ofl? suspension,
  • Apparatus according to claim 1 in which said means to apply an electrical field across said suspension is adapted to apply said field only if said second electrode is over the area of said suspension to be exposed.
  • Apparatus according to claim 3 further including means to apply an electrical field of no more than about /2 the final field intensity to be applied as said second electrode is tracked over said imaging suspension.
  • said second electrode comprises an endless belt and further including means to press a large surface area of said endless belt against said first electrode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Optical Filters (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

Dec. 29, A, KRIEGER ETAL I 3,551,320
- IMAGING APPARATUS 'Original Filed May 5, 1965 INVENTORS ARTHUR L. KRIEGER IRA S. STEIN BY VSEVOLOD TULAGIN ATTORNEY United States Patent U.S. cl. 204 299 7 Claims ABSTRACT OF THE DISCLOSURE Apparatus for photoelectrophoretic imaging is described wherein the imaging suspension is contacted by a large surface area of a flexible, tread-like electrode. The electrode may be. a compressible material, an endless belt, or an elongated web. The image produced may be either monochromatic or polychromatic.
. This is a division of application Ser. No. 452,651, filed in the United States, May 3; 1965.-
This invention relates in general to imaging systems and, more specifically, to a photoelectrophoretic imaging system. v
In photoelectrophoretic imaging colored particles are suspended in an insulating carrier liquid. This suspension is then placed between a pair of electrodes, subjected to a potential difference and exposed to an image to be reproduced. Ordinarily in carrying out the process theimaging suspension is placed on a transparent electrically conductive plate in the form of a thin film, and exposure is made through the bottom of this plate while a second cylindrical electrode is rolled over the top of the suspension. The particles are believed to bear an initial charge when suspended in the liquid which causes them to be attracted to the transparent base electrode and to change polarity by exchanging charge with the base electrode upon exposure so that exposed particles migrate across to the roller electrode to form an image on the base electrode by particle subtraction. The system may be used to produce monochromatic images by using a single color of particle in the suspension or a number of differently colored particles in the suspension which all respond to the same wavelengths of light exposure. In polychromatic systems mixtures of two or more differently colored particles which are each sensitive only to light of a specific different wavelength ornarrow range of wavelengths are used. Thus, for example, a'full color image maybe produced by using a mixture of cyan, magenta and yellow particles which-respond to red, green and-blue light, respectively. An extensive and detailed description of a photoelectrophoretoric imaging technique as described above is found in copending applications filed Jan. 23, 1964, Ser. No. 384,737, now U.S. Pat. 3,384,565; Ser. No. 384,681, abandoned in favor of No. 655,023 which became U.S. Pat. 3,384,566; and No. 384,680 abandoned in favor of No.518,041 which became U.S. Pat. 3,383,- 993.
Although it has been found that good quality images canbe produced especially when a relatively insulating blocking electrode surface is used on the roller, photoelectrophoretic imaging speed is relatively low frequently requiring light levels in excess of 100 foot candle seconds ice incident on the imaging plane. Such levels of illumination are quite difficult to attain with opaque originals so that the utility of the system tends to be limited.
Accordingly, it is an object of this invention to provide an improved photoelectrophoretic imaging method.
It is a further object of this invention to provide a novel and improved photoelectrophoretic apparatus.
A still further object of the invention is to provide a photoelectrophoretic imaging system with markedly higher imaging speed.
An additional object of this invention is to provide a photoelectrophoretic imaging method and apparatus using low levels of image illumination.
Another object of the invention is to provide a photoelectrophoretic imaging system capable of forming high quality images in both black and white or other single colors and in two or more colors including full natural color.
The above and still further objects of the invention are achieved, generally speaking, by initially rolling a large area of an electrode into contact with the particle suspension on the optically transparent base electrode in a photoelectrophoretic imaging system and then rolling it off. This type of movement is much like that on the tread of a tank and the electrode shall therefore be referred to as the tracking electrode, moving electrode is used in place of the rolling electrode in the system described supra and may take the form of an elongate web which is supplied from a roll and taken up by a second roll after it has contacted the suspension. The tracking electrode may also take any other suitable form. For example, it may take the form of an elongate endless belt entrained over two or more rollers so that the belt can be tracked over the suspension. In still further alternative embodiments the moving electrode may take the form of a very soft roller which is pressed against the transparent base electrode with the suspension thereon with sufficient pressure so as to deform the roller and provide a relatively large fiat area of contact between the roller and the base electrode. Although both simple hard roller electrodes and planar non-movingelectrodes have been tested in photoelectrophoretic imaging techniques, the large area rolling contact or tracking electrode of this invention seems to provide some type of surprising synergistic effect on the imaging system which is not clearly understood, since this type of electrode has been found to be capable of producing images at illumination levels below 2 foot candle seconds. Accordingly, exposure time may be drastically shortened by employing the imaging system of the present invention. In addition, it has been found that increases in the applied voltage between the electrodes of the system of this invention can be used to modulate system efficiency much more effectively than could be done in the prior art systems.
In order that the invention will be more clearly understood, reference is now made to the accompanying drawings in which various embodiments of the invention are illustrated by way of example and in which FIG. 1 is a side sectional view of one of the original photoelectrophoretic imaging systems;
FIG. 2 is a side sectional view of one embodiment of the photoelectrophoretic imaging system according to this invention;
FIG. 3 is a side sectional view of a second embodiment of the system of this invention; and,
FIG. 4 is a side sectional view of a third embodiment of the imaging system of this system.
Referring now to FIG. 1, there is seen a transparent electrode generally designated 11 which in this instance is made up of a layer of optically transparent glass 12 overcoated with a thin optically transparent layer 13 of tin oxide. This oxide coated glass is commercially available under the trade name NESA glass from Pittsburgh Plate Glass Company, Pittsburgh, Pa. This base electrode is referred to as the injecting electrode. Coated on the layer of electrode 11 is a thin layer of finely divided photosensitive particles dispersed in an insulating carrier liquid. This suspension may also contain sensitizers and/or binders for the particles which are dissolved or suspended in the carrier liquid along with the particles. Adjacent electrode 11 is a roller electrode 23 which is connected to one side of a potential source 17 through a switch 18 with the opposite side of the potential source being connected to the tin oxide coating on electrode 11 so that when switch 18 is closed an electric field is applied across the liquid suspension as electrode 23 rolls across the surface of electrode 11 in the direction indicated by the arrow in the drawing. Electrode 23 is made up of a central core 24 which is preferably of fairly high electrical conductivity and is covered with a layer of blocking electrode material 26 which may, for example, by Baryta paper. Although a blocking electrode material such as 26 need not necessarily be used on the surface of electrode 23, the use of such a layer is preferred because of the importantly improved results which it is capable of producing. A detailed description of these improved results and the types of materials which may be employed as this electrode coating material are described in detail in copending application No. 384,680 referred to supra. Extensive lists of materials for the particles and carrier liquid in suspension 14, the injecting electrode etc. and for processing parameters such as the magnitude of potential to be applied and the like are also to be found in this patent application and the other two applications referred to supra, and all three of these applications are accordingly incorporated herein by reference. An image projector made up of light source 19, a transparency 21 and a lens 22 is provided to exposed suspension 14 to a light image of the original transparency 19 to be reproduced. In imaging the roller 23 is caused to roll across the top surface of electrode 11 with switch 18 closed during the period of exposure. This exposure causes exposed particles originally on electrode 11 to migrate through the liquid and adhere to the surface of the blocking electrode leaving behind a particle image on the injecting electrode surface which is a duplicate of the original transparency 19. This image may then be fixed in place as, for example, by placing a lamination over its top surface or by virtue of a dissolved binder material in the carrier liquid such as a paraffin wax or other suitable binder that comes out of solution as the carrier liquid evaporates. In fact, the carrier liquid itself may be a molten paraffin wax or other suitable binder in a liquid state which is self-fixing upon cooling and return to the solid state. In the alternative, the particle image remaining on the electrode 11 may be transferred to another surface and fixed thereon, if desired. The system has been found to be capable of producing either monochromatic or polychromatic images depending upon the color, sensitivity and number of different pigment suspended in the carrier liquid and the color light to which the suspension is exposed.
In FIG. 2 there is shown one embodiment of the improved method and apparatus of this invention whereby a large broad area tracking contact is made by the blocking electrode with the imaging suspension 14 during the imaging process. Like numerals have been used to identify like elements throughout FIGS. 2-4 where they correspond with the elements of the FIG. 1 device, and as can be seen from FIG. 2, this device is identical with that of FIG. 1 with th exception of the blocking electrode structure wherein a roller, generally designated 29, is employed. This roller electrode 29 consists of a very soft central core 31 which may be of fairly high electrical conductivity. If a low conductivity core is used a separate electrical connection is made to the back of blocking layer 32. This core may optionally and preferably be coated with a blocking electrode material 32. The blocking electrode layer, if used, may be a separate replaceable layer which is either taped on the roller or held by mechanical fasteners or any other device which is capable of releasably holding the layer on the roller; or in the alternative, the layer may be integral with the roller itself, being either adhesively bonded, laminated, spray coated or the like on the surface of the roller. It is important that during passage of roller 29 over electrode 11 that the two be held together with sufiicient force so that the roller material is compressed to provide a flat large area contact between the roller and the electrode 11.
In FIGS. 3 and 4 two additional embodiments of the invention are illustrated except that the image projector has been left out of these figures to simplify the illustration. In the FIG. 3 embodiment of the invention the same NESA glass electrode 11 with a coating of the imaging suspension 14 thereon is employed and is connected to a potential source 17 through a switch 18 as in the previous figures. The other sid of potential source 17 is, however, connected to a pair of rollers 36 and 37 and a hold down platen 38 within an elongate endless belt blocking electrode generally designated 39. This endless belt preferably is made up of a base layer 41 with a fairly high electrical conductivity so that the electrical potential applied to the inner rollers and hold down platen will be applied uniformly from this layer through the imaging suspension as the belt passes over electrode 11.
As with the central core 31 ot rorler 29, the substrate 41 of belt 39 may, for example, consist of any suitable material of relatively high conductivity. Typical conductive materials are conductive rubber, metal foils of steel, aluminum, copper, brass or the like. Blocking electrode layer 42 may consist of Baryta paper (a paper coated with barium sulfate suspended in gelatin) or any other suitable blocking material as defined in copending application No. 384,680. Rollers 36 and 37 and hold down platen 38 may all be mounted on the same carriage so that movement of the carriage in the direction indicated by the arrow in the drawing will cause electrode belt 39 to roll or track over the surface of electrode 11 to make the desired contact. Hold down platen 38 may also be replaced with a plurality of rollers if desired so as to reduce friction while still pressing the belt surface downwardly during its passage over electrode 11. Other modifications of the apparatus which will also produce a tracking contact of the endless belt 39 over electrode 11 will occur to those skilled in the art. Thus, for example, the two rollers and hold down platen may all be replaced with a reinforced block of material having a low coefficient of friction and having the shape as defined by the inside of the belt as seen in FIG. 3 and this block with the belt on its outer surface may simply be slid across electrode 11 so that the same type of tracking is caused to occur. Rotation of the belt in this instance would be caused by the frictional contact of the outer surface of the belt with electrode 11 and the low degree of frictional drag between the belt and the block which would tend to restrict its rotation around the block. In another modification the rollers may be provided with teeth running parallel to their axes adapted to engage ridges cut into the inner surface of the belt so as to provide a positive drive for the belt itself as it tracks over the electrode.
Referring now to FIG. 4, there is seen a third embodiment of the invention in which the blocking electrode is supplied in the form of an elongate web 44 provided from a supply roll 46 and roller on a take-up roll 47 after use. This web is entrained over a number of small con- 'du'ctive rollers .48 eachof which is connected to potential source..17 .so as to provide a good surce of electrical potential behind the web as it passes over electrode 11. Rollers 48 along with supply and take-up reels 46 and 47, respectively, are all journaled for rotation on a mounting plate 49. A 'similar mounting plate may also be provided at the near end of these reels and rollers, as seen in FIG. 4, so that they will be' journaled at both ends so as to make up a rigid carriage frame for the whole blocking electrode assembly. In operation this assembly is moved so as to track the blocking electrode 44 over electrode 11 by following path 51 shown in the figure in dotted line. In this way the blocking electrode web 44 will track over electrode 11, be lifted up and return back to its original position so that a new section of blocking electrode material will be provided for each pass of this electrode over electrode 11.
Using any one of the embodiments of this invention, the blocking electrode may be passed over electrode 11 a plurality of times with cleaning between passes where required so as to produce improved resolution and more faithful color rendition.
In operation the photosensitive particle suspension is first coated on the conductive base electrode. This suspen sion ma consist of any suitable type of photoresponsive particle in an insulating carrier liquid and may, for example, comprise any one of the imaging suspensions described in the aforementioned copending applications. After a thin coating of the imaging suspension has been applied, the voltage is applied to the tracking electrode and it is rolled into contact with the suspension and a full frame exposure is made. Any suitable voltage may be applied depending upon the thickness materials used to produce a preferred field strength of from about 400 to about 1,000 volts per mil across the suspension at the time of exposure. For'example, using a 7 mil. Thick plastic coated Baryta paper over a conductive neoprene (polychloroprene) backing on the tracking electrode with this electrode pressed down over the imaging suspension, it has generally been found that voltages of from about 1,000 to about 5,500 volts may be employed and that ordinarily better images are produced if the applied voltage is in the higher end of this range. It has further been found, however, that if the full voltage is applied as the blocking electrode is tracked into contact with the suspension that striations are produced in the final image, and if no voltage is applied the imaging suspension is squeegeed off electrode 11. This effect may be completely eliminated, however, if the tracking electrode is closed over the whole imageearea with from about 800 to about 2,500 volts applied and then the voltage is raised to the full 4,000 to 5,000 volts to be employed for imaging. Different voltages may be used, of course, with different components of varying thickness to attain approximately the same field strengths in the system. At this time a full frame exposure of the image is made and the blocking electrode is rolled out of contact with the imaging suspension in exposed areas to reveal the final image on the base electrode. This image may then be fixed on the base electrode as by overcoating and used as a transparency or may be transferred to another surface and fixed thereon, as described in the copending applications referred to supra.
The invention having been generally described above, the following specific examples are given so as to further clarify the description of the invention. All parts in the examples are taken by weight unless otherwise indicated.
EXAMPLES I-VIII In Examples I-IV, four different imaging suspensions are tested in an apparatus of the type illustrated in FIG. 1; while in Examples V-VIII these same four suspensions are tested in an apparatus of the type illustrated in FIG. 3. In both devices the base electrode is made up of NESA glass, as described above, and this NESA glass surface is connected in series with a switch, a potential source and the conductive portion of the blocking electrode. In the case of the FIG. 1 example, it is connected to the conductive center of a roller having a coating of Baryta paper on its surface. The roller is approximately 2 /2" in diameter and is moved across the NESA plate at about 1.45 centimeters per second with an applied voltage of 2,500 volts. In the apparatus used for Examples V-VIII, a conductive neoprene belt about 7%" wide is entrained on 2" diameter steel rollers 7 /2" on center and a' layer of plastic coated water proof Baryta paper is taped over this belt. 1,500 volts is applied across the NESA glass and steel rollers while the belt is being rolled over the area of the suspension to be exposed, and when the belt has closed over the whole image area the voltage is raised to 4,500 volts and full frame exposure is made. In Examples I and V the imaging suspension consists of 7 parts by weight of photosensitive particles in Sohio odorless solvent 3440. These particles are made up of equal parts by weight of metal-free phthalocyanine, Watchung red B [a barium salt of 1-(4'-methyl-5'-chloroaZobenzene-2'-sulfonic acid)-2-hydroxy-3-naphthoic acid] C.I. 15,865 and Algol Yellow G.C. [1,2,5,6-di(C,C'-diphenyl)-thiazole-anthraquinone, C.I. 67,300]. In Examples II and VI the 7 parts by weight of particles include equal parts of metal-free phthalocyanine, Watchung red B and 8,13-dioxodinaptho(2,1-6;2;3'd)-furan-6-carbox-pmethoxyanalide. In Examples III and VII the particles are all metal-free phthalocyanine and in Examples IV and VIII the particles are all 2,9-dimethylquinacridone. In running tests with these suspensions on the two different imaging devices, they are run at various levels of light intensity to determine the lowest light intensity which will produce a good quality image on each. The minimum light intensity which will produce an image of equivalent quality in Examples V-VIII is about the minimum light exposure required for Examples I-IV.
What is claimed is:
1. An apparatus for photoelectrophoretic imaging comprising a smooth, optically transparent, first electrode adapted to support a thin layer of an imaging suspension thereon, a second electrode, means to track said second electrode on an imaging suspension on said first electrode, said tracking means being tread-like adapted to progressively roll said second electrode into contact with said suspension, hold a large area of said electrode in said contact and then roll its trailing end ofl? suspension,
means to expose that portion of said suspension beneath said contacting electrode to an image to be reproduced with actinic electromagnetic radiation and means to apply an electric field across said suspension during said exposure whereby a high quality image is rapidly produced on said first electrode.
2. Apparatus according to claim 1 in which said second electrode has at least an outer surface layer of a blocking electrode material.
3. Apparatus according to claim 1 in which said means to apply an electrical field across said suspension is adapted to apply said field only if said second electrode is over the area of said suspension to be exposed.
4. Apparatus according to claim 3 further including means to apply an electrical field of no more than about /2 the final field intensity to be applied as said second electrode is tracked over said imaging suspension.
5. An apparatus according to claim 1 in which said second electrode is backed up by a compressible material and further including means to press said compressible material against the back of said electrode with sufficient force to form a large broad area contact between said first and second electrodes.
6. An apparatus according to claim 1 in which said second electrode comprises an endless belt and further including means to press a large surface area of said endless belt against said first electrode.
7. An apparatus according to claim 1 in which said References Cited UNITED STATES PATENTS 8 Walkup 317-262 Chagnon et al. 204-299 Tanner 204181 Mutter 204-299 5 HOWARD s. WILLIAMS, Primary Examiner A. C. PRESCOTT, Assistant Examiner Schnerin 204-300X Sugarrnan 117-175 Greaves 118-637 Kaprelian 96-1 10 204181, 300
US. Cl. X.R.
US798828*A 1965-03-19 1968-11-01 Imaging apparatus Expired - Lifetime US3551320A (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US41110665A 1965-03-19 1965-03-19
US44110665A 1965-03-19 1965-03-19
US45265165A 1965-05-03 1965-05-03
US45496265A 1965-05-11 1965-05-11
US504122A US3419560A (en) 1965-03-19 1965-10-23 1-aminoalkyl 2-aryl indanes and tetrahydronaphthalenes
US59066666A 1966-10-31 1966-10-31
US79882868A 1968-11-01 1968-11-01

Publications (1)

Publication Number Publication Date
US3551320A true US3551320A (en) 1970-12-29

Family

ID=27569758

Family Applications (5)

Application Number Title Priority Date Filing Date
US441106A Expired - Lifetime US3553093A (en) 1965-03-19 1965-03-19 Color photoelectrophoretic imaging process
US452651A Expired - Lifetime US3474019A (en) 1965-03-19 1965-05-03 Photoelectrophoretic imaging method including contacting the imaging suspension with a large surface of a flexible electrode
US504122A Expired - Lifetime US3419560A (en) 1965-03-19 1965-10-23 1-aminoalkyl 2-aryl indanes and tetrahydronaphthalenes
US590666A Expired - Lifetime US3448025A (en) 1965-03-19 1966-10-31 Photoelectrophoretic imaging system utilizing a programmed potential application
US798828*A Expired - Lifetime US3551320A (en) 1965-03-19 1968-11-01 Imaging apparatus

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US441106A Expired - Lifetime US3553093A (en) 1965-03-19 1965-03-19 Color photoelectrophoretic imaging process
US452651A Expired - Lifetime US3474019A (en) 1965-03-19 1965-05-03 Photoelectrophoretic imaging method including contacting the imaging suspension with a large surface of a flexible electrode
US504122A Expired - Lifetime US3419560A (en) 1965-03-19 1965-10-23 1-aminoalkyl 2-aryl indanes and tetrahydronaphthalenes
US590666A Expired - Lifetime US3448025A (en) 1965-03-19 1966-10-31 Photoelectrophoretic imaging system utilizing a programmed potential application

Country Status (11)

Country Link
US (5) US3553093A (en)
AT (3) AT285326B (en)
BE (1) BE680863A (en)
CH (3) CH479099A (en)
DE (1) DE1522742A1 (en)
FR (2) FR1568731A (en)
GB (4) GB1149666A (en)
IL (1) IL25304A (en)
NL (1) NL6606339A (en)
NO (2) NO123368B (en)
SE (2) SE341330B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3859576A (en) * 1973-02-15 1975-01-07 Xerox Corp High performance blocking electrode for electrophotophoresis
USRE28360E (en) * 1969-10-03 1975-03-04 Electrophoretic color display device
US4130359A (en) * 1976-07-23 1978-12-19 Eastman Kodak Company Electrophoretic migration imaging apparatus and method utilizing enlarged migration environment

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE371190B (en) * 1972-03-24 1974-11-11 Kabi Ab
US3804508A (en) * 1965-05-28 1974-04-16 V Mihajlov Photoelectrophoretic apparatus for heat fixing an image
US3504031A (en) * 1966-05-24 1970-03-31 Mead Johnson & Co 1-aminoalkyl-1-phenylindene process and intermediate therefor
US3477934A (en) * 1966-06-29 1969-11-11 Xerox Corp Imaging process
US3680955A (en) * 1968-07-16 1972-08-01 Minolta Camera Kk Apparatus for forming an electrostatic image in a camera
US3784302A (en) * 1968-10-03 1974-01-08 Xerox Corp Electrophoretic imaging apparatus including application of dynamic stress on the particle suspension
US3620950A (en) * 1968-10-03 1971-11-16 Xerox Corp Electrophoretic imaging employing periodic electromagnetic radiation
US3657091A (en) * 1968-10-03 1972-04-18 Xerox Corp Electrophoretic imaging method employing a periodic electric field
US3743404A (en) * 1968-10-03 1973-07-03 Xerox Corp Photoelectrophoretic imaging apparatus including means to simultaneously apply a compressive stress and shear stress to the imaging suspension
US3811764A (en) * 1968-10-03 1974-05-21 Xerox Corp Apparatus for photoelectrophoretic imaging using a periodic electric field
US3853556A (en) * 1969-05-02 1974-12-10 Xerox Corp Method for eliminating electrical arcing during photoelectrophoretic imaging
BE756481A (en) * 1969-09-23 1971-03-22 Xerox Corp PHOTOELECTROPHORETIC IMAGE FORMATION PROCESS BY REFLECTION
US3761174A (en) * 1969-10-31 1973-09-25 Xerox Corp Manifold web handling
US3690754A (en) * 1969-11-14 1972-09-12 Xerox Corp Control system for an optical imaging system
JPS527348B1 (en) * 1970-01-09 1977-03-01
US3909262A (en) * 1970-12-14 1975-09-30 Xerox Corp Imaging migration member employing a gelatin overcoating
US3719484A (en) * 1971-01-06 1973-03-06 Xerox Corp Photoelectrophoretic imaging method
US3751420A (en) * 1971-04-01 1973-08-07 Squibb & Sons Inc Monoolmonoene amines
US3859438A (en) * 1971-07-08 1975-01-07 Boehringer Sohn Ingelheim Pharmaceutical compositions containing an n-(1-bicyclic aryl-propyl-2)-n-bicyclic aryl-piperazine and method of use
US3984464A (en) * 1972-10-06 1976-10-05 A. Christiaens Societe Anonyme Derivatives of 2-amino-(1,2,3,4-tetrahydronaphthalene), the preparation and use thereof
US3905812A (en) * 1973-04-23 1975-09-16 Xerox Corp Imaging process
US3917880A (en) * 1973-06-27 1975-11-04 Xerox Corp Electrophoretic imaging system
US3945724A (en) * 1974-06-04 1976-03-23 Xerox Corporation Velocity compensation for bead bypass
US4078928A (en) * 1975-03-03 1978-03-14 Xerox Corporation Photoelectrophoretic imaging method
US4084896A (en) * 1975-04-24 1978-04-18 Xerox Corporation Photoelectrophoretic web imaging apparatus
CH619701A5 (en) * 1975-08-07 1980-10-15 Bayer Ag
US4013673A (en) * 1976-04-13 1977-03-22 Warner-Lambert Company 2,3-dihydro-3-(2-pyridinyl)-4h-1-benzopyran-4-one n-oxides
DE2814983A1 (en) * 1978-04-07 1979-10-18 Bayer Ag NEW CHROMANON DERIVATIVES
CH641147A5 (en) * 1979-01-17 1984-02-15 Sandoz Ag 3-AMINO-2-HYDROXYPROPOXYARYL DERIVATIVE, ITS PREPARATION AND REMEDIES CONTAINING THEREOF.
NL8003141A (en) * 1980-05-30 1982-01-04 Akzo Nv BIOLOGICALLY ACTIVE TRICYCLIC AMINES.
CH648030A5 (en) * 1980-12-15 1985-02-28 Sandoz Ag BENZOPYRANE ALLYLAMINE DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE.
US4321270A (en) * 1981-01-29 1982-03-23 E. R. Squibb & Sons, Inc. Substituted chromans
US4452801A (en) * 1981-09-24 1984-06-05 E. R. Squibb & Sons, Inc. Chromans including heterocyclic substituent
US4505932A (en) * 1983-05-13 1985-03-19 Abbott Laboratories Method of producing α2 -adrenergic receptor agonist activity
GB8704572D0 (en) * 1987-02-26 1987-04-01 Lundbeck & Co As H Organic compounds
WO1989006645A1 (en) * 1988-01-15 1989-07-27 Abbott Laboratories 1-aminomethyl-1,2,3,4-tetrahydronaphthalenes
US5086074A (en) * 1988-01-15 1992-02-04 Abbott Laboratories 1-aminomethyl-1,2,3,4-tetrahydronaphthalenes
US5128362A (en) * 1988-01-15 1992-07-07 Abbott Laboratories 1-aminomethyl-1,2,3,4-tetrahydronaphthalenes
WO1990012010A1 (en) * 1989-04-07 1990-10-18 Pfizer Inc. Substituted chromans in the treatment of asthma, arthritis and related diseases
US5500444A (en) * 1989-11-14 1996-03-19 Hoechst Marion Roussel, Inc. Cardioprotective tocopherol analogs
US5063397A (en) * 1990-05-25 1991-11-05 Xerox Corporation Variable-thickness imaging members
EP0550292A1 (en) * 1992-01-02 1993-07-07 Merrell Dow Pharmaceuticals Inc. Tissue protective tocopherol analogs
US5510373A (en) * 1992-04-06 1996-04-23 Merrell Pharmaceuticals Inc. Cardioprotective agents
US5721233A (en) * 1992-04-06 1998-02-24 Merrell Pharmaceuticals Inc. Derivatives of 2,3-dihydro benzofuranols
US5545660A (en) * 1992-04-07 1996-08-13 Merrell Pharmaceuticals Inc. Hydrazide derivatives of 3,4-dihydro-2H-1-benzopyrans
IL143780A (en) * 2001-06-14 2007-06-03 Cerel Ceramic Technologies Ltd Process for manufacturing electrode
US7339715B2 (en) * 2003-03-25 2008-03-04 E Ink Corporation Processes for the production of electrophoretic displays
DE102005010000A1 (en) * 2005-03-04 2006-09-07 Merck Patent Gmbh indanes

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2758939A (en) * 1953-12-30 1956-08-14 Rca Corp Electrostatic printing
US2987660A (en) * 1955-06-06 1961-06-06 Haloid Xerox Inc Xerographic charging
US2902974A (en) * 1956-06-14 1959-09-08 Ibm Latent electrostatic image developing apparatus
US2884434A (en) * 1957-03-07 1959-04-28 Dow Corning Haloorgano silcarbane siloxanes
US2940847A (en) * 1957-07-03 1960-06-14 None i red
US3068479A (en) * 1958-05-09 1962-12-11 Burroughs Corp Electrographic recording apparatus
US3251685A (en) * 1959-10-19 1966-05-17 Xerox Corp Method of controlling contrast in a xerographic reproduction process
US3142682A (en) * 1961-11-21 1964-07-28 Ciba Geigy Corp Tertiary amino derivatives of chromans and homo-chromans
US3271145A (en) * 1963-12-23 1966-09-06 Eastman Kodak Co Process for producing an electrostatic charge image
US3301866A (en) * 1965-08-12 1967-01-31 Rexall Drug Chemical Substituted indenopyridines

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE28360E (en) * 1969-10-03 1975-03-04 Electrophoretic color display device
US3859576A (en) * 1973-02-15 1975-01-07 Xerox Corp High performance blocking electrode for electrophotophoresis
US4130359A (en) * 1976-07-23 1978-12-19 Eastman Kodak Company Electrophoretic migration imaging apparatus and method utilizing enlarged migration environment

Also Published As

Publication number Publication date
CH479100A (en) 1969-09-30
AT286783B (en) 1970-12-28
GB1149615A (en) 1969-04-23
GB1149665A (en) 1969-04-23
US3419560A (en) 1968-12-31
FR1568731A (en) 1969-05-30
GB1149666A (en) 1969-04-23
IL25304A (en) 1969-11-30
FR5864M (en) 1968-03-11
AT279598B (en) 1970-03-10
SE334540B (en) 1971-04-26
BE680863A (en) 1966-11-14
NO120030B (en) 1970-08-17
DE1522743A1 (en) 1969-10-30
GB1157671A (en) 1969-07-09
CH479099A (en) 1969-09-30
AT285326B (en) 1970-10-27
CH466305A (en) 1968-12-15
US3474019A (en) 1969-10-21
US3553093A (en) 1971-01-05
SE341330B (en) 1971-12-20
NL6606339A (en) 1966-11-14
DE1522743B2 (en) 1972-07-27
DE1522742A1 (en) 1969-10-30
US3448025A (en) 1969-06-03
NO123368B (en) 1971-11-01

Similar Documents

Publication Publication Date Title
US3551320A (en) Imaging apparatus
US3427242A (en) Apparatus for continuous photoelectrophoretic imaging
US3551313A (en) Image contrast control in photoelectrophoretic imaging
US3669872A (en) Imaging system
US3601483A (en) Imaging apparatus
US3697409A (en) Belt electrode imaging system
US3741760A (en) Imaging system
US3703459A (en) Liquid applicator
US3043686A (en) Xerographic color masking
US3836363A (en) Color electrophotography using a photoconductive layer on both sides of a multicolor screen
US3952700A (en) Liquid applicator
US3658519A (en) Image transfer process from conductive substrates
US3857549A (en) Photoelectrophoretic imaging apparatus
US3565614A (en) Image transfer
US3586615A (en) Photoelectrophoretic imaging process including the use of an electrically charged suspension coating means
US4130359A (en) Electrophoretic migration imaging apparatus and method utilizing enlarged migration environment
US3666472A (en) Magnetic photo-electrophoretic imaging composition
US3723288A (en) Electrophoretic imaging apparatus including means to project an imageat a liquid nip
US3784294A (en) Image density control
US3645874A (en) Image density control in photoelectrophoretic imaging
US3616390A (en) An electrophoretic imaging method characterized by exposure of electrically photosensitive particles at a liquid nip
US3655370A (en) Photoelectrophoretic image transfer
US3782932A (en) Electrophoretic imaging process using transparent particles
US3595770A (en) Sequential photoelectrophoretic imaging system
US3711196A (en) Image transfer