US3503720A - Rhenium-refractory metal alloys - Google Patents

Rhenium-refractory metal alloys Download PDF

Info

Publication number
US3503720A
US3503720A US661494A US3503720DA US3503720A US 3503720 A US3503720 A US 3503720A US 661494 A US661494 A US 661494A US 3503720D A US3503720D A US 3503720DA US 3503720 A US3503720 A US 3503720A
Authority
US
United States
Prior art keywords
powder
rhenium
tungsten
alloyed
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US661494A
Inventor
John E Peters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chase Brass and Copper Co Inc
Original Assignee
Chase Brass and Copper Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US560098A external-priority patent/US3375109A/en
Application filed by Chase Brass and Copper Co Inc filed Critical Chase Brass and Copper Co Inc
Application granted granted Critical
Publication of US3503720A publication Critical patent/US3503720A/en
Anticipated expiration legal-status Critical
Assigned to CHASE BRASS AND COPPER COMPANY, INCORPORATED, 200 PUBLIC SQUARE, CLEVELAND, OHIO 44114, A CORP. OF DE. reassignment CHASE BRASS AND COPPER COMPANY, INCORPORATED, 200 PUBLIC SQUARE, CLEVELAND, OHIO 44114, A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: KENNECOTT MINING CORPORATION
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S75/00Specialized metallurgical processes, compositions for use therein, consolidated metal powder compositions, and loose metal particulate mixtures
    • Y10S75/95Consolidated metal powder compositions of >95% theoretical density, e.g. wrought
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12181Composite powder [e.g., coated, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/12833Alternative to or next to each other

Definitions

  • This invention relates to refractory metal alloys and to prealloyed powders of such metals. More particularly, the invention pertains to alloys of rhenium in combination with tungsten, molybdenum and admixtures thereof, and to such metals in prealloyed powder form useful for fabricating products by powder metallurgy techniques.
  • the use of powder metallurgy in the fabrication of very high temperature metals is of course a well-known technique and has been widely used for production of tungsten-rhenium, molybdenum-rhenium and tungstenmolybdenum-rhenium alloys.
  • the conventional process comprises thoroughly mixing elemental powders of the metals to be alloyed by blending, screening, ball or rod milling, or the like; then pressing the mixed powders in dies to form a compacted shape that is reasonably self-supporting; and finally subjecting the compacted shape to high temperature treatment which serves both to densify and compact the metal powders and cause alloying thereof by solid state dilfusion.
  • High temperatures are required for sintering the compacted powder, for example around 2550 C.
  • This prealloy powder is then pressed into a compact, pre-sintered at about 1000 C., then fully sintered to effect a solid state diffusion by heated for several hours in a hydrogen atmosphere at elevated temperatures from about 2000 C. to a maximum of about 2550 C.
  • An alternate and generally preferred technique involves neutralizing the perrhenic acid in situ on the powder after it has been wetted to produce ammonium perrhenate directly on the powder particles. This treated powder is then dried, reduced and sintered as previously described.
  • the process described produces homogeneous compacts or articles that are characterized by small grain size. This results is obtained primarily because the sintering temperatures required are several hundred degrees lower than those required for producing equivalent alloys by the conventional compacting and sintering of simple admixed elemental metal powders; also the time of sintering is no greater and generally is less than conventionally required. The resulting greater homogeneity at lower sintering temperatures and times is also of substantial importance for many applications, in that the reduction or total elimination of an extraneous or sigma phase in the product greatly eliminates a source of weakness heretofore encountered unless more elevated temperatures are employed with concomitant disadvantages of excessive grain growth inherent in such treatment.
  • tungsten-rhenium alloy products of the invention produced by sintering at 2000 C. exhibit a higher degree of diffusion and less than 1% sigma phase, as compared to 10% of such phase present when producing prealloyed powders of the same metal by conventional methods utilizing the same sintering temperature.
  • sintering temperature above 2000
  • no sigma phase is detectable in the invention alloys, and grain growth is held within desirable limits providing the sintering time is not prolonged unnecessarily.
  • Another major advantage of the product resulting therefrom is that the distribution of different powder particle sizes and shapes in a given lot of powder is relatively undisturbed, significantly less so than occurs unavoidably in prior alloying practices.
  • a controlled distribution of size and shape of particles is important and sometimes critical to the achievement of a satisfactory product in powder metallurgy practice.
  • the in vention makes possible the used of more commonly available furnaces or ovens which are incapable of the very high temperatures needed for achieving acceptable alloyed products using the conventional procedures described above. A substantial economy is thereby effected.
  • Alloy powder in Lot A-l was prepared by mixing 75 grams of commercially available tungsten powder, capable of passing through a 200 mesh screen, with an aqueous solution of pure perrhenic acid containing the equivalent of 25 grams of rhenium.
  • the particular concentration of perrhenic acid solution used contained 1.5 grams of rhenium per milliliter, and the amount of solution required, therefore, to supply 25 grams of rhenium was 16.7 ml.
  • the tungsten powder was slurried in the perrhenic acid solution to obtain uniform wetting of the particles.
  • the slurry was heated to dryness on a water bath at approximately 100 C. in air.
  • the dried perrhenic acid-impregnated tungsten powder mass was then lightly crushed if necessary, sifted through an 80 mesh screen and placed in suitable refractory boats for traverse through a typical 3-zone reduction furnace employing a hydrogen atmosphere.
  • the impregnated powder was progressed successively through the furnace to effect reduction of the rhenium values (principally in oxide form) while avoiding volatilization of the oxides and consequent loss of the rhenium content.
  • the initial temperature range was kept fairly low, on the order of 400 C., and was increased in successive zones to a maximum of 800 to 1200 C.
  • the rhenium oxides formed on the tungsten powder during preliminary drying is reduced to elemental rhenium and it appears also from analysis that some actual alloying of the component metals takes place at this stage.
  • This pre-alloyed powder was compacted under a pressure of 30 t.s.i. to form a self-supporting slug or ingot. This was pre-sintered at about 1000 C. for 30 minutes, followed by sintering for 3.2 hours in an electric furnace under a hydrogen atmosphere at selected temperatures of from 2000 to 2550 C. The results are compared in Table I which follows with the control lot and that of Lot A-2.
  • EXAMPLE II In a preferred modification of the process, a second batch, designated Lot A-Z, of 75 %25 tungsten-rhenium powder pre-alloy slurry was prepared as in Example 1. However after the concentrated perrhenic acid was mixed with the tungsten powder and preliminarily heated until the mixture was at approximately 100 C., sulficient ammonium hydroxide was added, while agitating the slurry, to eflect neutralization or slight basicity of the slurry. This was determined using pH paper as an indicator. The slurry was then heated to dryness, crushed and sifted as before, and subjected to the successive reduction steps in hydrogen atmosphere as described in Example I.
  • test bars each were prepared from material of Lot A-2 and the control lot for strength and ductility measurements. These bars measured one-quarter ll'lCh square by 12 inches long and were prepared by pressing the powder of the several lots at 30 t.s.i. The pressed bars were then pre-sintered at 1000 C. for 30 minutes, followed by sintering at 2250 C. for 3.5 hours. The bars were tested for transverse rupture strength and deflection at spaced points along their lengths in order to get an average value. The results of the tests are given in Table 2.
  • Tungsten-rhenium powders of diiferent alloy proportions can be prepared in the same manner by varying the proportions accordingly.
  • there is a practical maximum limit of about 26% rhenium in such pre-alloyed powder since above that level homogeneity of the resulting alloy products is difficult and there is a concurrent appearance of substantial amounts of sigma phase.
  • the more dilute alloys present no problem, and one of practical importance at the present time contains about 97% tungsten, 3% rhenium.
  • alloys which are still more dilute in respect to rhenium, as well as those having rhenium contents at levels intermediate the limits mentioned, are readily possible and such alloys can be prepared in accordance with the methods described in either of Examples I or II above by proper proportioning of the amount of tungsten powder and perrhenic acid employed. In the case of the more dilute alloys, it may be necessary to add water to the concentrated perrhenic acid solution used in the previous examples in order to provide sufiicient volume of liquid to effect uniform Wetting of the tungsten powder.
  • Pre-alloyed powders of molybdenum and rhenium may also be prepared in a similar manner.
  • the following is illustrative.
  • EXAMPLE III A pre-alloyed powder containing 53% molybdenum, 47% rhenium was prepared by admixing 53 grams of molybdenum powder with aqueous perrhenic acid in amount sufficient to provide the equivalent of 47 grams of rhenium. Using a perrhenic acid solution as before containing the equivalent of 1.5 grams of rhenium per milliliter, 31.3 ml. of solution is required.
  • Example II Either of the procedures outlined in Examples I and II above may be followed in further treatment of the molybdenurn-rhenium pre-alloyed powder preparation.
  • the perrhenic acid impregnated molybdenum powder is neutralized with ammonium hydroxide prior to the reduction step, and sintering at 2250 C. for 3 hours in hydrogen after compacting at 30 t.s.i., the resulting slugs had the properties shown for Lot A3 in Table 3.
  • a control lot of powder prepared in the conventional manner using elemental powder mixtures of 53% molybdenum and 47% rhenium was tested and the properties of this control material is likewise reported in Table 3.
  • Ternary alloys currently of interest prepared in this manner comprise 46.4% tungsten, 18.2% molybdenum and 35.4% rhenium, by weight; also, 52.0% tungsten, 18.2% molybdenum and 29.8% rhenium.
  • Second phase content or sigma was measured by traversing a suitably prepared sample and taking four representative photomicrographs. The area of sigma inclusions was measured with a planimeter and expressed as a percentage of the total area photographed. Grain size determinations were made in accordance with standard metallographic examining procedures.
  • one of the chief advantages of the invention is that of minimizing any disturbance of the metal powder particle size and shape distribution. This is important for good sintering properties; i.e. good density, powder flow, pressing characteristics. It is especially important where the amount of exposed surface in alloy powder is critical, as in thermionic engines for example.
  • the refractory metal powders in the examples given above had an average starting particle size, as measured by a Fisher Sub-Sieve Sizer (F.S.S.S.) of about 2 to 3 microns, and 2. Scott density of around 40 grams per cubic inch.
  • the particle size of the prealloyed powders, before sintering, produced in accordance with the invention remained substantially the same and thus represents a notable improvement over prior known techniques.
  • a pre-alloyed metal powder for use if fabricating articles by powder metallurgy said powder consisting essentially of a refractory metal of the group consisting of tungsten, molybdenum and mixtures thereof, having an average particle size of 2 to 3 microns, said particles being substantially uniformly coated and at least partially alloyed with elemental rhenium produced in situ on said particles by reduction of perrhenic acid admixed there with.
  • a pre-alloyed metal powder for use in fabricating articles by powder metallurgy said powder consisting essentially of a refractory metal of the grou consisting of tungsten, molybdenum and mixtures thereof, having an average particle size of 2 to 3 microns, said particles being substantially uniformly coated and at least partially alloyed with elemental rhenium produced in situ on said particles by reduction of ammonium perrhenate formed on said powder by reaction of ammonium hydroxide with perrhenic acid.
  • C Rockwell
  • C Rockwell

Description

United States Patent 3,503,720 RHENIUM-REFRACTORY METAL ALLOYS John E. Peters, Wolcott, Conn., assignor to The Chase Brass & Copper Company, Incorporated, Cleveland, Ohio, a corporation of Connecticut No Drawing. Original application June 24, 1966, Ser. No. 560,098, now Patent No. 3,375,109, dated Mar. 26, 1968. Divided and this application July 26, 1967, Ser.
Int. Cl. B22f 1/00 US. Cl. 29-182 Claims ABSTRACT OF THE DISCLOSURE Pre-alloyed metal powders of rhenium-tungsten and rhenium-molybdenum are disclosed, together with sintered slugs of such pre-alloyed metal powders, having unique properties for the preparation of refractory metal alloys useful in the fabrication of various components by powder metallurgy techniques.
This is a division of application Ser. No. 560,098, filed June 24, 1966, now Patent No. 3,375,109.
This invention relates to refractory metal alloys and to prealloyed powders of such metals. More particularly, the invention pertains to alloys of rhenium in combination with tungsten, molybdenum and admixtures thereof, and to such metals in prealloyed powder form useful for fabricating products by powder metallurgy techniques.
The use of powder metallurgy in the fabrication of very high temperature metals is of course a well-known technique and has been widely used for production of tungsten-rhenium, molybdenum-rhenium and tungstenmolybdenum-rhenium alloys. In general the conventional process comprises thoroughly mixing elemental powders of the metals to be alloyed by blending, screening, ball or rod milling, or the like; then pressing the mixed powders in dies to form a compacted shape that is reasonably self-supporting; and finally subjecting the compacted shape to high temperature treatment which serves both to densify and compact the metal powders and cause alloying thereof by solid state dilfusion. High temperatures are required for sintering the compacted powder, for example around 2550 C. for tungsten alloys, using conventional techniques, otherwise considerable difliculty is encountered in respect to lack of homogeneity in the resulting product. A substantial period of time at the elevated temperature, usually several hours, is likewise necessary. Such treatment definitely tends to cause enlarged grain size in the resulting alloys. Large grain size is highly undesirable for applications such as the production of fine wires, for example, which is drawn from alloy slugs or ingots produced by the sintering process.
Other methods of alloying heretofore employed have included co-reduction of mixed oxides or salts as well as elemental forms of one or more of the alloying components, followed by compacting and sintering. But again difficulties are experienced with respect not only to homogeneity and enlarged grain size, but with such other factors such as poor density and undesirable change in the shape and size distribution of the powder particles. Ths latter characteristic is frequently very critical in successful fabrication of parts by powder metallurgy.
It has now been found that substantially improved alloys can be obtained in accordance with the procedure disclosed in the aforesaid Patent No. 3,375,109. by coat- 3,503,720 Patented Mar. 31, 1970 ing the individual particles of a powder of a refractory metal, such as tungsten or molybdenum or a mixture of these, with a decomposable source of rhenium in a particular manner. Briefly, the process involved thoroughly wetting tungsten, molybdenum or mixtures thereof in powder form with a solution of perrhenic acid. The slurry thus prepared is dried and reduced in a suitable atmosphere such as hydrogen at temperature up to about 1000 C. This produces a metal powder in which the individual powder particles are coated with elemental rhenium and in which some actual alloying takes place. This prealloy powder is then pressed into a compact, pre-sintered at about 1000 C., then fully sintered to effect a solid state diffusion by heated for several hours in a hydrogen atmosphere at elevated temperatures from about 2000 C. to a maximum of about 2550 C.
An alternate and generally preferred technique involves neutralizing the perrhenic acid in situ on the powder after it has been wetted to produce ammonium perrhenate directly on the powder particles. This treated powder is then dried, reduced and sintered as previously described.
The process described produces homogeneous compacts or articles that are characterized by small grain size. This results is obtained primarily because the sintering temperatures required are several hundred degrees lower than those required for producing equivalent alloys by the conventional compacting and sintering of simple admixed elemental metal powders; also the time of sintering is no greater and generally is less than conventionally required. The resulting greater homogeneity at lower sintering temperatures and times is also of substantial importance for many applications, in that the reduction or total elimination of an extraneous or sigma phase in the product greatly eliminates a source of weakness heretofore encountered unless more elevated temperatures are employed with concomitant disadvantages of excessive grain growth inherent in such treatment. For example, tungsten-rhenium alloy products of the invention produced by sintering at 2000 C. exhibit a higher degree of diffusion and less than 1% sigma phase, as compared to 10% of such phase present when producing prealloyed powders of the same metal by conventional methods utilizing the same sintering temperature. By increasing the sintering temperature above 2000", e.g. to 2250 C., no sigma phase is detectable in the invention alloys, and grain growth is held within desirable limits providing the sintering time is not prolonged unnecessarily. This represents a temperature reduction of about 300 C. as compared to the conventional process, and is a very significant decrease. There is of course a temperature-time relationship to be observed to obtain a balance between greater homogeneity (lower sigma phase) and grain growth.
Another major advantage of the product resulting therefrom is that the distribution of different powder particle sizes and shapes in a given lot of powder is relatively undisturbed, significantly less so than occurs unavoidably in prior alloying practices. A controlled distribution of size and shape of particles is important and sometimes critical to the achievement of a satisfactory product in powder metallurgy practice. There is, moreover, as a result of greater homogeneity in the products of the invention, better density and higher strength. And the in vention makes possible the used of more commonly available furnaces or ovens which are incapable of the very high temperatures needed for achieving acceptable alloyed products using the conventional procedures described above. A substantial economy is thereby effected.
Further advantages and other objects of the invention will become apparent from the description of several specific examples given below.
EXAMPLE I For comparsion purposes, a control lot of 75% tungsten-25% rhenium alloy powder and sintered slugs or ingots of this control lot were prepared employing powders of tungsten and rhenium in elemental form. The metal powders were admixed, pressed and sintered at various temperatures, reported below, and the results compared to two other alloys, designated Lots A-1 and A-2, prepared in accordance with the present invention.
Alloy powder in Lot A-l was prepared by mixing 75 grams of commercially available tungsten powder, capable of passing through a 200 mesh screen, with an aqueous solution of pure perrhenic acid containing the equivalent of 25 grams of rhenium. The particular concentration of perrhenic acid solution used contained 1.5 grams of rhenium per milliliter, and the amount of solution required, therefore, to supply 25 grams of rhenium was 16.7 ml.
The tungsten powder was slurried in the perrhenic acid solution to obtain uniform wetting of the particles. The slurry was heated to dryness on a water bath at approximately 100 C. in air. The dried perrhenic acid-impregnated tungsten powder mass was then lightly crushed if necessary, sifted through an 80 mesh screen and placed in suitable refractory boats for traverse through a typical 3-zone reduction furnace employing a hydrogen atmosphere. The impregnated powder was progressed successively through the furnace to effect reduction of the rhenium values (principally in oxide form) while avoiding volatilization of the oxides and consequent loss of the rhenium content. Thus, the initial temperature range was kept fairly low, on the order of 400 C., and was increased in successive zones to a maximum of 800 to 1200 C.
At this point the rhenium oxides formed on the tungsten powder during preliminary drying is reduced to elemental rhenium and it appears also from analysis that some actual alloying of the component metals takes place at this stage. Before compacting the pre-alloyed powder into a self-supporting slug, it is generally helpful to crush the powder lightly, sift through a 200 mesh screen and then blend several batches obtained by dividing the powder initially into more than one boat, to obtain a homogeneous product.
This pre-alloyed powder was compacted under a pressure of 30 t.s.i. to form a self-supporting slug or ingot. This was pre-sintered at about 1000 C. for 30 minutes, followed by sintering for 3.2 hours in an electric furnace under a hydrogen atmosphere at selected temperatures of from 2000 to 2550 C. The results are compared in Table I which follows with the control lot and that of Lot A-2.
EXAMPLE II In a preferred modification of the process, a second batch, designated Lot A-Z, of 75 %25 tungsten-rhenium powder pre-alloy slurry was prepared as in Example 1. However after the concentrated perrhenic acid was mixed with the tungsten powder and preliminarily heated until the mixture was at approximately 100 C., sulficient ammonium hydroxide was added, while agitating the slurry, to eflect neutralization or slight basicity of the slurry. This was determined using pH paper as an indicator. The slurry was then heated to dryness, crushed and sifted as before, and subjected to the successive reduction steps in hydrogen atmosphere as described in Example I.
Again the resulting pre-alloyed powder was compacted at 30 t.s.i. into self-supporting slugs and sintered at the aforesaid range of temperatures.
A comparison of the three lots of material thus described is shown in Table I.
TABLE 1.P ROPERTIES OF 0.5 DIAMETE R PELLETS SIN- TE RED AT VARYING TEMPE RATURES.
[Sintering time, 3.2 hours] Sintering Sintered Sintered Average temp., hardness, density, Percent grain Batch 0. R percent 2nd phase sine a Control- 2, 000 23 85. 7 9. 9 12 200 29-30 91. 7 4. 1 24 2, 400 34-36 97. 4 Trace 39 3, 550 34-35 98. 0 G4 A-l 2, 000 31-32 89. 4 2. 2 14 2, 200 34 93. 4 0 24 2, 400 36-37 97. 0 0 47 2, 550 35-36 98. 6 0 63 11-2. 2, 000 33-34 91. 8 0.5 10 2, 200 36 94. 8 0 18 2, 400 36-38 98. 3 0 32 2, 550 37-38 99. 3 0 37 In addition, two test bars each were prepared from material of Lot A-2 and the control lot for strength and ductility measurements. These bars measured one-quarter ll'lCh square by 12 inches long and were prepared by pressing the powder of the several lots at 30 t.s.i. The pressed bars were then pre-sintered at 1000 C. for 30 minutes, followed by sintering at 2250 C. for 3.5 hours. The bars were tested for transverse rupture strength and deflection at spaced points along their lengths in order to get an average value. The results of the tests are given in Table 2.
TABLE 2.TRANSVE RSE RUPTURE TESTS I%X}4X12 bars sintered at 2,250 G. for 3.5 hours] Average Transverse Test rupture Deflee- Strength Deflection Bar point strength, p.s.i. tion p.s.i.
Control 1-.- A 248, 000 063 B 257, 000 063 251, 000 063 C 247, 000 063 Control 2 11% 253, 30g 337 26 0 63 o 270, 000 075 000 060 D 260, 000 063 a 58888 09 o 282, 000 094 089 D 284, 000 094 A-2-2 A]; 285, 030 284, o 0
Tungsten-rhenium powders of diiferent alloy proportions than that of the foregoing Examples I and II can be prepared in the same manner by varying the proportions accordingly. However there is a practical maximum limit of about 26% rhenium in such pre-alloyed powder, since above that level homogeneity of the resulting alloy products is difficult and there is a concurrent appearance of substantial amounts of sigma phase. The more dilute alloys present no problem, and one of practical importance at the present time contains about 97% tungsten, 3% rhenium. Other alloys which are still more dilute in respect to rhenium, as well as those having rhenium contents at levels intermediate the limits mentioned, are readily possible and such alloys can be prepared in accordance with the methods described in either of Examples I or II above by proper proportioning of the amount of tungsten powder and perrhenic acid employed. In the case of the more dilute alloys, it may be necessary to add water to the concentrated perrhenic acid solution used in the previous examples in order to provide sufiicient volume of liquid to effect uniform Wetting of the tungsten powder.
Pre-alloyed powders of molybdenum and rhenium may also be prepared in a similar manner. The following is illustrative.
EXAMPLE III A pre-alloyed powder containing 53% molybdenum, 47% rhenium was prepared by admixing 53 grams of molybdenum powder with aqueous perrhenic acid in amount sufficient to provide the equivalent of 47 grams of rhenium. Using a perrhenic acid solution as before containing the equivalent of 1.5 grams of rhenium per milliliter, 31.3 ml. of solution is required.
Either of the procedures outlined in Examples I and II above may be followed in further treatment of the molybdenurn-rhenium pre-alloyed powder preparation. Using the preferred procedure of Example II, wherein the perrhenic acid impregnated molybdenum powder is neutralized with ammonium hydroxide prior to the reduction step, and sintering at 2250 C. for 3 hours in hydrogen after compacting at 30 t.s.i., the resulting slugs had the properties shown for Lot A3 in Table 3. For comparison, a control lot of powder prepared in the conventional manner using elemental powder mixtures of 53% molybdenum and 47% rhenium was tested and the properties of this control material is likewise reported in Table 3.
TABLE 3 [Properties of 0.5 diameters, 57% molybdenum, 47% rhenium alloy pellets sintered at 2,250 C for 3 hours] There was no evidence of sigma phase in either of the foregoing lots but a notable increase in density of the invention lot was obtained and, quite importantly, there was much lower grain growth encountered. Pre-alloyed powders or slugs of ternary as well as the foregoing binary alloys, may also be prepared in accordance with the process of the invention by proper proportioning of the amounts of tungsten and molybdenum with the perrhenic acid. Ternary alloys currently of interest prepared in this manner comprise 46.4% tungsten, 18.2% molybdenum and 35.4% rhenium, by weight; also, 52.0% tungsten, 18.2% molybdenum and 29.8% rhenium.
In comparing densities of the slugs prepared in the examples reported above, the values given are based on measurements made by the water immersion method. Second phase content or sigma was measured by traversing a suitably prepared sample and taking four representative photomicrographs. The area of sigma inclusions was measured with a planimeter and expressed as a percentage of the total area photographed. Grain size determinations were made in accordance with standard metallographic examining procedures.
As previously mentioned, one of the chief advantages of the invention is that of minimizing any disturbance of the metal powder particle size and shape distribution. This is important for good sintering properties; i.e. good density, powder flow, pressing characteristics. It is especially important where the amount of exposed surface in alloy powder is critical, as in thermionic engines for example. In general, the refractory metal powders in the examples given above had an average starting particle size, as measured by a Fisher Sub-Sieve Sizer (F.S.S.S.) of about 2 to 3 microns, and 2. Scott density of around 40 grams per cubic inch. The particle size of the prealloyed powders, before sintering, produced in accordance with the invention remained substantially the same and thus represents a notable improvement over prior known techniques.
What is claimed is:
1. A pre-alloyed metal powder for use if fabricating articles by powder metallurgy, said powder consisting essentially of a refractory metal of the group consisting of tungsten, molybdenum and mixtures thereof, having an average particle size of 2 to 3 microns, said particles being substantially uniformly coated and at least partially alloyed with elemental rhenium produced in situ on said particles by reduction of perrhenic acid admixed there with.
2. A pre-alloyed metal powder for use in fabricating articles by powder metallurgy, said powder consisting essentially of a refractory metal of the grou consisting of tungsten, molybdenum and mixtures thereof, having an average particle size of 2 to 3 microns, said particles being substantially uniformly coated and at least partially alloyed with elemental rhenium produced in situ on said particles by reduction of ammonium perrhenate formed on said powder by reaction of ammonium hydroxide with perrhenic acid.
3. A pre-alloyed metal powder as defined in claim 2, wherein the powder consists essentially of tungsten and rhenium in the proportion of and 25%, respectively, by weight.
4. A sintered slug of pre-alloyed metal powder as defined in claim 3, wherein said slug has a hardness of at least about 33 Rockwell (C), a density of at least about 92% of theoretical, an average grain size of from about 10 to 37 microns, and containing not over 0.5% of any extraneous phase.
5. A pre-alloyed metal powder as defined in claim 2, wherein the powder consists essentially of tungsten and rhenium in the proportion of 97% and 3% respectively, by weight.
6. A pre-alloyed metal powder as defined in claim 2, wherein the powder consists essentially of molybdenum and rehenium in the proportion of 53% and 47%, respectively by Weight.
7. A pro-alloyed metal powder as defined in claim 1, wherein the powder consists essentially of tungsten and rhenium in the proportion of 75% and 25%, respectively, by weight.
8. .A sintered slug of pre-alloyed metal powder as defined in claim 7, wherein said slug has a hardness of at least about 31 Rockwell (C), a density of at least about of theoretical, an average grain size fiom about 14 to 63 microns, and contains not over 2% of any extraneous phase.
9. A pre-alloyed metal powder as defined in claim 1, wherein the powder consists essentially of tungsten and rhenium in the proportion of 97% and 3%, respectively, by weight.
10. A pro-alloyed metal powder as defined in claim 1, wherein the powder consists essentially of molybdenum and rhenium in the proportion of 53% and 47%, respectively, by Weight.
References Cited UNITED STATES PATENTS 2,157,936 5/1939 Hensel et al. 75-176 2,370,242 2/1945 Hensel et al 29-192 XR 3,307,198 2/1967 Morgan 75176 XR 3,312,539 4/1967 Marshall et al. 75-176 XR ALLEN B. CURTIS, Primary Examiner A. SKAPARS, Assistant Examiner U.S. Cl. X.R.
US661494A 1966-06-24 1967-07-26 Rhenium-refractory metal alloys Expired - Lifetime US3503720A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US560098A US3375109A (en) 1966-06-24 1966-06-24 Process for preparing rheniumrefractory alloys
US66149467A 1967-07-26 1967-07-26

Publications (1)

Publication Number Publication Date
US3503720A true US3503720A (en) 1970-03-31

Family

ID=27072248

Family Applications (1)

Application Number Title Priority Date Filing Date
US661494A Expired - Lifetime US3503720A (en) 1966-06-24 1967-07-26 Rhenium-refractory metal alloys

Country Status (1)

Country Link
US (1) US3503720A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3425768A1 (en) * 1983-07-29 1985-02-14 Ngk Spark Plug Co., Ltd., Nagoya, Aichi CERAMIC GLOW PLUG
US20050238522A1 (en) * 2004-04-22 2005-10-27 Rhenium Alloys, Inc. Binary rhenium alloys
US20070084309A1 (en) * 2005-10-19 2007-04-19 Yuji Akimoto Method for manufacturing rhenium-containing alloy powder, rhenium-containing alloy powder, and conductor paste
US20140170312A1 (en) * 2012-12-14 2014-06-19 Smith International, Inc. Method of making rhenium coating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2157936A (en) * 1939-03-08 1939-05-09 Mallory & Co Inc P R Refractory metal compositions
US2370242A (en) * 1943-01-15 1945-02-27 Mallory & Co Inc P R Refractory metal composition
US3307198A (en) * 1963-04-15 1967-02-28 Burroughs Corp Electrostatic recording utilizing tungsten-rhenium electrodes
US3312539A (en) * 1964-09-11 1967-04-04 James C Marshall Brazing alloys for tungsten and molybdenum

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2157936A (en) * 1939-03-08 1939-05-09 Mallory & Co Inc P R Refractory metal compositions
US2370242A (en) * 1943-01-15 1945-02-27 Mallory & Co Inc P R Refractory metal composition
US3307198A (en) * 1963-04-15 1967-02-28 Burroughs Corp Electrostatic recording utilizing tungsten-rhenium electrodes
US3312539A (en) * 1964-09-11 1967-04-04 James C Marshall Brazing alloys for tungsten and molybdenum

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3425768A1 (en) * 1983-07-29 1985-02-14 Ngk Spark Plug Co., Ltd., Nagoya, Aichi CERAMIC GLOW PLUG
US20050238522A1 (en) * 2004-04-22 2005-10-27 Rhenium Alloys, Inc. Binary rhenium alloys
WO2005102568A2 (en) * 2004-04-22 2005-11-03 Rhenium Alloys, Inc. Binary rhenium alloys
WO2005102568A3 (en) * 2004-04-22 2006-05-18 Rhenium Alloys Inc Binary rhenium alloys
US20070084309A1 (en) * 2005-10-19 2007-04-19 Yuji Akimoto Method for manufacturing rhenium-containing alloy powder, rhenium-containing alloy powder, and conductor paste
US7503959B2 (en) 2005-10-19 2009-03-17 Shoei Chemical Inc. Method for manufacturing rhenium-containing alloy powder, rhenium-containing alloy powder, and conductor paste
US20140170312A1 (en) * 2012-12-14 2014-06-19 Smith International, Inc. Method of making rhenium coating

Similar Documents

Publication Publication Date Title
US4676831A (en) Powder mixture containing talloil free of segregation
US4681629A (en) Powder metallurgical process for manufacturing copper-nickel-tin spinodal alloy articles
US3652261A (en) Iron powder infiltrant
US4976778A (en) Infiltrated powder metal part and method for making same
US3223523A (en) Methods for improving pressed properties and characteristics of sintered powder metal compacts
US3375109A (en) Process for preparing rheniumrefractory alloys
US2175899A (en) Process for making metal articles
US3397057A (en) Method for producing flowable metal powders
US3899319A (en) Powder mixture for the production of alloy steel with a low content of oxide inclusions
US3468658A (en) Method of producing dispersion strengthened metals
US3623860A (en) Tungsten-rhenium alloy powder
US3503720A (en) Rhenium-refractory metal alloys
US2765227A (en) Titanium carbide composite material
US3161949A (en) Refractory metal base alloys and method of making same
US3583864A (en) Chemical process of producing an iron-copper alloy powder
US3533760A (en) Dispersion strengthened nickel-chromium alloy composition
US3515540A (en) Mixed cobalt/tungsten carbide powders
US2159231A (en) Producing nickel alloy articles
US1878589A (en) Manufacture of nickel iron alloys
US3196007A (en) Beryllium copper composition and method of producing green compacts and sintered articles therefrom
US3638293A (en) High-density tungsten-rhenium-nickel alloys and articles
US2923622A (en) Powder metallurgy
JPS596353A (en) Manufacture of high pressure thermal molding powder iron alloy with machinability
US3525609A (en) Copper alloy material
US2160670A (en) Method of manufacturing hard frittered alloys

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHASE BRASS AND COPPER COMPANY, INCORPORATED, 200

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:KENNECOTT MINING CORPORATION;REEL/FRAME:004815/0084

Effective date: 19870320