US3544414A - Apparatus for producing a fibrous mat - Google Patents

Apparatus for producing a fibrous mat Download PDF

Info

Publication number
US3544414A
US3544414A US708462A US3544414DA US3544414A US 3544414 A US3544414 A US 3544414A US 708462 A US708462 A US 708462A US 3544414D A US3544414D A US 3544414DA US 3544414 A US3544414 A US 3544414A
Authority
US
United States
Prior art keywords
fibers
air
spout
binder
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US708462A
Inventor
Allen L Simison
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Owens Corning
Original Assignee
Owens Corning Fiberglas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US472100A external-priority patent/US3381069A/en
Application filed by Owens Corning Fiberglas Corp filed Critical Owens Corning Fiberglas Corp
Application granted granted Critical
Publication of US3544414A publication Critical patent/US3544414A/en
Assigned to WILMINGTON TRUST COMPANY, WADE, WILLIAM, J. reassignment WILMINGTON TRUST COMPANY SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OWENS-CORNING FIBERGLAS CORPORATION
Assigned to OWENS-CORNING FIBERGLAS CORPORATION, A CORP. OF DE. reassignment OWENS-CORNING FIBERGLAS CORPORATION, A CORP. OF DE. TERMINATION OF SECURITY AGREEMENT RECORDED NOV. 13, 1986. REEL 4652 FRAMES 351-420 Assignors: WADE, WILLIAM J. (TRUSTEES), WILMINGTON TRUST COMPANY, A DE. BANKING CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged

Definitions

  • This invention relates to an apparatus for producing a fibrous mat. While the invention is particularly concerned with the production of relatively thick bonded mats of fibrous glass, it is also applicable to forming thin felted structures and mats composed of other fibers both natural and synthetic, or a combination of various fibers.
  • An outstanding characteristic which this invention contributes to the products thereof is thorough and uniform integration, derived from the fine and efi'ective distribu tion of the binder particles through the body of fibers.
  • This feature is of high value in many forms of blankets and boards for heat and sound insulation, cushioning, padding and filtering.
  • the range of specific uses for the products include roofing insulation; duct lining; insulating automobiles, trucks, trailers, and railroad cars; mattresses; and blanketing of concrete during curing.
  • the practice of the invention has been found highly useful in producting bonded mats from a blend of re processed fibrous glass including strands originally intended for textile processing and trimmings and rejected material from various fibrous glass mat forming operations.
  • the main object of this invention is to provide an apparatus for producing an improved bonded fibrous mat.
  • a further object is a method and apparatus for refiberizing fibrous bodies and forming a mat therefrom, and economically and efficiently dispersing binder particles among the fibers of the mat.
  • an object of the invention is to produce an air-borne stream of fibers from fibrous material and to introduce into the stream of fibers finely atomized air-borne binder particles in a liquid carrier.
  • Another object of the invention is to form a wide, smooth surfaced, fibrous mat of uniform thickness and density.
  • a still further object is to effectively and uniformly combine a mixture of different fibrous components in a fibrous mat after first fiberizing such components.
  • the fibrous glass strands are removed from the cylindrical holders on which they are originally packaged for textile use by splitting the body of strands with a knife.
  • the bulk strands are then fed through a chopper and cut to an average length of one and one-half inches. If the water size ordinarily applied to textile strands has not dried, heat is then applied to the chopped strands.
  • the chopped strands are subsequently delivered at a weight controlled rate to a raw material conveyor by a picker feeder.
  • a similar picker feeder adds a weight controlled proportion of the admix of waste fibrous glass mat material to the cut strands on the conveyor.
  • the mat material may in one instance constitute thirty percent of the full batch.
  • the combined components are mixed and further shredded by being passed through a picker from which the batch is delivered through an air duct to the feeder of a garnett machine.
  • the toothed cylinders and worker rolls of this machine separate, straighten and arrange the fibers uniformly in a loose progressing web.
  • This web is disintegrated in being discharged through a guiding spout from the garnett machine in an air stream and the fibers are air borne as a spreading cloud.
  • the fibers with the binder particles intermixed therewith fall within the chamber through gravitation and as influenced by a downward air draft drawn down through the foraminous conveyor, and settle on the conveyor which is traveling in line with the discharge path of the fibers.
  • the fibers with the binder particles precipitated thereon accumulate in a low density pack in a thickness depending upon various factors including the speed of the conveyor and which is generally established in a range between six and eight inches.
  • the pack is carried into a curing oven between conveyor flights which compress the pack to the thickness desired in the final mat product which is usually between one and three inches. With the pack so compressed the binder is cured to permanently establish the flexibility, thickness and density of the product.
  • the mat On leaving the oven the mat is cut lengthwise into desired widths and the edges trimmed.
  • the action of a cross chopping knife determines the length of the individual mats which are then rolled up on a mandrel for storage, further processing or shipment.
  • the apparatus of this invention while generally following the outlined procedure involve considerable variations therefrom and is mainly concerned with improved apparatus associated with the entry and reception of the fibers and binder particles in the forming chambers. Accordingly, the following description and the accompanying drawings are directed largely to this stage in the formation of such bonded mats.
  • FIG. 1 of the drawings the outlet end of a garnet machine and the entering end of an associated forming hood are shown in side elevation;
  • FIG. 2 is a plan view of the apparatus of FIG. 1;
  • FIG. 3 is an enlarged side elevation largely in section of the fiber discharging portion of the garnet machine of FIGS. 1 and 2., as viewed from the opposite side thereof;
  • FIG. 4 is a side'elevation on a reduced scale of the outlet end of the garnet machine and the main section of the forming hood;
  • FIG. 5 is a planview of the apparatus of FIG. 4,
  • the outlet end of the garnet machine 11 is supported upon a base 10.
  • a low speed doffer cylinder 12 removes the web of worked fibers from the first main cylinder (not illustrated) of the garnet machine.
  • the garnet machine here utilized forms a web six feet in width.
  • the small stripper roll 16 cooperates in the transfer of the web from the dolfer cylinder 12 to the final high speed main cylinder 14, while relatively slow worker roll 17 combs the fibers of the web before the web is propelled from the cylinder 14 into the path of the air blast from the elongated common outlet 19 of adjacent air spouts 18.
  • the cylinder 14 is thirty inches in diameter and is driven at an r.p.m. of 1100. The web is accordingly carried by this cylinder at a linear speed of about 8600 feet per minute.
  • FIG. 3 there is an open area 23 above a top portion of the cylinder 14 into which the web of fibers is thrust.
  • the web in disintegrated form then travels through the guiding spout 20.
  • the top wall 21' of the spout may be positioned to establish the desired height of the air channel therethrough.
  • a'small two inch roller 24 is mounted adjacent thereto. This may be forcibly rotated as indicated by the arrow thereon at a speed for instance of 100 r.p.m. However, freely mounted it has been found to rotate under the action of the air stream thereover and to thus satisfactorily fulfill its function.
  • the guiding spout 20 is preferably composed of Lucite, an acrylic plastic produced by the E. I. du Pont Company or of other electrical insulating material. Because of electrical charges apparently accumulated on the glass fibers during their travel through the garnet machine the fibers have been found to collect on metal walls of such a spout. The insulating character of Lucite overcomes this attraction and surfaces thereof remain clean of fibers.
  • the guiding spout 20 in the present embodiment is dimensioned to provide an air passage therethrough approximately two inches high, s'nr feet wide and two feet long. The air in an estimated volume of forty-five hundred cubic feet per minute flows through spout 20 at a velocity of forty-five hundred feet per minute.
  • the air borne stream of fibers is directed into the expanding spout 27 which is also composed of TLucite for reduction of electrostatic attraction. A considerable volume of additional air is drawn therein from the spacing between the spouts.
  • Upper and lower louvres 29 and 30 at the outlet of the spout 27 are set to constrict and direct the air borne stream of fibers in a path found most effective in propelling the fibers into the forming hood 34.
  • the passage through the expanding spout 27 is six inches high, six and one half feet wide, and four feet long.
  • the larger cross sectional area of spout 27 permits the volume of air to be greatly expanded by induction with some decrease in the velocity of the air stream as projected from spout 20.
  • the binder through each nozzle is reduced to an amount that may be thoroughly and finely atomized.
  • this provides very uniform and effective dispersion of the binder particles among the fibers.
  • the small size of the particles in combination with the volume of air into which they are projected effects rapid evaporation of the liquid vehicle or carrier of the basic binder material. So little moisture (in case the vehicle in water) is retained on the deposited particles that no heat for drying is required prior to the final setting of the binder.
  • the fine atomization of the binder solution results in the binder particles averaging only ten microns in diameter with very few reaching a diameter of one hundred microns.
  • a preferred binder composition is a ten percent phenol formaldehyde water solution with the resin in A state of polymerization. This may be introduced by the atomizing nozzles at a rate supplying a residual binder component of fifteen percent of the total weight of the final mat product. Under a comparatively high production schedule approximately six ounces of the water suspension of binder per minute is then atomized by each nozzle. However, more or less binder may be utilized according to the degree of stiffness and integrity desired in the final product. Many other binder materials of natural or synthetic origin may of course be utilized in place of the specific presently preferred resin.
  • the high volume of air including that directly from spout 27 and that induced into immediate joinder therewith adjacent the outlet of spout 27 probably exceeds twenty thousand cubic feet of air per minute. Dispersed evenly through this mass of air, constituting approximately only part of volume to three hundred thousand parts of air are the glass fibers, mostly as individual fibers in spaced relation, but also in small clumps rarely containing as many as fifty fibers.
  • the dispersion however, of the fibers and tiny binder droplets in the air is so thorough that each cubic inch of air will usually contain about twenty five or more fibers and roughly two hundred droplets of binder. Eventual contact and adhesive of binder particles to substantially all of the fibers is thus assured. No appreciable number of clumps of the fibers are of such a size to prevent an effective deposit of binder therethrough even though the power of moist binder particles to penetrate into fiber clumps is very limited.
  • the fibers 32 with the intermingled particles of binder are drawn down upon the nine foot wide conveyor 36 by the chamber 38 by suitable air blowers into the common air plenum 54.
  • dampers 37 in the air ducts the air suction may be varied along the chamber 38.
  • Air fiow into the forming hood 34 is derived from the air from spouts 18 greatly augmented by air projected from the peripheral surface of cylinder 14, extra air induced into the second guiding spout 27, to a minor extent from the atomizing air from nozzles 40, and majorly from air entering the open face of the forming hood. Additional air moves into the forming hood through open ings 58 in the ceiling panel 59 of the forming hood and through openings 55 above side panels 56 of the hood.
  • top panels 60 and side panels 62 Further sections of the forming hood are closed by top panels 60 and side panels 62.
  • This added air while slowing and somewhat expanding the fiber movement helps bring the fibers and binder particles down upon the conveyor as such added air moves downwardly in response to the air suction.
  • This suction of air into the chamber 38 below the conveyor is at such negative pressure and in sufiicient volume to rapidly draw the main mass of fibers down upon the first portion of the conveyor surface.
  • the closed sides of the hood along the borders of the fiber stream as well as the suction at the edges of the conveyor spreads the deposit of fibers and binder particles across the conveyor.
  • the air passes down through the screen conveyor which in effect thus filters the fibers from the air.
  • the fibers in turn serve as a filtering body for the binder particles intermingled therewith.
  • the thirty foot long forming hood 34 extends four feet above the surface of the conveyor 36 and is approximately as wide as the nine foot width of the conveyor.
  • the openings 57 and 58 in the fore part of the top of the forming hood are five fee long and three feet wide while the openings 55 above the side panels 56 are ten feet long and one foot wide.
  • the top and sides of the hood are otherwise closed up to the discharge end of the hood.
  • the mat of fibers and binder particles is transported through a curing oven of conventional design.
  • the mat is there compressed to the desired thickness (unlikely to exceed three inches) and density (as high as ten pounds per cubic foot but usually below three pounds) between opposed flights of upper and lower converys while air heated to 350 F. is driven through the foraminous conveyor flights and the compressed mat to cure the binder particles and thus integrate and set the mat in the selected thickness and density.
  • edge trimmers After being thus cured that mat moves through edge trimmers, longitudinal slitters, and cross cutting devices to form units of desired widths and lengths.
  • a mat eight feet wide remains after the edge trimming operation and is slit in half to form four foot rolls wound on stocking mandrels.
  • the edge trimmings are salvaged and added to the raw material to be subsequently processed.
  • the final products have unusual integrity and homogeneous characteristics. While dilferent proportions of the binder may be utilized depending upon the degree of strength and rigidity required, because of its original liquid nature and its even distribution a minimum amount is effective and is highly economical. This superior performance is especially valuable where a mixture of fibers of different lengths and sizes is involved as in the processing with which this invention is particularly concerned.
  • the principal features which contribute to the success of this invention include the spout means for directing and expanding the high velocity air borne stream of fibers, the discharge of the fibers through an open area before they enter the forming hood, the projection of atomized liquid binder upon opposite sides of the planar stream of fibers in the open area, the metered supply of the binder to a high number of closely arranged nozzles, and the controlled air flow into the open face of the hood and through openings in the sides and top thereof down through the foraminous conveyor.
  • Apparatus for producing a fibrous mat from gatherings of fibers which includes apparatus for combing and separating the fibers of gatherings, a generally enclosed rotating toothed cylinder receiving the separated fibers and propelling them in a high velocity stream generally tangential to the upper side of the cylinder and from an open area above the cylinder, means terminating at the upper side of the cylinder and directing a blast of air at lower velocity into merging relation with the stream of fibers, spout means directing the combined stream of air and fibers in a generally horizontal path, said spout means being of expanded capacity at its outlet portion to enlarge the cross area of the combined stream, means directing fine binder particles into the combined stream after the discharge thereof from the spout means, a foraminous conveyor and means drawing the combined stream of air, fibers and binder down upon the conveyor.
  • Apparatus for producing a fibrous mat from gatherings of fibers which includes apparatus for combing and separating the fibers of gatherings, a rotating toothed cylinder receiving the separated fibers and propelling them in a high velocity stream generally tangential to the upper side of the cylinder, means directing a blast of air at lower velocity into merging relations with the stream of fibers, spout means directing the combined stream of air and fibers in a generally horizontal path with the bottom edge of the entrance of the spout means approaching close to the peripheral surface of the cylinder, a rotatable roller mounted between said edge and said peripheral surface, said spout means being of expanded capacity at its outet portion to enlarge the cross area of the combined stream, means directing fine binder particles into the combined stream after the discharge thereof from the spout means, a foraminous conveyor and means drawing the combined stream of air, fibers and binder down upon the conveyor.
  • Apparatus for producing a fibrous mat which includes means for directing an air borne stream of fibers in a horizontal path, a primary guiding spout through which the stream of fibers is directed, said primary spout being elongated laterally and vertically restricted, a secondary guiding spout extending horizontally from the outlet of the primary spout, said secondary spout being as wide as the primary spout and being at least twice as thick vertically as the primary spout, means providing a comparatively open area beyond the outlet of the secondary spout, and a receiving surface for the fibers discharged from the secondary spout positioned below and extending forwardly from the secondary spout, said primary spout being approximately two inches in height and the secondary spout about six inches in height.
  • Apparatus for producing a fibrous mat which includes means for projecting a flat air borne stream of fibers in a horizontal path, a guiding spout through which the stream of fibers is horizontally directed, said spout being vertically widened at its outlet portion to vertically expand and lower the velocity of said stream, means providing a comparatively open area beyond the outlet of the spout, a foraminous surface below the outlet of the spout for receiving the fibers discharged from the spout, a hood enclosing said surface, atomiz-' ing nozzles adjacent the outlet of the spout immediately in front of the entrance of the hood for discharging particles of binder into the stream of fibers, and there is a metering pump delivering a binder material in a liquid carrier to each nozzle.
  • Apparatus for producing a fibrous mat which includes means for projecting a flat air borne stream of fibers in a horizontal path, a guiding spout through which the stream of fibers is horizontally directed, said spout being vertically widened at its outlet portion to vertically expand and lower the velocity of said stream, means providing a comparatively open area beyond the outlet of the spout, and a foraminous surface below the outlet of the spout for receiving the fibers discharged from the spout, a hood enclosing said surface, and atomizing nozzles adjacent the outlet of the spout immediately in front of the entrance of the hood for discharging particles of binder into the stream of fibers, said nozzles being spaced on the average no more than five inches apart in two series, one above and one below the outlet of the spout.
  • Apparatus for producing a bonded fibrous mat which includes a horizontally directed guiding spout, means for delivering a high velocity air borne stream of fibers into said spout, means discharging binder particles downwardly and upwardly into the stream of fibers issuing from said spout, adjustable louvres extending References Cited UNITED STATES PATENTS 2,996,102 8/1961 Schuller 264-91 3,076,236 2/1963 Labino 156 369 3,081,207 3/1963 Fox 264-121 FOREIGN PATENTS 517,597 10/1955 Canada. 634,668 1/1962 Canada.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Description

Dec. 1, 1970 A. L. SlMlSON APPARATUS FOR PRODUCING FIBROUS MAT Original Filed Julyl5, 1965 2 Sheets-Sheet .1.
INVENTOR. 4154/ L. 5/M/50A/ W ATTORNEYS Dec. 1, 1970 A. LQSIMISON 3,544,414
APPARATUS FOR PRODUCING -A FIBROUS MAT Original Filed July 15. 1965 2 Sheets-Sheet z INVENTOR 444M 1. 5/44/50 M m W United States Patent APPARATUS FOR PRODUCING A FIBROUS MAT Allen L. Simison, Newark, Ohio, assignor to Owens- Coming Fiberglas Corporation, a corporation of Delaware Original application July 15, 1965, Ser. No. 472,100, now Patent No. 3,381,069, dated Apr. 30, 1968. Divided and this application Dec. 6, 1967, Ser. No. 708,462
Int. Cl. B29j 5/00; B32]: 5 /00 US. Cl. 156369 6 Claims ABSTRACT OF THE DISCLOSURE Apparatus for making a fibrous mat from waste gatherings of fibers including a toothed cylinder from the top of which fibers are discharged horizontally, a blower directing a stream of air in merging relation with the fibers, a generally horizontal guiding spout through which the combined air stream and fibers pass, binder atomizing nozzles beyond the spout, a foraminous conveyor for receiving the fibers and intermixed binder particles, and a hood through which the conveyor travels.
This is a division of applicants copending application, Ser. No. 472,100, filed July 15, 1965, now Pat. No. 3,381,069.
This invention relates to an apparatus for producing a fibrous mat. While the invention is particularly concerned with the production of relatively thick bonded mats of fibrous glass, it is also applicable to forming thin felted structures and mats composed of other fibers both natural and synthetic, or a combination of various fibers.
An outstanding characteristic which this invention contributes to the products thereof is thorough and uniform integration, derived from the fine and efi'ective distribu tion of the binder particles through the body of fibers. This feature is of high value in many forms of blankets and boards for heat and sound insulation, cushioning, padding and filtering. The range of specific uses for the products include roofing insulation; duct lining; insulating automobiles, trucks, trailers, and railroad cars; mattresses; and blanketing of concrete during curing.
The practice of the invention has been found highly useful in producting bonded mats from a blend of re processed fibrous glass including strands originally intended for textile processing and trimmings and rejected material from various fibrous glass mat forming operations.
In order to present the invention in a more concise and more easily understood manner this disclosure will be directed principally to the practice of the invention in connection with the employment of fibrous glass stock.
The main object of this invention is to provide an apparatus for producing an improved bonded fibrous mat.
A further object is a method and apparatus for refiberizing fibrous bodies and forming a mat therefrom, and economically and efficiently dispersing binder particles among the fibers of the mat.
More particularly an object of the invention is to produce an air-borne stream of fibers from fibrous material and to introduce into the stream of fibers finely atomized air-borne binder particles in a liquid carrier.
Another object of the invention is to form a wide, smooth surfaced, fibrous mat of uniform thickness and density.
A still further object is to effectively and uniformly combine a mixture of different fibrous components in a fibrous mat after first fiberizing such components.
These and other objects of the invention have been attained in one mode of practicing the invention by mix- 3,544,414 Patented Dec. 1, 1970 ice ing and fiberizing reject fibrous glass strands and trimmings and other Waste or excess portions of fibrous glass mats, by creating a generally horizontally. directed airborne stream of such regenerated fibers, dispersing binder particles through the stream by projecting such particles in a liquid carrier against the upper and lower sides of I the stream, collecting the fibers and binder particles in intermingled relation on a foraminous conveyor in mat form, compressing the mat, and setting the binder to integrate the mat.
In the processing of such scrap material in practicing my invention the fibrous glass strands are removed from the cylindrical holders on which they are originally packaged for textile use by splitting the body of strands with a knife. The bulk strands are then fed through a chopper and cut to an average length of one and one-half inches. If the water size ordinarily applied to textile strands has not dried, heat is then applied to the chopped strands. The chopped strands are subsequently delivered at a weight controlled rate to a raw material conveyor by a picker feeder.
A similar picker feeder adds a weight controlled proportion of the admix of waste fibrous glass mat material to the cut strands on the conveyor. The mat material may in one instance constitute thirty percent of the full batch.
The combined components are mixed and further shredded by being passed through a picker from which the batch is delivered through an air duct to the feeder of a garnett machine. The toothed cylinders and worker rolls of this machine separate, straighten and arrange the fibers uniformly in a loose progressing web. This web is disintegrated in being discharged through a guiding spout from the garnett machine in an air stream and the fibers are air borne as a spreading cloud.
As this stream of fibers is directed horizontally into the mat forming hood over a foraminous fiber receiving conveyor, series of atomizing nozzles above and below the stream project air-borne liquid binder particles thereinto.
The fibers with the binder particles intermixed therewith fall within the chamber through gravitation and as influenced by a downward air draft drawn down through the foraminous conveyor, and settle on the conveyor which is traveling in line with the discharge path of the fibers.
The fibers with the binder particles precipitated thereon accumulate in a low density pack in a thickness depending upon various factors including the speed of the conveyor and which is generally established in a range between six and eight inches.
The pack is carried into a curing oven between conveyor flights which compress the pack to the thickness desired in the final mat product which is usually between one and three inches. With the pack so compressed the binder is cured to permanently establish the flexibility, thickness and density of the product.
On leaving the oven the mat is cut lengthwise into desired widths and the edges trimmed. The action of a cross chopping knife determines the length of the individual mats which are then rolled up on a mandrel for storage, further processing or shipment.
The apparatus of this invention while generally following the outlined procedure involve considerable variations therefrom and is mainly concerned with improved apparatus associated with the entry and reception of the fibers and binder particles in the forming chambers. Accordingly, the following description and the accompanying drawings are directed largely to this stage in the formation of such bonded mats.
In FIG. 1 of the drawings the outlet end of a garnet machine and the entering end of an associated forming hood are shown in side elevation;
FIG. 2 is a plan view of the apparatus of FIG. 1;
FIG. 3 is an enlarged side elevation largely in section of the fiber discharging portion of the garnet machine of FIGS. 1 and 2., as viewed from the opposite side thereof;
FIG. 4 is a side'elevation on a reduced scale of the outlet end of the garnet machine and the main section of the forming hood; and
FIG. 5 is a planview of the apparatus of FIG. 4,
Referring to the drawings in more detail, the outlet end of the garnet machine 11 is supported upon a base 10. A low speed doffer cylinder 12 removes the web of worked fibers from the first main cylinder (not illustrated) of the garnet machine. For producing a fibrous mat with an effective width of eight feet the garnet machine here utilized forms a web six feet in width. The small stripper roll 16 cooperates in the transfer of the web from the dolfer cylinder 12 to the final high speed main cylinder 14, while relatively slow worker roll 17 combs the fibers of the web before the web is propelled from the cylinder 14 into the path of the air blast from the elongated common outlet 19 of adjacent air spouts 18. In this particular embodiment the cylinder 14 is thirty inches in diameter and is driven at an r.p.m. of 1100. The web is accordingly carried by this cylinder at a linear speed of about 8600 feet per minute.
There are one hundred teeth per square inch of surface area of the cylinder 14. Each tooth would carry a single fiber under optimum conditions. A very satisfactory separation or spread of the fibers over the teeth is secured and the thin resulting web with air propelled by the teeth is discharged at high velocity into the slower air blast from spouts 18.
As maybe better noted in FIG. 3 there is an open area 23 above a top portion of the cylinder 14 into which the web of fibers is thrust. The web in disintegrated form then travels through the guiding spout 20. The top wall 21' of the spout may be positioned to establish the desired height of the air channel therethrough.
For the purpose of eliminating hang-up of fibers at the beginning edge of the lower wall of the guiding spout 20 a'small two inch roller 24 is mounted adjacent thereto. This may be forcibly rotated as indicated by the arrow thereon at a speed for instance of 100 r.p.m. However, freely mounted it has been found to rotate under the action of the air stream thereover and to thus satisfactorily fulfill its function.
The guiding spout 20 is preferably composed of Lucite, an acrylic plastic produced by the E. I. du Pont Company or of other electrical insulating material. Because of electrical charges apparently accumulated on the glass fibers during their travel through the garnet machine the fibers have been found to collect on metal walls of such a spout. The insulating character of Lucite overcomes this attraction and surfaces thereof remain clean of fibers. The guiding spout 20 in the present embodiment is dimensioned to provide an air passage therethrough approximately two inches high, s'nr feet wide and two feet long. The air in an estimated volume of forty-five hundred cubic feet per minute flows through spout 20 at a velocity of forty-five hundred feet per minute.
From the comparatively restricted passage through the guiding spout 20 the air borne stream of fibers is directed into the expanding spout 27 which is also composed of TLucite for reduction of electrostatic attraction. A considerable volume of additional air is drawn therein from the spacing between the spouts. Upper and lower louvres 29 and 30 at the outlet of the spout 27 are set to constrict and direct the air borne stream of fibers in a path found most effective in propelling the fibers into the forming hood 34. The passage through the expanding spout 27 is six inches high, six and one half feet wide, and four feet long. The larger cross sectional area of spout 27 permits the volume of air to be greatly expanded by induction with some decrease in the velocity of the air stream as projected from spout 20.
As thecloud of fibers 32 travels into the forming hood 34 particles of binder 33 are directed thereinto from air atomizing nozzles 40 set in aligned series of sixteen nozzles both above and below the patch of the fibers and spaced from twelve to fifteen inches therefrom. Air is delivered to the nozzles through lines 41 while the binder solution reaches the nozzle through lines 42 from metering pumps 44. Valves 45 in the binder lines provide shut-off means in case all of the nozzles are not required.
Through the number and close array of the atomizing nozzles which may be spaced little more than four inches apart the binder through each nozzle is reduced to an amount that may be thoroughly and finely atomized. With the metered control this provides very uniform and effective dispersion of the binder particles among the fibers. The small size of the particles in combination with the volume of air into which they are projected effects rapid evaporation of the liquid vehicle or carrier of the basic binder material. So little moisture (in case the vehicle in water) is retained on the deposited particles that no heat for drying is required prior to the final setting of the binder.
The fine atomization of the binder solution results in the binder particles averaging only ten microns in diameter with very few reaching a diameter of one hundred microns.
A preferred binder composition is a ten percent phenol formaldehyde water solution with the resin in A state of polymerization. This may be introduced by the atomizing nozzles at a rate supplying a residual binder component of fifteen percent of the total weight of the final mat product. Under a comparatively high production schedule approximately six ounces of the water suspension of binder per minute is then atomized by each nozzle. However, more or less binder may be utilized according to the degree of stiffness and integrity desired in the final product. Many other binder materials of natural or synthetic origin may of course be utilized in place of the specific presently preferred resin.
The fine binder particles entered and spread through the flowing stream of air and fibers. The high volume of air including that directly from spout 27 and that induced into immediate joinder therewith adjacent the outlet of spout 27 probably exceeds twenty thousand cubic feet of air per minute. Dispersed evenly through this mass of air, constituting approximately only part of volume to three hundred thousand parts of air are the glass fibers, mostly as individual fibers in spaced relation, but also in small clumps rarely containing as many as fifty fibers. The dispersion however, of the fibers and tiny binder droplets in the air is so thorough that each cubic inch of air will usually contain about twenty five or more fibers and roughly two hundred droplets of binder. Eventual contact and adhesive of binder particles to substantially all of the fibers is thus assured. No appreciable number of clumps of the fibers are of such a size to prevent an effective deposit of binder therethrough even though the power of moist binder particles to penetrate into fiber clumps is very limited.
The fibers 32 with the intermingled particles of binder are drawn down upon the nine foot wide conveyor 36 by the chamber 38 by suitable air blowers into the common air plenum 54. Through adjustment of dampers 37 in the air ducts the air suction may be varied along the chamber 38.
Air fiow into the forming hood 34 is derived from the air from spouts 18 greatly augmented by air projected from the peripheral surface of cylinder 14, extra air induced into the second guiding spout 27, to a minor extent from the atomizing air from nozzles 40, and majorly from air entering the open face of the forming hood. Additional air moves into the forming hood through open ings 58 in the ceiling panel 59 of the forming hood and through openings 55 above side panels 56 of the hood.
Further sections of the forming hood are closed by top panels 60 and side panels 62.
The velocity of the air borne stream of fibers 32 from the outlet of spout 27, estimated to approach 4000 feet per minute in a possible volume of 15,000 cubic feet, induces a flow of a large volume of surrounding air into the open face of the forming hood which is spaced above two feet from the spout outlet. This added air while slowing and somewhat expanding the fiber movement helps bring the fibers and binder particles down upon the conveyor as such added air moves downwardly in response to the air suction. This suction of air into the chamber 38 below the conveyor is at such negative pressure and in sufiicient volume to rapidly draw the main mass of fibers down upon the first portion of the conveyor surface.
The closed sides of the hood along the borders of the fiber stream as well as the suction at the edges of the conveyor spreads the deposit of fibers and binder particles across the conveyor. The air passes down through the screen conveyor which in effect thus filters the fibers from the air. The fibers in turn serve as a filtering body for the binder particles intermingled therewith.
Eddies of air in the upper region of the hood are curtailed by air movement through top openings 57 and 58 and side openings 55. In this embodiment the thirty foot long forming hood 34 extends four feet above the surface of the conveyor 36 and is approximately as wide as the nine foot width of the conveyor. The openings 57 and 58 in the fore part of the top of the forming hood are five fee long and three feet wide while the openings 55 above the side panels 56 are ten feet long and one foot wide. The top and sides of the hood are otherwise closed up to the discharge end of the hood.
From the forming hood 34 the mat of fibers and binder particles is transported through a curing oven of conventional design. The mat is there compressed to the desired thickness (unlikely to exceed three inches) and density (as high as ten pounds per cubic foot but usually below three pounds) between opposed flights of upper and lower converys while air heated to 350 F. is driven through the foraminous conveyor flights and the compressed mat to cure the binder particles and thus integrate and set the mat in the selected thickness and density.
After being thus cured that mat moves through edge trimmers, longitudinal slitters, and cross cutting devices to form units of desired widths and lengths. In the present example a mat eight feet wide remains after the edge trimming operation and is slit in half to form four foot rolls wound on stocking mandrels. The edge trimmings are salvaged and added to the raw material to be subsequently processed.
Because of the fine atomization of the binder and thorough and uniform dispersion of the particles through the fibrous stock, the final products have unusual integrity and homogeneous characteristics. While dilferent proportions of the binder may be utilized depending upon the degree of strength and rigidity required, because of its original liquid nature and its even distribution a minimum amount is effective and is highly economical. This superior performance is especially valuable where a mixture of fibers of different lengths and sizes is involved as in the processing with which this invention is particularly concerned.
The principal features which contribute to the success of this invention include the spout means for directing and expanding the high velocity air borne stream of fibers, the discharge of the fibers through an open area before they enter the forming hood, the projection of atomized liquid binder upon opposite sides of the planar stream of fibers in the open area, the metered supply of the binder to a high number of closely arranged nozzles, and the controlled air flow into the open face of the hood and through openings in the sides and top thereof down through the foraminous conveyor.
Having thus described my invention in detail with respect to one mode of practice thereof, it will be understood that obvious substitutions and variations in the materials and structures set forth may be made without departing from the spirit of the invention and the scope of the following claims:
I claim:
1. Apparatus for producing a fibrous mat from gatherings of fibers which includes apparatus for combing and separating the fibers of gatherings, a generally enclosed rotating toothed cylinder receiving the separated fibers and propelling them in a high velocity stream generally tangential to the upper side of the cylinder and from an open area above the cylinder, means terminating at the upper side of the cylinder and directing a blast of air at lower velocity into merging relation with the stream of fibers, spout means directing the combined stream of air and fibers in a generally horizontal path, said spout means being of expanded capacity at its outlet portion to enlarge the cross area of the combined stream, means directing fine binder particles into the combined stream after the discharge thereof from the spout means, a foraminous conveyor and means drawing the combined stream of air, fibers and binder down upon the conveyor.
2. Apparatus for producing a fibrous mat from gatherings of fibers which includes apparatus for combing and separating the fibers of gatherings, a rotating toothed cylinder receiving the separated fibers and propelling them in a high velocity stream generally tangential to the upper side of the cylinder, means directing a blast of air at lower velocity into merging relations with the stream of fibers, spout means directing the combined stream of air and fibers in a generally horizontal path with the bottom edge of the entrance of the spout means approaching close to the peripheral surface of the cylinder, a rotatable roller mounted between said edge and said peripheral surface, said spout means being of expanded capacity at its outet portion to enlarge the cross area of the combined stream, means directing fine binder particles into the combined stream after the discharge thereof from the spout means, a foraminous conveyor and means drawing the combined stream of air, fibers and binder down upon the conveyor.
3. Apparatus for producing a fibrous mat which includes means for directing an air borne stream of fibers in a horizontal path, a primary guiding spout through which the stream of fibers is directed, said primary spout being elongated laterally and vertically restricted, a secondary guiding spout extending horizontally from the outlet of the primary spout, said secondary spout being as wide as the primary spout and being at least twice as thick vertically as the primary spout, means providing a comparatively open area beyond the outlet of the secondary spout, and a receiving surface for the fibers discharged from the secondary spout positioned below and extending forwardly from the secondary spout, said primary spout being approximately two inches in height and the secondary spout about six inches in height.
4. Apparatus for producing a fibrous mat which includes means for projecting a flat air borne stream of fibers in a horizontal path, a guiding spout through which the stream of fibers is horizontally directed, said spout being vertically widened at its outlet portion to vertically expand and lower the velocity of said stream, means providing a comparatively open area beyond the outlet of the spout, a foraminous surface below the outlet of the spout for receiving the fibers discharged from the spout, a hood enclosing said surface, atomiz-' ing nozzles adjacent the outlet of the spout immediately in front of the entrance of the hood for discharging particles of binder into the stream of fibers, and there is a metering pump delivering a binder material in a liquid carrier to each nozzle.
5. Apparatus for producing a fibrous mat which includes means for projecting a flat air borne stream of fibers in a horizontal path, a guiding spout through which the stream of fibers is horizontally directed, said spout being vertically widened at its outlet portion to vertically expand and lower the velocity of said stream, means providing a comparatively open area beyond the outlet of the spout, and a foraminous surface below the outlet of the spout for receiving the fibers discharged from the spout, a hood enclosing said surface, and atomizing nozzles adjacent the outlet of the spout immediately in front of the entrance of the hood for discharging particles of binder into the stream of fibers, said nozzles being spaced on the average no more than five inches apart in two series, one above and one below the outlet of the spout.
6. Apparatus for producing a bonded fibrous mat which includes a horizontally directed guiding spout, means for delivering a high velocity air borne stream of fibers into said spout, means discharging binder particles downwardly and upwardly into the stream of fibers issuing from said spout, adjustable louvres extending References Cited UNITED STATES PATENTS 2,996,102 8/1961 Schuller 264-91 3,076,236 2/1963 Labino 156 369 3,081,207 3/1963 Fox 264-121 FOREIGN PATENTS 517,597 10/1955 Canada. 634,668 1/1962 Canada.
SAMUEL FEINBERG, Primary Examiner US. Cl. X.R.
US708462A 1965-07-15 1967-12-06 Apparatus for producing a fibrous mat Expired - Lifetime US3544414A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US472100A US3381069A (en) 1965-07-15 1965-07-15 Method for producing a fibrous mat
US70846267A 1967-12-06 1967-12-06

Publications (1)

Publication Number Publication Date
US3544414A true US3544414A (en) 1970-12-01

Family

ID=27043664

Family Applications (1)

Application Number Title Priority Date Filing Date
US708462A Expired - Lifetime US3544414A (en) 1965-07-15 1967-12-06 Apparatus for producing a fibrous mat

Country Status (1)

Country Link
US (1) US3544414A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766607A (en) * 1971-08-24 1973-10-23 Curlator Corp Apparatus for transferring and compacting fiber material
US3777231A (en) * 1972-09-27 1973-12-04 A Guschin A device for forming a layer of fibrous material of homogeneous structure
US3914080A (en) * 1970-07-02 1975-10-21 Union Carbide Corp Apparatus for the high speed production of non-woven fabrics
US4065832A (en) * 1977-02-28 1978-01-03 Scott Paper Company Apparatus for forming a fibrous structure
US4097209A (en) * 1977-03-23 1978-06-27 Armstrong Cork Company Apparatus for forming a mineral wool fiberboard product
US4950444A (en) * 1982-07-06 1990-08-21 Saint-Gobain Recherche Process for the formation of fiber felt containing an additional product
US5149468A (en) * 1989-11-17 1992-09-22 Moldex/Metric Products, Inc. Method for producing filter material formed of melt-blown non-woven mat sandwiching additional material
US5217672A (en) * 1992-08-06 1993-06-08 Davidson Textron Inc. Preform forming and curing process and an apparatus for the process
US5883021A (en) * 1997-03-21 1999-03-16 Ppg Industries, Inc. Glass monofilament and strand mats, vacuum-molded thermoset composites reinforced with the same and methods for making the same
US5883023A (en) * 1997-03-21 1999-03-16 Ppg Industries, Inc. Glass monofilament and strand mats, thermoplastic composites reinforced with the same and methods for making the same
WO2003015658A2 (en) * 2001-08-16 2003-02-27 Paragon Trade Brands, Inc. System and method for absorbent core production
US20140127083A1 (en) * 2012-11-02 2014-05-08 Unifrax I Llc Treatment Of Tough Inorganic Fibers And Their Use In A Mounting Mat For Exhaust Gas Treatment Device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA517597A (en) * 1955-10-18 Gustin-Bacon Manufacturing Company Method and apparatus for manufacturing fibrous mats
US2996102A (en) * 1954-04-23 1961-08-15 Schuller Werner Manufacture of a web or mat made from glass fibre or a substance having similar characteristics
CA634668A (en) * 1962-01-16 Labino Dominick Process and machine for producing fibrous mats
US3076236A (en) * 1958-12-18 1963-02-05 Johns Manville Fiber Glass Inc Apparatus for making mats of blown mineral fibers
US3081207A (en) * 1963-03-12 Fibrous mat and method of manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA517597A (en) * 1955-10-18 Gustin-Bacon Manufacturing Company Method and apparatus for manufacturing fibrous mats
CA634668A (en) * 1962-01-16 Labino Dominick Process and machine for producing fibrous mats
US3081207A (en) * 1963-03-12 Fibrous mat and method of manufacture
US2996102A (en) * 1954-04-23 1961-08-15 Schuller Werner Manufacture of a web or mat made from glass fibre or a substance having similar characteristics
US3076236A (en) * 1958-12-18 1963-02-05 Johns Manville Fiber Glass Inc Apparatus for making mats of blown mineral fibers

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914080A (en) * 1970-07-02 1975-10-21 Union Carbide Corp Apparatus for the high speed production of non-woven fabrics
US3766607A (en) * 1971-08-24 1973-10-23 Curlator Corp Apparatus for transferring and compacting fiber material
US3777231A (en) * 1972-09-27 1973-12-04 A Guschin A device for forming a layer of fibrous material of homogeneous structure
US4065832A (en) * 1977-02-28 1978-01-03 Scott Paper Company Apparatus for forming a fibrous structure
US4097209A (en) * 1977-03-23 1978-06-27 Armstrong Cork Company Apparatus for forming a mineral wool fiberboard product
US4950444A (en) * 1982-07-06 1990-08-21 Saint-Gobain Recherche Process for the formation of fiber felt containing an additional product
US5149468A (en) * 1989-11-17 1992-09-22 Moldex/Metric Products, Inc. Method for producing filter material formed of melt-blown non-woven mat sandwiching additional material
US5217672A (en) * 1992-08-06 1993-06-08 Davidson Textron Inc. Preform forming and curing process and an apparatus for the process
US5883021A (en) * 1997-03-21 1999-03-16 Ppg Industries, Inc. Glass monofilament and strand mats, vacuum-molded thermoset composites reinforced with the same and methods for making the same
US5883023A (en) * 1997-03-21 1999-03-16 Ppg Industries, Inc. Glass monofilament and strand mats, thermoplastic composites reinforced with the same and methods for making the same
WO2003015658A2 (en) * 2001-08-16 2003-02-27 Paragon Trade Brands, Inc. System and method for absorbent core production
US20030073968A1 (en) * 2001-08-16 2003-04-17 Driskell Stacy Jean System and method for absorbent core production
US7121818B2 (en) * 2001-08-16 2006-10-17 Paragon Trade Brands, Inc. System and method for absorbent core production
WO2003015658A3 (en) * 2001-08-16 2009-06-18 Paragon Trade Brands Inc System and method for absorbent core production
US20140127083A1 (en) * 2012-11-02 2014-05-08 Unifrax I Llc Treatment Of Tough Inorganic Fibers And Their Use In A Mounting Mat For Exhaust Gas Treatment Device
US10526730B2 (en) * 2012-11-02 2020-01-07 Unifrax I, Llc Treatment of tough inorganic fibers and their use in a mounting mat for exhaust gas treatment device

Similar Documents

Publication Publication Date Title
US2931076A (en) Apparatus and method for producing fibrous structures
US4097209A (en) Apparatus for forming a mineral wool fiberboard product
US3544414A (en) Apparatus for producing a fibrous mat
US2589008A (en) Apparatus for forming fibrous mats
US3897185A (en) Apparatus for spreading material serving for the manufacture of fiberboards
US3071822A (en) Method and apparatus for forming a mat
US5972265A (en) Method and apparatus for producing composites
US2875503A (en) Fibrous mats and production thereof
US2736362A (en) Fibrous mat and method and apparatus for producing same
US3081207A (en) Fibrous mat and method of manufacture
US5269049A (en) Process and apparatus for dry forming of a material web from a long-fiber material
US2702069A (en) Method for forming fibrous mats
US3453355A (en) Process for pneumatically tearing and parting fiber flocks
CN103080396A (en) Method for manufacturing a fibre-containing element and element produced by that method
US2619151A (en) Method and apparatus for manufacturing fibrous mats
CZ278421B6 (en) Process for producing a matting or the article of the like shape from ceramic, glass or mineral fibers or mixtures thereof, and apparatus for making the same
US3381069A (en) Method for producing a fibrous mat
US2940135A (en) Suction felter apparatus and method
US5071615A (en) Method and appartus for manufacturing fiber slabs
US3033726A (en) Method for bonding fibers together
CA1112833A (en) Apparatus for the deposition of dry fibers on a foraminous forming surface
US2860687A (en) Apparatus for producing bonded fibrous glass mats
US9221965B2 (en) Method for manufacturing a mineral fibre-containing element and element produced by that method
EP0292585A1 (en) Method for making a fibre web
EP0929386B1 (en) Building material and a process and device for producing a building material

Legal Events

Date Code Title Description
AS Assignment

Owner name: WADE, WILLIAM, J., DELAWARE

Free format text: SECURITY INTEREST;ASSIGNOR:OWENS-CORNING FIBERGLAS CORPORATION;REEL/FRAME:004652/0351

Effective date: 19861103

Owner name: WILMINGTON TRUST COMPANY, DELAWARE

Free format text: SECURITY INTEREST;ASSIGNOR:OWENS-CORNING FIBERGLAS CORPORATION;REEL/FRAME:004652/0351

Effective date: 19861103

Owner name: WADE, WILLIAM, J., ONE RODNEY SQUARE NORTH, WILMIN

Free format text: SECURITY INTEREST;ASSIGNOR:OWENS-CORNING FIBERGLAS CORPORATION;REEL/FRAME:004652/0351

Effective date: 19861103

Owner name: WILMINGTON TRUST COMPANY, ONE RODNEY SQUARE NORTH,

Free format text: SECURITY INTEREST;ASSIGNOR:OWENS-CORNING FIBERGLAS CORPORATION;REEL/FRAME:004652/0351

Effective date: 19861103

AS Assignment

Owner name: OWENS-CORNING FIBERGLAS CORPORATION, A CORP. OF DE

Free format text: TERMINATION OF SECURITY AGREEMENT RECORDED NOV. 13, 1986. REEL 4652 FRAMES 351-420;ASSIGNORS:WILMINGTON TRUST COMPANY, A DE. BANKING CORPORATION;WADE, WILLIAM J. (TRUSTEES);REEL/FRAME:004903/0501

Effective date: 19870730

Owner name: OWENS-CORNING FIBERGLAS CORPORATION, FIBERGLAS TOW

Free format text: TERMINATION OF SECURITY AGREEMENT RECORDED NOV. 13, 1986. REEL 4652 FRAMES 351-420;ASSIGNORS:WILMINGTON TRUST COMPANY, A DE. BANKING CORPORATION;WADE, WILLIAM J. (TRUSTEES);REEL/FRAME:004903/0501

Effective date: 19870730