US3540764A - Resilient spacer for electrode joints - Google Patents

Resilient spacer for electrode joints Download PDF

Info

Publication number
US3540764A
US3540764A US713244A US3540764DA US3540764A US 3540764 A US3540764 A US 3540764A US 713244 A US713244 A US 713244A US 3540764D A US3540764D A US 3540764DA US 3540764 A US3540764 A US 3540764A
Authority
US
United States
Prior art keywords
electrode
expanded graphite
joint
oriented
end faces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US713244A
Inventor
John R Paus
Joseph F Revilock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Carbide Corp
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Application granted granted Critical
Publication of US3540764A publication Critical patent/US3540764A/en
Assigned to MORGAN GUARANTY TRUST COMPANY OF NEW YORK, AND MORGAN BANK ( DELAWARE ) AS COLLATERAL ( AGENTS ) SEE RECORD FOR THE REMAINING ASSIGNEES. reassignment MORGAN GUARANTY TRUST COMPANY OF NEW YORK, AND MORGAN BANK ( DELAWARE ) AS COLLATERAL ( AGENTS ) SEE RECORD FOR THE REMAINING ASSIGNEES. MORTGAGE (SEE DOCUMENT FOR DETAILS). Assignors: STP CORPORATION, A CORP. OF DE.,, UNION CARBIDE AGRICULTURAL PRODUCTS CO., INC., A CORP. OF PA.,, UNION CARBIDE CORPORATION, A CORP.,, UNION CARBIDE EUROPE S.A., A SWISS CORP.
Assigned to UNION CARBIDE CORPORATION, reassignment UNION CARBIDE CORPORATION, RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MORGAN BANK (DELAWARE) AS COLLATERAL AGENT
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/14Arrangements or methods for connecting successive electrode sections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S403/00Joints and connections
    • Y10S403/05Carbon electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/55Member ends joined by inserted section
    • Y10T403/556Section threaded to member

Definitions

  • Sheet 1 of 2 ENTORS JO R PAUS SEPH F. REWLOCK ATTORNEY SPECIFICATION FIELD OF INVENTION This invention relates to arc furnace electrodes and more specifically to an improved joint between adjacent electrodes.
  • connection of this type There are several important disadvantages associated with a connection of this type. For example, severe stresses due to thermal expansion of the joint members during operation sometimes cause rupture of the materials resulting in a breakdown of the arc entirely.
  • electrical resistance in such a joint is undesirably high because of gaps between threads and primarily because of the difficulty in maintaining mating front end faces of joined electrodes in direct contact.
  • a recess is machined in the electrode end faces to accommodate the expanded graphite materials.
  • a circumferential gap can be provided between end faces of the joined electrodes at the peripheral edge thereof, that is adjacent the second expanded graphite material, to provide further thermal stress reliefduring the operation ofthe electrodes.
  • the expanded graphite of low density provides a resilient cushion which functions toabsorb the expansion of electrodes with increase in temperature. It is easily compressed and in the density range aforementioned it has an excellent resiliency factor thus enabling it to resume its s original size if required under the pressures normally experienced during the operation ofthe system.
  • This first material also improves the electrical resistance of the joint throughout substantially all of the operating temperature range of the system.
  • the second expanded graphite material is employed to provide structural stiffness ofthe electrode column in order to firmly support the column when it is tilted and to sustain lateral thrust imposed by movement of furnace charge materials.
  • This material has approximately a 10 percent repeatable resilient "springback, that is, it can be repeatably deformed (compressedlup to IOpercent of its thickness and upon removal of the force, the material will return to its original thickness.
  • the stress created 2 by changing thermal gradients and thermally incompatible joint components can thereby be further'absorbed during the operation of the electrodes.
  • the circumferential gap at the periphery of the end faces, if it is used, is primarily to act as a positive stop" when the joint isunder a bending moment thrust load.
  • Graphites are characterized in their internal structure by layer planes of hexagonal networks of carbon atoms. These layer planes are substantially flat and are generally parallel to and equidistant from each other. They are bonded together by weak van der Waal forces which as it has been discovered, can be attacked with certain materials to further weaken the bond between layers; The result of such an attack is that the spacing between the superposed carbon layers can be increased so as to effect a marked expansion in the direction perpendicular to the layers, that is in the Cf direction. thereby forming expanded graphite particles. The particles may then be subsequently treated to form a useable product.
  • expanded graphite is intended to encompass within its meaning graphite which has been formed by expanding a graphite starting material which may be natural graphite, pyrolytic graphite, Kish flake graphite or any-other type, and then recompressing the expanded material.
  • the preferred expanded graphite contains no binder as taught in the aforementioned copending application but may contain a binder if the amount of binder content is less than 10 percent by weight of the graphite product. Greater quantities of binder impart a rigidity to the graphite which lessens its flexibility.
  • the expanded graphite as employed in this invention will generally be composed of a plurality of superimposed contiguous layers of thin sheets of expanded graphite which are held together by a binder material or simply by the inherent cohesive character of the material itself. This material may be positioned between electrode end faces with either of two orientations.
  • It may be fedge oriented, that is, with the edges of the layers directed toward the end face surfaces and preferably in direct contact therewith or it may be "flat oriented", that is with the upper and lower layer surfaces placed between electrode end faces and preferably in direct contact therewith. It has been discovered that excellent results are achieved if a substantial amount of the expanded graphite between electrode end faces is edge oriented.
  • edge oriented and flat oriented will generally be explained in terms of expanded graphite constructed of superimposed layers, they are equally applicable to expanded graphite which is formed by pressurizing expanded particles into an integral product. The particles will naturally be aligned such that the grain orientation is generally perpendicular to the applied force. The surface to which the force is applied during formation is the flat oriented surface while the surface 90 from this surface (across the grain) is edge oriented.
  • FIG. 1 shows a joint com-' posed of a lower electrode section 10, and a nipple l2 placed therein connecting the lower section to an upper electrode section 14.
  • a first expanded graphite material 16 is positioned adjacentto-and around the nipple 12.
  • a second expanded graphite material 18 is placednext to the first material and adjacent a gap 20 in the end of the electrode sections. The expanded graphite materials contact the end faces 22, 24 on electrodes 10 and 14 respectively and thereby provide a low electrical resistance at the electrode faces.
  • FIG. 2 illustrates the expanded graphite more clearly.
  • the first material 16 has a different orientation than the second material 18 in the preferred embodiment of the invention.
  • the material 16 is edge oriented while material 18 is flat oriented as hereinbefore defined.
  • the edge oriented graphite has a greater electrical conductivity in' a direction parallel to its layers and is able to withstand the pressures exerted by the expanding electrode sections with a greater degree of flexibility than the flat oriented material, the latter being the stronger material.
  • the orientation of the materials is more clearly described by referring to FIG; 3 wherein the first expanded graphite material 16 is shown to be composed of a plurality of superimposed layers or tapes 26 of expanded graphite.
  • the layers are secured to each other by simply applying pressure or by interposing a binder such as a phenolic resin between layers.
  • the annular ring 16 is arranged about the nipple 12 such that the top surface 28 which contacts one end face of the electrode section is edge oriented, that is, the surface at which the edges of the layers are visible and to which little if any pressure was applied during the formation of the layer structure.
  • expanded graphite 18 is shown to be composed of a plurality of layers of tapes 30 oriented perpendicularly to those shown in the first material 16.
  • the top surface 32 which also contacts the end face of the electrode section is flat oriented, that is, that surface to which the pressure was applied during the formation of the'ring 18.
  • the improvement in the electrode joint between electrodes and therefore the improvement in the overall electrode system and arc quality can be demonstrated in several ways.
  • the electrical resistance at the end faces of two 14-inch diameter carbon electrodes joined by a standard 7-inch by 14- inch connecting nipple was measured by passing a current of approximately 20,000 amps therethrough and measuring the voltage drop.
  • the test was carried out at an ambient temperature of 22C. and no expanded graphite was interposed between electrode end faces.
  • the same test was also carried out at a second joint in the same electrode column except that expanded graphite was placed between end faces.
  • Edgeoriented graphite having a density of 6 pounds per cubic foot was positioned between end faces in contact with substantially all of the area of the end faces without the use of a recess.
  • the following table indicates the voltage data recorded at various joint temperatures:
  • FIG. 4 indicates the results of the test.
  • the joint without expanded graphite is marked control while the joint employing the expanded graphite is designated by the letter A".
  • An examination of FIG. 4 indicates that the highest resistance value on curve A is less than the lowest resistance value achieved with the control, even at the highest applied torques.
  • the incorporation of expanded graphite between end faces in an electrode joint has the added advantage of reducing the torques required to bring the electrode sections into electrical contact thereby minimizing the possibility of joint fracture due to excessive torque pressures.
  • the very low resistance values achieved are important to the effective operation of the electrode system.
  • This segment of the recess was filled with fiat-oriented expanded graphite of a density of 50 pounds per cubic foot and having a l00percent repeatable resiliency when cycling between 0 p.s.i. and 500 p.s.i.'
  • the edge-oriented material had an initial thickness of 0.450 inches and was compressed in the assembly to 0.300 inch. This compression creates the desired initial tension which together with the 0.0l2-inch to 0.020-inch springback character ofthis material enables constant contact with the end faces to be maintained.
  • the flat-oriented-expanded graphite had a thickness of 0.300 inch which was compressed during the operation of the electrodes to 0.270 inch at which level the gap was completely closed.
  • EXAMPLE 11 Two 24-inch diameter-electrode sections are joined by a l2 /2 -inch by 14-inch tapered nipple. A single recess measuring one-sixteenth inch is provided between end faces of the sections by machining the'same into the upper electrode section. An edge-oriented expanded graphite annular ring measuring one-eighth inch in thickness and havinga'n outside diameter of inches and an inside diameter of 13 inches is pressed into the recess between end'faecs. The outer 2 inches of the end face area has no clearance therebetween, the end faces being joined in direct contact in that area. The expanded graphite has a density of6 pounds per cubic foot.
  • the expanded graphite material will differ in accordance with the demands of the system. Thus the size of electrodes, the electrode material, the electrical parameters and the structural loading forces are to be considered when a particular joint design is implemented. Furthermore, the expanded graphite can be positioned between the end faces of the electrode sections in a variety of mechanical connections.
  • An electrode joint comprising:
  • two electrode sections having end faces joined by a threaded nipple withat least one of said end faces having a recess in a major portion thereof, said recess extending radially outward of the nipple cavity;
  • At least one compressible annular ring of flat-oriented expanded graphite positioned in said recess adjacent to and radially outward from the edge-oriented expanded graphite, said ring being axially thicker than the recess formed by the muted end faces so that when tightened said ring contacts said end faces so as to improve structural stiffness at the electrode joint thereby enabling it to better withstand lateral thrust.
  • annular ring of edge-oriented expanded graphite has a density between about 2 pounds per cubic foot and about 15 pounds per cubic foot.
  • annular ring of edge-oriented expanded graphite has a density between about Zdpounds per cubic foot and about 15 pounds er cubic foot an said annular ring of flat-oriented expande graphite gap is provided between the peripheral segments of the end faces adjacent to and radially outward from said annular ring of flat-oriented graphite, said gap providing a smaller clearance between said end faces than said recess to prevent movement of said electrode section when said joint is under a' bending movement thrust load.”

Description

United States Patent 2,836,806 5/1958 Show 287/127EX 3,187,089 6/1965 Cosbyetal. 287/127EX FOREIGN PATENTS 1,194,249 4/1957 France 287/127E Primary ExaminerDavid J. Williamowsky Assistant Examiner-Wayne L. Shedd Anorneys- Robert C. Cummings, Paul A. Rose, Frederick J.
McCarthy, Jr. and Cornelius F. OBrien ABSTRACT: An electrode joint in which expanded graphite is positioned between abutting end faces of the electrode sections. The expanded graphite is preferably primarily edge oriented and occupies a major portion of the available area. Flat oriented expanded graphite and a circumferential gap are also included adjacent the edge-oriented material. Electrical conductivity and thermal stress resistance of the joint are thereby greatly increased.
Patented Nov. 17, 1970 3,540,764
Sheet 1 of 2 ENTORS JO R PAUS SEPH F. REWLOCK ATTORNEY SPECIFICATION FIELD OF INVENTION This invention relates to arc furnace electrodes and more specifically to an improved joint between adjacent electrodes.
DESCRIPTION OF THE PRIOR ART It has for some time been the standard practice in arc furnaccs to join carbonaceous electrodes end to end to form a virtually continuous electrode. With this type of assembly, uninterrupted operation of the arc is maintained even though the electrodes are consumed as they are fed to the arc. A common way to join such electrodes is to provide the ends of each electrode with a threaded recess and to connect the end of the electrode with that of the adjacent electrode by means of a threaded nipple.
There are several important disadvantages associated with a connection of this type. For example, severe stresses due to thermal expansion of the joint members during operation sometimes cause rupture of the materials resulting in a breakdown of the arc entirely. In addition, the electrical resistance in such a joint is undesirably high because of gaps between threads and primarily because of the difficulty in maintaining mating front end faces of joined electrodes in direct contact.
Because of the high resistance joint, current flow and thus th are quality is adversely affected.
'A wide variety of joint modifications have been made in order to improvethe-performance ofarc electrode joints. U.S. Pat. No. 2,970,854 teaches that good results are achieved ifa fusible shim is placed between flanks of the threaded joint members. Other innovations such as tapered nipples, undercut threads and the like have also been somewhat successful in reducing the effects of thermal stresses. However, further improvements are still sought.
DESCRIPTION OF THE INVENTION material having a density of between about 2 to pounds per cubic foot, preferably in the form of an annular ring occupies a major portion of the area between end faces, while a second expanded graphite material having a density of greater than pounds per cubic foot is positioned adjacent the first material and is also preferably in the form of an annular ring. A recess is machined in the electrode end faces to accommodate the expanded graphite materials. In addition, a circumferential gap can be provided between end faces of the joined electrodes at the peripheral edge thereof, that is adjacent the second expanded graphite material, to provide further thermal stress reliefduring the operation ofthe electrodes. I
The expanded graphite of low density provides a resilient cushion which functions toabsorb the expansion of electrodes with increase in temperature. It is easily compressed and in the density range aforementioned it has an excellent resiliency factor thus enabling it to resume its s original size if required under the pressures normally experienced during the operation ofthe system. This first material also improves the electrical resistance of the joint throughout substantially all of the operating temperature range of the system. The second expanded graphite material is employed to provide structural stiffness ofthe electrode column in order to firmly support the column when it is tilted and to sustain lateral thrust imposed by movement of furnace charge materials. This material has approximately a 10 percent repeatable resilient "springback, that is, it can be repeatably deformed (compressedlup to IOpercent of its thickness and upon removal of the force, the material will return to its original thickness. The stress created 2 by changing thermal gradients and thermally incompatible joint components can thereby be further'absorbed during the operation of the electrodes. The circumferential gap at the periphery of the end faces, if it is used, is primarily to act as a positive stop" when the joint isunder a bending moment thrust load.
Graphites are characterized in their internal structure by layer planes of hexagonal networks of carbon atoms. These layer planes are substantially flat and are generally parallel to and equidistant from each other. They are bonded together by weak van der Waal forces which as it has been discovered, can be attacked with certain materials to further weaken the bond between layers; The result of such an attack is that the spacing between the superposed carbon layers can be increased so as to effect a marked expansion in the direction perpendicular to the layers, that is in the Cf direction. thereby forming expanded graphite particles. The particles may then be subsequently treated to form a useable product.
In U.S. Pat. Nos. l,l 37,373 and l.l9l.383 natural graphite particles are expanded by first subjecting the graphite purtic les for a suitable period of time to an oxidizing environment at a suitable temperature. Upon completion of the oxidizing treatment the soggy particles are washed with water and then heated to a temperature of between about 350C. and 600C. to expand the particles in the C direction. The particles are thus expanded up to 25 times their original C" direction dimension and are then combined with a phenolic resin and molded into desirable shapes.
.It has recently been discovered that particles which have been expanded at least times, and preferably 200 times in the "C direction can be. compressed together in the absence of a binder to form a cohesive sheet, paper strip, foam or the like. The product formed can be made to have a density of from 5 pounds per cubic foot or less to 137 pounds per cubic foot by varying the pressure during the forming process. This unique material has excellent flexibility, good strength and an appreciable degree of anisotropy. A full disclosure of this material and the method of makingit is set forth in copending U.S. Patf application Ser. No. 273,245, entitled Chemical Products and Processes? filed April 15, 1963.
For the purposes of this invention,'therefore, expanded graphite is intended to encompass within its meaning graphite which has been formed by expanding a graphite starting material which may be natural graphite, pyrolytic graphite, Kish flake graphite or any-other type, and then recompressing the expanded material. The preferred expanded graphite contains no binder as taught in the aforementioned copending application but may contain a binder if the amount of binder content is less than 10 percent by weight of the graphite product. Greater quantities of binder impart a rigidity to the graphite which lessens its flexibility. It is understood that other materials may be added to the expanded graphite either before or after it is molded to size provided that the important properties of resiliency, electrical and thermal conductivity are not seriously adversely affected. Metal powders or filaments, fibrous reinforcing metals such as fiber glass. clay and the like may well'be included to reinforce or strengthen the compressed product or to improve the electrical conductivity thereof. The expanded graphite as employed in this invention will generally be composed of a plurality of superimposed contiguous layers of thin sheets of expanded graphite which are held together by a binder material or simply by the inherent cohesive character of the material itself. This material may be positioned between electrode end faces with either of two orientations. It may be fedge oriented, that is, with the edges of the layers directed toward the end face surfaces and preferably in direct contact therewith or it may be "flat oriented", that is with the upper and lower layer surfaces placed between electrode end faces and preferably in direct contact therewith. It has been discovered that excellent results are achieved if a substantial amount of the expanded graphite between electrode end faces is edge oriented.
Although the terms edge oriented and flat oriented will generally be explained in terms of expanded graphite constructed of superimposed layers, they are equally applicable to expanded graphite which is formed by pressurizing expanded particles into an integral product. The particles will naturally be aligned such that the grain orientation is generally perpendicular to the applied force. The surface to which the force is applied during formation is the flat oriented surface while the surface 90 from this surface (across the grain) is edge oriented.
DESCRIPTION OF THE DRAWINGS Referring now to the drawings, FIG. 1 shows a joint com-' posed of a lower electrode section 10, and a nipple l2 placed therein connecting the lower section to an upper electrode section 14. A first expanded graphite material 16 is positioned adjacentto-and around the nipple 12. A second expanded graphite material 18 is placednext to the first material and adjacent a gap 20 in the end of the electrode sections. The expanded graphite materials contact the end faces 22, 24 on electrodes 10 and 14 respectively and thereby provide a low electrical resistance at the electrode faces.
FIG. 2 illustrates the expanded graphite more clearly. As shown, the first material 16 has a different orientation than the second material 18 in the preferred embodiment of the invention. The material 16 is edge oriented while material 18 is flat oriented as hereinbefore defined. The edge oriented graphite has a greater electrical conductivity in' a direction parallel to its layers and is able to withstand the pressures exerted by the expanding electrode sections with a greater degree of flexibility than the flat oriented material, the latter being the stronger material. The orientation of the materials is more clearly described by referring to FIG; 3 wherein the first expanded graphite material 16 is shown to be composed of a plurality of superimposed layers or tapes 26 of expanded graphite. The layers are secured to each other by simply applying pressure or by interposing a binder such as a phenolic resin between layers. The annular ring 16 is arranged about the nipple 12 such that the top surface 28 which contacts one end face of the electrode section is edge oriented, that is, the surface at which the edges of the layers are visible and to which little if any pressure was applied during the formation of the layer structure. However, expanded graphite 18 is shown to be composed of a plurality of layers of tapes 30 oriented perpendicularly to those shown in the first material 16. The top surface 32 which also contacts the end face of the electrode section is flat oriented, that is, that surface to which the pressure was applied during the formation of the'ring 18.
The improvement in the electrode joint between electrodes and therefore the improvement in the overall electrode system and arc quality can be demonstrated in several ways. For example, the electrical resistance at the end faces of two 14-inch diameter carbon electrodes joined by a standard 7-inch by 14- inch connecting nipple was measured by passing a current of approximately 20,000 amps therethrough and measuring the voltage drop. The test was carried out at an ambient temperature of 22C. and no expanded graphite was interposed between electrode end faces. The same test was also carried out at a second joint in the same electrode column except that expanded graphite was placed between end faces. Edgeoriented graphite having a density of 6 pounds per cubic foot was positioned between end faces in contact with substantially all of the area of the end faces without the use of a recess. The following table indicates the voltage data recorded at various joint temperatures:
TABLE Control joint Expanded graphite joint Tempera- Voltage 1 Tempera- Voltage 1 ture C.) (Volts) ture C.) (Volts) Measure from end face to end face between electrode sections.
graphite-filled electrode joint. The lower temperatures in the expanded graphite joint were experienced despite the same current asin the joint because of the lower resistance of the joint.
In another test, two carbon electrode sections l4 inches in diameter were joined by a 7-inch by l4-inch connecting nipple. The nipple was split into two segments and an electrically nonconductive material was placed between segments. In this manner, current flowing through the electrode sections was forced to flow around the nipple and thus. through the electrode end faces. A voltage source of approximately 6 volts was placed across the electrode sections and a current of about 20 amps passed through the joint. An electrical resistancebridge was used to measure the resistance across the end faces at various applied torques. Two sets of data were recorded with the same electrode joint; in the first run, no expanded graphite was employed while in the second run edge oriented expanded graphite was positioned between faces in the same manner as specified in the foregoing test above described.
FIG. 4 indicates the results of the test. The joint without expanded graphite is marked control while the joint employing the expanded graphite is designated by the letter A". An examination of FIG. 4 indicates that the highest resistance value on curve A is less than the lowest resistance value achieved with the control, even at the highest applied torques. Thus the incorporation of expanded graphite between end faces in an electrode joint has the added advantage of reducing the torques required to bring the electrode sections into electrical contact thereby minimizing the possibility of joint fracture due to excessive torque pressures. In addition, the very low resistance values achieved are important to the effective operation of the electrode system.
The following are examples of several electrode systems employing the joint of this invention:
EXAMPLE] Two semi-graphite electrodes each having a 68-inch diameter were joined by a graphite nipple 50 inches long and 29 /z inches in diameter. The end faces on the electrodes were recessed so that when electrode sections were joined a recess measuring 0.270 inch was formed. The recess extended about the entire circular end face area to within 2 inches of the outer edge of the electrode sections. A gap of 0.030 inches was formed in the outer 2-inch area between end faces in the shape of an annular ring adjacent the aforementioned recess. The recess was filled with edge-oriented expanded graphite having a density of 6 pounds per cubic foot except for the peripheral 2 inches of the recess adjacent the gap. This segment of the recess was filled with fiat-oriented expanded graphite of a density of 50 pounds per cubic foot and having a l00percent repeatable resiliency when cycling between 0 p.s.i. and 500 p.s.i.'The edge-oriented material had an initial thickness of 0.450 inches and was compressed in the assembly to 0.300 inch. This compression creates the desired initial tension which together with the 0.0l2-inch to 0.020-inch springback character ofthis material enables constant contact with the end faces to be maintained. The flat-oriented-expanded graphite had a thickness of 0.300 inch which was compressed during the operation of the electrodes to 0.270 inch at which level the gap was completely closed.
EXAMPLE 11 Two 24-inch diameter-electrode sections are joined by a l2 /2 -inch by 14-inch tapered nipple. A single recess measuring one-sixteenth inch is provided between end faces of the sections by machining the'same into the upper electrode section. An edge-oriented expanded graphite annular ring measuring one-eighth inch in thickness and havinga'n outside diameter of inches and an inside diameter of 13 inches is pressed into the recess between end'faecs. The outer 2 inches of the end face area has no clearance therebetween, the end faces being joined in direct contact in that area. The expanded graphite has a density of6 pounds per cubic foot.
As indicated in the examples, a variety of modifications can be employed in the joint of the invention, that is, the edge gap or the flat-oriented expanded graphite may be eliminated,
although in electrode joints employing large electrode sections, their presence is highly desirable. Furthermore, various combinations of flatand edge-oriented materials can be used. It will be appreciated that the dimensions of the expanded graphite material will differ in accordance with the demands of the system. Thus the size of electrodes, the electrode material, the electrical parameters and the structural loading forces are to be considered when a particular joint design is implemented. Furthermore, the expanded graphite can be positioned between the end faces of the electrode sections in a variety of mechanical connections.
Although the expanded graphite has been described as.
being in the form of annular rings, it may be in any suitable form. Segmented sections, properly spaced, will also provide the important improvements of the invention if a major portion ofthe end faces are contacted therewith.
We claim: 1. An electrode joint comprising:
a. two electrode sections having end faces joined by a threaded nipple withat least one of said end faces having a recess in a major portion thereof, said recess extending radially outward of the nipple cavity;
b. at least one compressible annular ring of edge-oriented expanded graphite positioned in said recess, said ring beingaxially thicker than the recess formed by the mated end faces so that when tightened said ring contacts said end faces so as to improve the electrical conductance thereat; and
c. at least one compressible annular ring of flat-oriented expanded graphite positioned in said recess adjacent to and radially outward from the edge-oriented expanded graphite, said ring being axially thicker than the recess formed by the muted end faces so that when tightened said ring contacts said end faces so as to improve structural stiffness at the electrode joint thereby enabling it to better withstand lateral thrust.
2. The electrode joint of claim I wherein said annular ring of edge-oriented expanded graphite has a density between about 2 pounds per cubic foot and about 15 pounds per cubic foot.
3. The electrode joint of claim 1 wherein said annular ring of flat-oriented expanded graphite has a density of greater than 25 pou nds per cubic foot.
4. The electrode joint of claim 1 wherein said annular ring of edge-oriented expanded graphite has a density between about Zdpounds per cubic foot and about 15 pounds er cubic foot an said annular ring of flat-oriented expande graphite gap is provided between the peripheral segments of the end faces adjacent to and radially outward from said annular ring of flat-oriented graphite, said gap providing a smaller clearance between said end faces than said recess to prevent movement of said electrode section when said joint is under a' bending movement thrust load."
US713244A 1968-03-14 1968-03-14 Resilient spacer for electrode joints Expired - Lifetime US3540764A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US71324468A 1968-03-14 1968-03-14

Publications (1)

Publication Number Publication Date
US3540764A true US3540764A (en) 1970-11-17

Family

ID=24865372

Family Applications (1)

Application Number Title Priority Date Filing Date
US713244A Expired - Lifetime US3540764A (en) 1968-03-14 1968-03-14 Resilient spacer for electrode joints

Country Status (3)

Country Link
US (1) US3540764A (en)
FR (1) FR2003929B1 (en)
GB (1) GB1215103A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3646240A (en) * 1970-08-28 1972-02-29 Air Reduction Electrode joint
US3771888A (en) * 1971-12-30 1973-11-13 Great Lakes Carbon Corp Nipple-electrode assembly and method of making same
US4725161A (en) * 1986-09-05 1988-02-16 Union Carbide Corporation Electrode joint
US5283804A (en) * 1990-08-01 1994-02-01 Voest-Alpine Machinery, Construction & Engineering Gesellschaft M.B.H. Process and apparatus for graphitizing carbon bodies
US5415755A (en) * 1993-11-17 1995-05-16 Ucar Carbon Technology Corporation Fastening element for securing electrode joints and the electrode using such
EP0723383A1 (en) * 1995-01-18 1996-07-24 Ucar Carbon Technology Corporation Carbon electrode
EP1420485A2 (en) * 2002-11-15 2004-05-19 Sgl Carbon Ag Electrode connection with coated contact surfaces
US20050175061A1 (en) * 2004-01-20 2005-08-11 Michael Frastaci Locking ring for graphite electrodes
US20050175062A1 (en) * 2004-01-20 2005-08-11 Brian Bowman End-face seal for graphite electrodes
US20050207467A1 (en) * 2004-03-18 2005-09-22 John Montminy Threaded pin for carbon electrodes, and electrode assembly with a threaded pin
US20060002446A1 (en) * 2004-01-20 2006-01-05 Brian Bowman End-face seal for graphite electrodes
WO2006114315A2 (en) * 2005-04-28 2006-11-02 Sgl Carbon Ag Electrode joint
US20060291524A1 (en) * 2004-01-20 2006-12-28 Brian Bowman Joint strengthening ring for graphite electrodes
US20070047613A1 (en) * 2004-01-20 2007-03-01 Brian Bowman Locking ring for graphite electrodes having friction layer
US20070127540A1 (en) * 2004-01-20 2007-06-07 Brian Bowman End-face seal for male-female electrode joints
US20070127541A1 (en) * 2004-01-20 2007-06-07 Brian Bowman Locking ring for graphite electrodes
EP1809075A1 (en) * 2006-01-12 2007-07-18 Sgl Carbon Ag Threaded pin, carbon electrode, and electrode assembly
US20070280327A1 (en) * 2004-01-20 2007-12-06 Smith Robert E Electrode joint
US20090180512A1 (en) * 2008-01-16 2009-07-16 Michael Frastaci Compressible Electrode End Face

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3646240A (en) * 1970-08-28 1972-02-29 Air Reduction Electrode joint
US3771888A (en) * 1971-12-30 1973-11-13 Great Lakes Carbon Corp Nipple-electrode assembly and method of making same
US4725161A (en) * 1986-09-05 1988-02-16 Union Carbide Corporation Electrode joint
US5283804A (en) * 1990-08-01 1994-02-01 Voest-Alpine Machinery, Construction & Engineering Gesellschaft M.B.H. Process and apparatus for graphitizing carbon bodies
US5415755A (en) * 1993-11-17 1995-05-16 Ucar Carbon Technology Corporation Fastening element for securing electrode joints and the electrode using such
US5575582A (en) * 1995-01-18 1996-11-19 Ucar Carbon Technology Corporation Fastening device for securing electrode joints
EP0723383A1 (en) * 1995-01-18 1996-07-24 Ucar Carbon Technology Corporation Carbon electrode
CN100493273C (en) * 2002-11-15 2009-05-27 Sgl碳股份公司 Electrode connection with coated contact surfaces
EP1420485A2 (en) * 2002-11-15 2004-05-19 Sgl Carbon Ag Electrode connection with coated contact surfaces
EP1420485A3 (en) * 2002-11-15 2005-01-12 Sgl Carbon Ag Electrode connection with coated contact surfaces
US7324577B2 (en) 2004-01-20 2008-01-29 Graftech International Holdings Inc. End-face seal for male-female electrode joints
US20070047613A1 (en) * 2004-01-20 2007-03-01 Brian Bowman Locking ring for graphite electrodes having friction layer
US7324576B2 (en) 2004-01-20 2008-01-29 Graftech International Holdings Inc. Joint strengthening ring for graphite electrodes
EP1707032A4 (en) * 2004-01-20 2007-06-20 Ucar Carbon Co Inc End-face seal for graphite electrodes
US20060002446A1 (en) * 2004-01-20 2006-01-05 Brian Bowman End-face seal for graphite electrodes
EP1707032A1 (en) * 2004-01-20 2006-10-04 UCAR Carbon Company Inc. End-face seal for graphite electrodes
US20050175062A1 (en) * 2004-01-20 2005-08-11 Brian Bowman End-face seal for graphite electrodes
US20060291524A1 (en) * 2004-01-20 2006-12-28 Brian Bowman Joint strengthening ring for graphite electrodes
US20050175061A1 (en) * 2004-01-20 2005-08-11 Michael Frastaci Locking ring for graphite electrodes
US20070127541A1 (en) * 2004-01-20 2007-06-07 Brian Bowman Locking ring for graphite electrodes
US7466739B2 (en) 2004-01-20 2008-12-16 Graftech International Holdings Inc. Locking ring for graphite electrodes
US20070280327A1 (en) * 2004-01-20 2007-12-06 Smith Robert E Electrode joint
US7206330B2 (en) 2004-01-20 2007-04-17 Ucar Carbon Company Inc. End-face seal for graphite electrodes
US20070127540A1 (en) * 2004-01-20 2007-06-07 Brian Bowman End-face seal for male-female electrode joints
US20050207467A1 (en) * 2004-03-18 2005-09-22 John Montminy Threaded pin for carbon electrodes, and electrode assembly with a threaded pin
WO2005091681A1 (en) * 2004-03-18 2005-09-29 Sgl Carbon Ag Threaded pin for carbon electrodes, and electrode assembly with a threaded pin
WO2005122642A1 (en) * 2004-06-03 2005-12-22 Ucar Carbon Company Inc. Locking ring for graphite electrodes
US20060291525A1 (en) * 2005-04-28 2006-12-28 Sgl Carbon Aktiengesellschaft Electrode joint
WO2006114315A3 (en) * 2005-04-28 2007-04-12 Sgl Carbon Ag Electrode joint
WO2006114315A2 (en) * 2005-04-28 2006-11-02 Sgl Carbon Ag Electrode joint
WO2006118736A3 (en) * 2005-04-29 2007-06-21 Ucar Carbon Co Inc End-face seal for graphite electrodes
EP1935215A1 (en) * 2005-09-22 2008-06-25 Ucar Carbon Company, Inc. Joint strengthening ring for graphite electrodes
WO2007037853A1 (en) * 2005-09-22 2007-04-05 Ucar Carbon Company Inc. Joint strengthening ring for graphite electrodes
EP1935215A4 (en) * 2005-09-22 2010-03-03 Graftech Int Holdings Inc Joint strengthening ring for graphite electrodes
WO2007080079A1 (en) * 2006-01-12 2007-07-19 Sgl Carbon Ag Threaded pin, carbon electrode, and electrode assembly
EP1809075A1 (en) * 2006-01-12 2007-07-18 Sgl Carbon Ag Threaded pin, carbon electrode, and electrode assembly
US20080304537A1 (en) * 2006-01-12 2008-12-11 Sgl Carbon Ag Threaded Pin, Carbon Electrode, and Electrode Assembly
CN101390448A (en) * 2006-01-12 2009-03-18 Sgl碳股份公司 Threaded pin, carbon electrode, and electrode assembly
US20090180512A1 (en) * 2008-01-16 2009-07-16 Michael Frastaci Compressible Electrode End Face

Also Published As

Publication number Publication date
DE1912464A1 (en) 1969-09-18
FR2003929A1 (en) 1969-11-14
FR2003929B1 (en) 1975-07-04
GB1215103A (en) 1970-12-09
DE1912464B2 (en) 1975-06-19

Similar Documents

Publication Publication Date Title
US3540764A (en) Resilient spacer for electrode joints
US2957716A (en) Butt joint on carbon electrodes for electric furnaces
US2836806A (en) Conductive pad for electrode joint
US2093390A (en) Means and method of making electrode joints
US3726738A (en) Method of making a carbonized material of expanded graphite and carbon fibers
US2554499A (en) High-pressure apparatus
US2044392A (en) Joint
US3730320A (en) High temperature brake disc
US1942703A (en) Gasket
US4152533A (en) Electrode joint
JPS6215301B2 (en)
US2816739A (en) Tube and tube sheet assembly
US2941246A (en) High pressure high temperature apparatus
US3914078A (en) Ultra-high pressure system with variable lateral anvil support
US2444904A (en) Bonded rubber joint for couplings and the like and method of making the same
US3814828A (en) Nipple-electrode assembly
US3837226A (en) Sight glass assembly and a method of producing the same
US3782450A (en) Heat exchanger with nests of tubes
US1721326A (en) Sealing or locking ring
US2867786A (en) Mounting means for carbon electrodes or graphite electrodes
US3569609A (en) Electrode joint
DE2419576A1 (en) ROLLING DEVICE
JPS6059008B2 (en) Improved ultra-high pressure equipment
US3173714A (en) Carbon or graphite electrode joint
US3275488A (en) Fabrication of carbon and graphite bodies

Legal Events

Date Code Title Description
AS Assignment

Owner name: MORGAN GUARANTY TRUST COMPANY OF NEW YORK, AND MOR

Free format text: MORTGAGE;ASSIGNORS:UNION CARBIDE CORPORATION, A CORP.,;STP CORPORATION, A CORP. OF DE.,;UNION CARBIDE AGRICULTURAL PRODUCTS CO., INC., A CORP. OF PA.,;AND OTHERS;REEL/FRAME:004547/0001

Effective date: 19860106

AS Assignment

Owner name: UNION CARBIDE CORPORATION,

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:MORGAN BANK (DELAWARE) AS COLLATERAL AGENT;REEL/FRAME:004665/0131

Effective date: 19860925