US3501374A - Sequential bleaching of kraft pulp with chlorine dioxide and chlorine - Google Patents

Sequential bleaching of kraft pulp with chlorine dioxide and chlorine Download PDF

Info

Publication number
US3501374A
US3501374A US787267A US3501374DA US3501374A US 3501374 A US3501374 A US 3501374A US 787267 A US787267 A US 787267A US 3501374D A US3501374D A US 3501374DA US 3501374 A US3501374 A US 3501374A
Authority
US
United States
Prior art keywords
chlorine
percent
chlorine dioxide
stage
bleaching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US787267A
Inventor
Walter Q Jack
Loyd V Johnson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hooker Chemical Corp
Original Assignee
Hooker Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hooker Chemical Corp filed Critical Hooker Chemical Corp
Application granted granted Critical
Publication of US3501374A publication Critical patent/US3501374A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/12Bleaching ; Apparatus therefor with halogens or halogen-containing compounds
    • D21C9/14Bleaching ; Apparatus therefor with halogens or halogen-containing compounds with ClO2 or chlorites
    • D21C9/142Bleaching ; Apparatus therefor with halogens or halogen-containing compounds with ClO2 or chlorites with ClO2/Cl2 in a multistage process involving ClO2/Cl2 exclusively

Definitions

  • This invention relates to a process of sequentially treating kraft pulp with chlorine dioxide, chlorine and caustice in a manner whereby the color bodies, lignins and other impurities are more readily removed or brightened.
  • the more common processes often use more than one reagent and more than one bleaching step.
  • Some of these processes involve treating the kraft pulp with a reagent such as chlorine, washing the residual chlorine and solubilized impurities from the treated material with water, neutralizing or extracting the chlorinated lignins with caustic and washing with water, again treatingthe kraft pulp with another reagent, such as chlorine, chlorine dioxide or sodium hypochlorite, and again washing the residual reagent and solubilized impurities from the cellulosic material.
  • a reagent such as chlorine
  • chlorine dioxide is used in the first stage
  • specific mixtures of chlorine dioxide and chlorine are used in the first stage.
  • the total available chlorine added by the chlorine dioxide and chlorine is from about 1 to about 10 percent by weight of the kraft pulp
  • the process of this invention provides improved characteristics in the bleached material at equivalent available chlorine applications, compared to heretofore known processes, thereby providing an economic advantage and in particular provides especially improved brightness in the bleached material.
  • subsequent bleaching stages used in multistage bleaching operations and the particular bleaching reagents used in these stages affect the characteristics of the final bleached pulp, improved results are obtained using the method of this invention as the first stage with other normal bleaching reagents, in subsequent stages.
  • DcEI-IH DcEHD DcEHHD DcEHDH with and without wash after 4th stage DcHDH with and without wash after 3rd stage DcHDED with and without wash after 3rd stage DcEHDEHD with and without wash after 4th stage DcEDEDH with and without wash after 3rd stage DcEHDED with and without wash after 4th stage DcEHED DcEHPH De denotes applicants sequential process wherein the pulp is treated with chlorine dioxide and chlorine, E denotes caustic extraction, H denotes hypochloriate treatment, D denotes chlorine dioxide treatment, and P denotes peroxide treatment.
  • a sequence wherein the woodpulp is washed after it is bleached with chlorine dioxide but before it is bleached with chlorine is within the scope of applicants invention and yields good results; again, however it is preferred not to use a washing step inasmuch as even better results-a pulp with a higher degree of brightness, e.g.are obtained when it is omitted.
  • Kraft pulp is an alkaline pul when one or more woods are treated by the sulfate process.
  • any wood or combination of woods may be used to make the kraft pulp which is advantageously bleached by the process of this invention.
  • pine woods such as white (northern), white (western), sugar, Norway (red), jack, ponderosa, longleaf, loblolly, lodgepole, shortleaf, slash, and white (eastern) pines, may be used to prepare the kraft pulp which may be bleached by the process of this invention.
  • firs such as Douglas, alpine, balsam, grand, noble, silver, and white firs may be used to prepare such kraft pulp.
  • spruces such as black, red, white, Englemann, and Sitka can also be used.
  • Hemlocks such as eastern and western hemlock, larches such as eastern, cypress bald, and western larch, ashes such as white, basswood, and beech ash, birches such as paper and yellow birch, maples such as Manitoba, red, silver, and sugar maple, poplars such as quaking aspen, yellow balsam, eastern cottonwood, and large-toothed aspen, sycamore, butternut, chestnut, cucumber tree, American elm, black gum, sweet gumany of these may be used to prepare the kraft pulp which may be advantageously bleached by the process of this invention.
  • one or more of said woods is converted into woodchips or sawdust, and said chips or sawdust are treated in a pressure vessel called a digester with a liquor comprised of an aqueous solution of sodium hydroxide or a solution comprised of sodium hydroxide and sodium sulphide.
  • the chips are cooked in this liquor to dissolve the interfiber bonding materials of the wood.
  • the pulp is separated from the black liquor, the residual liquor which contains the spent reagent and part of the wood material.
  • This pulp whose properties may be varied by varying the reaction conditions in the cooking process, is kraft pulp, and it is with this which the bleaching process of this invention may be advantageously used.
  • the process of this invention is used to bleach kraft pulp.
  • the effluent from such a bleaching process is less toxic to fish life and of a lighter color than efiiuents produced by prior art processes, and as such is less objectionable a stream pollutant than they are.
  • any source of chlorine dioxide may be used.
  • alkali and alkaline earth metal chlorites such as sodium chlorite and potassium chlorite may be used, and one can add such a chlorite to the pulp slurry, acidify the slurry, and generate chlorine dioxide in situ.
  • chlorine dioxide which is generated from chlorate in, e.g., a chlorine dioxide generator, for it is much less economical to generate the chlorine dioxide in situ.
  • applicants process is hereinafter disclosed as using chlorine dioxide generated from chlorate; but it is to be understood that the use of chlorine dioxide from any other source is within the scope of their invention.
  • the bleaching reagents used in the present process are actually reagents which act upon the impurities such as the color bodies and lignin contained in the cellulose ma terial, thereby oxidizing or solubilizing the impurities so that they may be whitened or removed.
  • chlorine dioxide and chlorine are gases under most operating conditions, they can be used as such to react on either the dry or wet plup material.
  • the chlorine dioxide and chlorine can be passed into an aqueous dispersion of pulp or the like to therein react therewith, or they can be absorbed in aqueous solutions and added to the pulp in solution form.
  • the prepared pulp is normally in an aqueous slurry which may be acidic, neutral or basic, and is directly bleached therein.
  • chlorine dioxide or chlorine is added in sequence to the kraft pulp, such that first one reagant is added and reacted with the cellulosic material and then the second reagent is added and reacted, generally without an intermediate washing or an alkali extraction step.
  • chlorine dioxide is added and allowed to react for a period of time sufficient to at least partially deplete the chlorine dioxide, i.e., more than about 50 percent is depleted.
  • chlorine is added and reacted with the kraft pulp, which is subsequently treated with caustic.
  • the residual reagent may be Washed from the pulp with Water.
  • Other bleaching stages may be applied, using conventional bleaching reagents.
  • chlorine dioxide, chlorine, hypochlorite, peroxide or mixtures thereof can be used.
  • this process can also be used in a second or later stage or as the only bleaching stage.
  • the addition of the chlorine dioxide is preferably made in suflicient quantity so that a neutral to acidic pulp slurry is formed. Under such conditions, the bleaching action of the reagent is more effective.
  • the chlorine dioxide may contain a small amount of chlorine due to the simultaneous release of chlorine during most chlorine dioxide generation processes, when it is stated herein that the kraft pulp is treated with chlorine dioxide, such a treatment is with a material which is primarily or substantially all chlorine dioxide, but may contain some chlorine. In the same manner, the chlorine used is primarily or substantially all chlorine, but may contain some chlorine dioxide.
  • the bleaching time for each reagent in the process of this invention can vary, depending on the bleaching temperature, concentration of the reagents used, the specific characteristics desired in the bleached pulp, and the percentage of pulp dispersed in the aqueous solution.
  • sufficient time is provided after each addition so that the reagent is reacted with the pulp, thereby at least partially depleting it prior to the addition of the second reagent. In most instances the reagent is reacted to substantially or to almost completely deplete it prior to the next addition.
  • At lower temperatures and lower concentrations of reagent when the ultimate bleaching capacity of the reagent is to be utilized, longer bleaching times are used.
  • the total bleaching or reaction time for the process of this invention can be up to about three hours or more. Preferably, the reaction time will be from about fiveminutes to about two hours. Of this reaction time, it is preferred to react the first reagent, the chlorine dioxide, for a shorter time than the second reagent, the chlorine. It is preferred to use a reaction time ratio of the chlorine dioxide to the chlorine of about 1:2. Thus in a one hour total reaction time in the first stage, the chlorine dioxide is reacted for about 20 minutes before chlorine is added; it is best then to react the chlorine for about 40 minutes, at which time the chlorine is substantially depleted. Generally the chlorine dioxide is reacted with the kraft pulp for from about 2 to about 75 minutes, and the chlorine is reacted with the draft pulp for from about 2 to 120 minutes.
  • the temperature at which the solution is maintained during the bleaching operation can be varied from about degrees centigrade up to about 100 degrees centigrade, but it is normally preferred to effect the bleaching operation in the temperature range of about to about 70 degrees centigrade.
  • the speed of the bleaching reaction is accelerated at the higher temperatures.
  • the amount of total available chlorine added can vary considerably depending upon the particular characteristics desired to be obtained as a re sult of the bleaching operation. Normally, I to about percent of available chlorine, by Weight of the kraft pulp as measured by the percent consistency, is added and reacted with the kraft pulp, the exact amount depending on the particular bleaching requirements, though it is prefered to use from about 3 to about 10 percent of available chlorine. Available chlorine is a measure of the oxidizing power of the reagent using chlorine as the standard. As such, one part by weight of chlorine dioxide is equivalent to 2.63 parts by Weight of chlorine. It has been found to be preferable to add 5 to 90 percent of the total available chlorine in the first phase addition (chlorine dioxide) and more preferably to add 10 to 80 percent of the total available chlorine based on the total avilable chlorine required in the bleaching stage.
  • the kraft pulp After the kraft pulp has been reacted with the chlorine dioxide and chlorine, it is generally of a consistency of from about 2 to about 20 percent. It is then treated with caustic.
  • the caustic treatment is conducted at a temperature of from about 0 to about 100 degree centigrade, although it is preferred to use a temperature of from about 5 to about 70 degrees centigrated.
  • the caustic treatment is conducted for a sufiicient period of time until the pH of the slurry reaches the desired value. It is preferred to have the pH of the slurry be from about 7 to about 12, although it is more preferred to have said pH be from about 8 to about 11, and it is even more preferred to have said pH be from about 10 to about 11.
  • the pulp After the kraft pulp has been treated with caustic, it is preferred to bleach it with either chlorine dioxide or hypochlorite.
  • the pulp at this stage, will be of a con sistency of from about 10 to about 20 percent. From about 0.1 to about 2 percent of the chlorine dioxide or hypochlorite (by weight of pulp) should be applied.
  • chlorine dioxide When chlorine dioxide is used, the reaction is run at a temperature of from about 50 to about degrees centigrade for from about 1 to about 5 hours, and the pH of the slurry is maintained at from about 2 to about 6; although it is preferred, when using chlorine dioxide, to use a reaction temperature of from about 65 to about 75 degrees centigrade and maintain the pH at from about 3 to about 5.
  • hypochlorite When hypochlorite is used, the reaction is run at a temperature of from about 20 to about 70 degrees centigrade for from about 1 to about 4 hours, and the pH of the slurry is maintained at from about 8 to about 12; although it is preferred, when using hypochlorite, to use a reaction temperature of from about 30 to about 50 degrees centigrade and maintain the pH at from about 9 to about 11.
  • EXAMPLES 13 These examples illustrate a comparison between the results obtained by the sequential chlorine dioxide-chlorine-caustic bleaching process of the present invention (Example 1) compared to a mixture of chlorine dioxide and chlorine (Example 2) and the use of chlorine alone (Example 3).
  • the comparative examples were run in a five-stage bleaching operation, wherein the first stage of Example 1 used the method of the present invention, wherein the first stage of Example 2 utilized a mixture of chlorine dioxide and chlorine and wherein the first stage of Example 3 used chlorine.
  • the remaining bleaching stages for each example follow the same sequence of caustic extraction, chlorine dioxide addition, caustic extraction and final chlorine dioxide addition.
  • the tear strength is in grams per pound per ream of 500-24 by 40 inch sheets times 100; the tensile is the breaking length measured in meters of paper, and double folds is per pound per ream of 500-24 by 40' inch sheets times 100.
  • Example 1 which illustrates the process of the present invention
  • the two phase addition employed a reaction time of 20 minutes for the addition of the first reagent, which was chlorine dioxide and a reaction time of 40 minutes for the addition of the second reagent, which was chlorine.
  • a comparison of the data obtained illustrates the improved results obtained by the present method.
  • Higher third and fifth stage brightnesses are obtained by the sequential method.
  • higher third and fifth stage viscosities are obtained, compared with normal chlorine treatment.
  • the higher brightness of the final product obtained both before and after aging for an 18-hour period illustrates the superiority of the present process in producing superior product characteristics.
  • the strength of the end product is equal to or better than that obtained when only chlorine was used as the bleaching reagent, as illustrated in Example 3, or that resulting when the bleaching reagent was a mixture as illustrated in Example 2.
  • the bleaching reagent was a mixture as illustrated in Example 2.
  • similarly good results are Cir obtained.
  • a washing step is used in between the chlorine dioxide and chlorine steps, a bleached pulp with good brightness and strength characteristics is obtained.
  • EXAMPLES 4 THROUGH 6 These examples compare the sequential process of the present invention when used as the first stage of a sixstage bleaching process, with the use of a mixture of chlorine dioxide and chlorine in the first stage and the use of pure chlorine in the first stage. The comparisons were run using the same composition of kraft pulp as that used in Examples 1 through 3, dispersed in an aqueous phase. The results of the experiments are shown in Table II.
  • Example 4 is a typical illustration of the use of chlorine as the bleaching reagent in the first stage.
  • Example 5 shows two-phase chlorine dioxide-chlorine addition of the present invention, wherein the chlorine dioxide was reacted for 20 minutes prior to the addition of chlorine, which was then reacted for 40 minutes.
  • Example 6 illustrates the use of a mixture of chlorine dioxide and chlorine in the first stage.
  • the present invention it was possible to use 1.5 percent less sodium hydroxide in the second stage than when all chlorine was used as a bleaching reagent. Also, the temperature of the second stage could be operated at 48 degrees centigrade instead of 74 degrees centigrade. This is particularly beneficial in commercial operations, due to the reduction in the chemical and steam requirements.
  • the brightness in the third stage was 11 points higher with the two phase addition than that obtained with either the chlorine or the mixture.
  • the fourth stage brightness was also 4 to 5 points higher with the two phase method and the final brightness after the sixth stage was again higher than that obtained with chlorine or the mixture. All of the tests were run according to TAPPI Standard Testing methods as indicated in Examples l-3.
  • a process for the sequential bleaching of kraft pulp comprising the steps of sequentially:
  • the reactions are run at a temperature of from about to about 100 degrees centigrade, thereby forming a natural to acidic slurry of pulp material with a consistency of from about 20 to about 20 percent (by weight of pulp); and (b) treating said slurry of pulp material with caustic at a temperature of from about 0 to about 100 degrees centigrade for about 15 minutes to about 3 hours until the pH of the slurry is from about 7 to about 12.
  • the caustic treatment is conducted for from about 30 to about 120 minutes until the pH of the slurry is frim about 8 to about 11.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Paper (AREA)

Description

United States Patent 3,501,374 SEQUENTIAL BLEACHIN G 0F KRAFT PULP WITH CHLORINE DIOXIDE AND 'CHLORINE Walter Q. Jack, Youngstown, N .Y., and Loyd V. Johnson,
Tacoma, Wash., assignors to Hooker Chemical Corporation, Niagara Falls, N.Y., a corporation of New York No Drawing. Continuation-impart of application Ser. No. 467,697, June 28, 1965. This application Dec. 26, 1968, Ser. No. 787,267 The portion of the term of the patent subsequent to Mar. 18, 1986, has been disclaimed Int. Cl. D21c 3/02, 3/26 US. Cl. 162-89 Claims ABSTRACT OF THE DISCLOSURE There is provided a process for the sequential bleaching of kraft .pulp comprising reacting kraft pulp with chlorine dioxide until the chlorine dioxide is at least partially depleted, reacting the kraft pulp with chlorine, and treating the kraft pulp with caustic.
Via this process bleached kraft pulps with exceptionally good brightness and strength characteristics are obtained.
This is a continuation-in-part of copending application SN 467,697, filed June 28, 1965 now Patent No. 3,433,702. This invention relates to a process of sequentially treating kraft pulp with chlorine dioxide, chlorine and caustice in a manner whereby the color bodies, lignins and other impurities are more readily removed or brightened.
The bleaching of cellulosic materials, particularly kraft pulp, has been the subject of extensive study and experimentation. As a result, many processes are known for effecting such bleaching operation. Various oxidizing reagents, such as chlorine, chlorine dioxide, alkali and alkaline earth hypochlorites, hydrogen peroxide, and the like have been suggested and used in specific processes wherein the reagent is applied to the cellulosic material in one or more steps.
The more common processes often use more than one reagent and more than one bleaching step. Some of these processes involve treating the kraft pulp with a reagent such as chlorine, washing the residual chlorine and solubilized impurities from the treated material with water, neutralizing or extracting the chlorinated lignins with caustic and washing with water, again treatingthe kraft pulp with another reagent, such as chlorine, chlorine dioxide or sodium hypochlorite, and again washing the residual reagent and solubilized impurities from the cellulosic material. Processes have been suggested wherein chlorine is used in the first bleaching stage or wherein chlorine dioxide is used in the first stage, or wherein specific mixtures of chlorine dioxide and chlorine are used in the first stage. Each of these processes has various advantages and disadvantages in the treatment of kraft pulp. The particular sequence and reagents used affects the brightness of the bleached material, the extent of fiber degradation and, as a result, the fiber strength, brightness, resistance to loss of brightness on aging of the bleached material, and overall the economics of the process.
It is an object of the present invention to provide a method whereby the advantages of chlorine dioxide and chlorine can be incorporated into a process so that improved characteristics are obtained over previous processes. Another object of this invention is to provide a process whereby improved brightness and improved re sistance to loss of brightness on aging are obtained at an economic advantage. A further object of this invention is to provide a process particularly suited for the bleaching of kraft pulp, utilizing conventional chlorine dioxide 3,501,374 Patented Mar. 17, 1970 ice generating equipment and conventional bleaching equipment. These and other objects will become apparent to those skilled in the art from the description of the invention which follows.
In accordance with this invention, there is provided a process for the sequential bleaching of kraft pulp, comprising the steps of sequentially:
(a) reacting kraft pulp dispersed in aqueous slurry with chlorine dioxide until the chlorine dioxide is at least partially depleted, and then reacting the kraft pulp with chlorine, wherein:
(1) the total available chlorine added by the chlorine dioxide and chlorine is from about 1 to about 10 percent by weight of the kraft pulp,
(2) from about 5 to about percent of the total available chlorine is furnished by chlorine dioxide, the remaining available chlorine being furnished by chlorine,
(3) the chlorine dioxide is reacted with the kraft pulp for from about 2 to about 75 minutes, and chlorine is reacted with the kraft pulp for from about 2 to about 120 minutes, and
(4) the reactions are run at a temperature of from about 0 to about degrees centigrade,
thereby forming a neutral ti acidic slurry of pulp material with a consistency of from about 2 to about 20 percent (by weight of pulp); and
(b) treating said slurry of pulp material with caustic at a temperature of from about 0 to about 100 degrees centigrade for about 15 minutes to about 3 hours until the pH of the slurry is from about 7 to about 12. The process of this invention is preferably used as the only or first stage of a bleaching operation, and when used as the first stage bleaching operation it is readily incorporated into conventional multi-stage processes.
The process of this invention provides improved characteristics in the bleached material at equivalent available chlorine applications, compared to heretofore known processes, thereby providing an economic advantage and in particular provides especially improved brightness in the bleached material. Although subsequent bleaching stages used in multistage bleaching operations and the particular bleaching reagents used in these stages affect the characteristics of the final bleached pulp, improved results are obtained using the method of this invention as the first stage with other normal bleaching reagents, in subsequent stages.
Thus, e.g., where chlorine dioxide and chlorine are sequentially used followed by a caustic extraction, a further chlorine dioxide bleach, a further caustic extraction, and a final chlorine dioxide bleach, vastly superior results are obtained compared with processes wherein either a mixture of chlorine dioxide and chlorine, chlorine alone, or chlorine dioxide alone is used followed by the rest of said sequence; lesser amounts of chemicals can be used to obtain comparable brightness levels via the process of the present invention. Thus, e.g., the following sequences, inter alia, give much better results than do rior art processes:
DcEI-IH DcEHD DcEHHD DcEHDH with and without wash after 4th stage DcHDH with and without wash after 3rd stage DcHDED with and without wash after 3rd stage DcEHDEHD with and without wash after 4th stage DcEDEDH with and without wash after 3rd stage DcEHDED with and without wash after 4th stage DcEHED DcEHPH De denotes applicants sequential process wherein the pulp is treated with chlorine dioxide and chlorine, E denotes caustic extraction, H denotes hypochloriate treatment, D denotes chlorine dioxide treatment, and P denotes peroxide treatment.
It is to be understood that when applicants use the term sequential they are referring to a process wherein kraft pulp is treated with chlorine dioxide, chlorine and caustic, with or without intermediate or subsequent extraction and/or washing steps between the chlorine dioxide and chlorine applications. Thus, e.g., a sequence wherein a caustic extraction occurs between a prior chlorine dioxide bleaching and the chlorine bleaching is within the scope of applicants invention; good results are obtained via such a sequence, although it is preferred not to have the caustic extraction step separate the two aforementioned bleaching steps. Thus, e.g., a sequence wherein the woodpulp is washed after it is bleached with chlorine dioxide but before it is bleached with chlorine is within the scope of applicants invention and yields good results; again, however it is preferred not to use a washing step inasmuch as even better results-a pulp with a higher degree of brightness, e.g.are obtained when it is omitted.
Especially good results are obtained when applicants process is used to bleach kraft pulp. Kraft pulp is an alkaline pul when one or more woods are treated by the sulfate process. In general, any wood or combination of woods may be used to make the kraft pulp which is advantageously bleached by the process of this invention. Thus, e.g., pine woods such as white (northern), white (western), sugar, Norway (red), jack, ponderosa, longleaf, loblolly, lodgepole, shortleaf, slash, and white (eastern) pines, may be used to prepare the kraft pulp which may be bleached by the process of this invention. Thus e.g., firs such as Douglas, alpine, balsam, grand, noble, silver, and white firs may be used to prepare such kraft pulp. Thus, e.g., spruces such as black, red, white, Englemann, and Sitka can also be used. Hemlocks such as eastern and western hemlock, larches such as eastern, cypress bald, and western larch, ashes such as white, basswood, and beech ash, birches such as paper and yellow birch, maples such as Manitoba, red, silver, and sugar maple, poplars such as quaking aspen, yellow balsam, eastern cottonwood, and large-toothed aspen, sycamore, butternut, chestnut, cucumber tree, American elm, black gum, sweet gumany of these may be used to prepare the kraft pulp which may be advantageously bleached by the process of this invention. In the sulfate process one or more of said woods is converted into woodchips or sawdust, and said chips or sawdust are treated in a pressure vessel called a digester with a liquor comprised of an aqueous solution of sodium hydroxide or a solution comprised of sodium hydroxide and sodium sulphide. The chips are cooked in this liquor to dissolve the interfiber bonding materials of the wood. Thereafter, the pulp is separated from the black liquor, the residual liquor which contains the spent reagent and part of the wood material. This pulp, whose properties may be varied by varying the reaction conditions in the cooking process, is kraft pulp, and it is with this which the bleaching process of this invention may be advantageously used.
Some rather suprising advantages are obtained when the process of this invention is used to bleach kraft pulp. Thus, for example, the effluent from such a bleaching process is less toxic to fish life and of a lighter color than efiiuents produced by prior art processes, and as such is less objectionable a stream pollutant than they are. Thus, e.g., one unexpectedly obtains an increased yield of the bleached kraft pulp with applicants process. Thus, e.g., via the process of this invention one unexpectedly consistently obtains a high-viscosity bleached kraft pulp regardless of temperature conditions; with some of the prior art processes, such as those which use chlorine in the first stage, one obtains a kraft pulp with poor viscosity characteristics when the bleaching temperature is relatively high. Thus, e.g., one obtains bleached kraft pulp at the desired brightness levels at much lower costs than with prior art processes. It is to be understood that this list of advantages is merely exemplary and that these advantages accrue when the process of the present invention is used to bleach kraft pulp. Said advantages are especially noticeable when applicants process is used to bleach kraft pulp if there is neither an intermediate Wash or extraction step between the chlorine dioxide and chlorine bleaching steps.
In the process of the present invention, any source of chlorine dioxide may be used. Thus, e.g., alkali and alkaline earth metal chlorites such as sodium chlorite and potassium chlorite may be used, and one can add such a chlorite to the pulp slurry, acidify the slurry, and generate chlorine dioxide in situ. It is preferred, however, to use chlorine dioxide which is generated from chlorate in, e.g., a chlorine dioxide generator, for it is much less economical to generate the chlorine dioxide in situ. For the sake of convenience, applicants process is hereinafter disclosed as using chlorine dioxide generated from chlorate; but it is to be understood that the use of chlorine dioxide from any other source is within the scope of their invention.
The bleaching reagents used in the present process are actually reagents which act upon the impurities such as the color bodies and lignin contained in the cellulose ma terial, thereby oxidizing or solubilizing the impurities so that they may be whitened or removed. Since chlorine dioxide and chlorine are gases under most operating conditions, they can be used as such to react on either the dry or wet plup material. Also, the chlorine dioxide and chlorine can be passed into an aqueous dispersion of pulp or the like to therein react therewith, or they can be absorbed in aqueous solutions and added to the pulp in solution form. However, it is usually more convenient to have the pulp in an aqueous slurry and to add the reagents to the slurry. Thus, the prepared pulp is normally in an aqueous slurry which may be acidic, neutral or basic, and is directly bleached therein.
Therefore, the invention will be more completely described in relation to aqueous slurries of pulp.
In the present process, chlorine dioxide or chlorine is added in sequence to the kraft pulp, such that first one reagant is added and reacted with the cellulosic material and then the second reagent is added and reacted, generally without an intermediate washing or an alkali extraction step. Typically, chlorine dioxide is added and allowed to react for a period of time sufficient to at least partially deplete the chlorine dioxide, i.e., more than about 50 percent is depleted. Then, chlorine is added and reacted with the kraft pulp, which is subsequently treated with caustic. After a reaction of sufificient time to produce the desired results, the residual reagent may be Washed from the pulp with Water. Other bleaching stages may be applied, using conventional bleaching reagents. Thus chlorine dioxide, chlorine, hypochlorite, peroxide or mixtures thereof can be used.
Although it is preferred to use the present method in the first stage of a bleaching operation, this process can also be used in a second or later stage or as the only bleaching stage. The addition of the chlorine dioxide is preferably made in suflicient quantity so that a neutral to acidic pulp slurry is formed. Under such conditions, the bleaching action of the reagent is more effective.
Since, in commercial operations the chlorine dioxide may contain a small amount of chlorine due to the simultaneous release of chlorine during most chlorine dioxide generation processes, when it is stated herein that the kraft pulp is treated with chlorine dioxide, such a treatment is with a material which is primarily or substantially all chlorine dioxide, but may contain some chlorine. In the same manner, the chlorine used is primarily or substantially all chlorine, but may contain some chlorine dioxide.
The bleaching time for each reagent in the process of this invention can vary, depending on the bleaching temperature, concentration of the reagents used, the specific characteristics desired in the bleached pulp, and the percentage of pulp dispersed in the aqueous solution. Thus sufficient time is provided after each addition so that the reagent is reacted with the pulp, thereby at least partially depleting it prior to the addition of the second reagent. In most instances the reagent is reacted to substantially or to almost completely deplete it prior to the next addition. At lower temperatures and lower concentrations of reagent, when the ultimate bleaching capacity of the reagent is to be utilized, longer bleaching times are used.
The total bleaching or reaction time for the process of this invention can be up to about three hours or more. Preferably, the reaction time will be from about fiveminutes to about two hours. Of this reaction time, it is preferred to react the first reagent, the chlorine dioxide, for a shorter time than the second reagent, the chlorine. It is preferred to use a reaction time ratio of the chlorine dioxide to the chlorine of about 1:2. Thus in a one hour total reaction time in the first stage, the chlorine dioxide is reacted for about 20 minutes before chlorine is added; it is best then to react the chlorine for about 40 minutes, at which time the chlorine is substantially depleted. Generally the chlorine dioxide is reacted with the kraft pulp for from about 2 to about 75 minutes, and the chlorine is reacted with the draft pulp for from about 2 to 120 minutes.
The temperature at which the solution is maintained during the bleaching operation can be varied from about degrees centigrade up to about 100 degrees centigrade, but it is normally preferred to effect the bleaching operation in the temperature range of about to about 70 degrees centigrade. The speed of the bleaching reaction is accelerated at the higher temperatures.
The amount of total available chlorine added, whether th availble chlorine is added as chlorine dioxide or as chlorine can vary considerably depending upon the particular characteristics desired to be obtained as a re sult of the bleaching operation. Normally, I to about percent of available chlorine, by Weight of the kraft pulp as measured by the percent consistency, is added and reacted with the kraft pulp, the exact amount depending on the particular bleaching requirements, though it is prefered to use from about 3 to about 10 percent of available chlorine. Available chlorine is a measure of the oxidizing power of the reagent using chlorine as the standard. As such, one part by weight of chlorine dioxide is equivalent to 2.63 parts by Weight of chlorine. It has been found to be preferable to add 5 to 90 percent of the total available chlorine in the first phase addition (chlorine dioxide) and more preferably to add 10 to 80 percent of the total available chlorine based on the total avilable chlorine required in the bleaching stage.
After the kraft pulp has been reacted with the chlorine dioxide and chlorine, it is generally of a consistency of from about 2 to about 20 percent. It is then treated with caustic. The caustic treatment is conducted at a temperature of from about 0 to about 100 degree centigrade, although it is preferred to use a temperature of from about 5 to about 70 degrees centigrated. The caustic treatment is conducted for a sufiicient period of time until the pH of the slurry reaches the desired value. It is preferred to have the pH of the slurry be from about 7 to about 12, although it is more preferred to have said pH be from about 8 to about 11, and it is even more preferred to have said pH be from about 10 to about 11. One generally obtains the preferred pH by conducting the caustic treatment for from about minutes to about 3 hours, although the preferred pH may be obtained by using a rection time of about 30 minutes to about 2 hours and the most preferred pH may be obtained with a reaction time of from about 1 hour to about 2 hours.
After the kraft pulp has been treated with caustic, it is preferred to bleach it with either chlorine dioxide or hypochlorite. The pulp, at this stage, will be of a con sistency of from about 10 to about 20 percent. From about 0.1 to about 2 percent of the chlorine dioxide or hypochlorite (by weight of pulp) should be applied. When chlorine dioxide is used, the reaction is run at a temperature of from about 50 to about degrees centigrade for from about 1 to about 5 hours, and the pH of the slurry is maintained at from about 2 to about 6; although it is preferred, when using chlorine dioxide, to use a reaction temperature of from about 65 to about 75 degrees centigrade and maintain the pH at from about 3 to about 5. When hypochlorite is used, the reaction is run at a temperature of from about 20 to about 70 degrees centigrade for from about 1 to about 4 hours, and the pH of the slurry is maintained at from about 8 to about 12; although it is preferred, when using hypochlorite, to use a reaction temperature of from about 30 to about 50 degrees centigrade and maintain the pH at from about 9 to about 11.
The invention will be further described by reference to the examples which illustrate certain preferred embodiments of this invention. Unless otherwise indicated, all parts and percentages are by weight and all temperatures are in degrees centigrade.
EXAMPLES 13 These examples illustrate a comparison between the results obtained by the sequential chlorine dioxide-chlorine-caustic bleaching process of the present invention (Example 1) compared to a mixture of chlorine dioxide and chlorine (Example 2) and the use of chlorine alone (Example 3). The comparative examples were run in a five-stage bleaching operation, wherein the first stage of Example 1 used the method of the present invention, wherein the first stage of Example 2 utilized a mixture of chlorine dioxide and chlorine and wherein the first stage of Example 3 used chlorine. The remaining bleaching stages for each example follow the same sequence of caustic extraction, chlorine dioxide addition, caustic extraction and final chlorine dioxide addition.
Each of the examples was run using equal parts of the same type of unbleached kraft pulp which consisted of 33 percent Douglas fir, 47 percent western hemlock and 20 percent cedar pulps. This pulp mixture had a permanganate number of 21.3, as measured by the Technical Association of Pulp and Paper Industries (TAPPI) Standard Testing Method No T214m-50 and a chlorited viscosity of 381 centipoises, as measured by the TAPPI Standard Testing Method No. T230su-63. The bleaching time for the first stage was a total of 60 minutes at a temperature of 20 degrees centigrade. In each example, a total of 7.0 percent available chlorine was added in the first stage. The chlorine and chlorine dioxide in each instance was added as an aqueous solution which was passed into the pulp slurry. Table I shows the results obtained.
TABLE I Example Numbers TABLE IContinued Example Numbers First stage:
Final pH 12.1 11.8 11. 3 Reaction time, minutes. 120 120 120 Consistency, percent. 9. 8 9. 8 9. 8 Temperature, degrees centigia e. 74 74 74 Permanganate number (after second stage reaction) 2. 3 3. 8 3. 6 Viscosity, centipoises 476 363 108 Third stage:
0102 applied, percent 1.02 1.02 1. 02 C102 consumed, percent 0.94 0. 97 0.98 NaOH applied, percent. 0. 52 0. 52 0.47 Final pH (end of C102 addition) 4. 3. 7 3.0 Reaction time, minutes. 180 180 180 Consistency, percent 6.0 6.0 6. 0 Temperature, degrees centigrade. 74 74 74 Viscosity, (centipoises) 380 347 210 General Electric brightness meter test,
percent (G.E.) 85. 4 78. 7 80. 5 G.E. B ghtness, (1 hr. heat-aged),
percent 81.3 75.8 77. 6 G.E. Brightness, (18 hr. heat-aged),
percent 79. 1 73. 3 73.8 Fourth stage:
NaOH applied, percent 0.5 0.5 0. 5 Final pH (end of NaOH addition).. 11. 7 11. 4 11. 5 Reaction time, minutes 120 120 120 Consistency, percent 10.8 10.8 10.8 Temperature, degrees centigrade 74 74 74 Fifth stage:
0102 applied, percent 0.25 0. 0.25 C102 consumed, percent 0. 19 0. 22 0. 16 Final pH 4.0 3. 7 3. 5 Reaction time, minutes 240 240 240 Consistency, percent 6.0 6.0 6. 0 Temperature, degrees centigrade. 74 74 74 Total equivalent chlorine applied,
percent 10. 34 10. 34 10. 34 Final product quality:
Viscosity, centlpoises 242 290 180 G. E. brightness, percent 90. 2 88. 6 89.5 G. E. brightness (1 hr. heat-aged), percent 87. 1 86. 5 87. 7 G. E. brightness (18 hr. heat-aged),
percent 84. 6 84. 1 83.0
Physical strength at 250 milliliters Canadian Standard (ml. 0. S.) tree- Testing was carried out according to TAPPI Standard Testing Methods, wherein the General Electric (G.E.) Brightness was measured according to Standard Method T217m48 and wherein the one hour heataged brightness test was carried out in a mechanical convection oven at 105 degrees centigrade for the indicated time. The physical tests were carried out according to TAPPI Standard Testing Methods T200ts61, T205m-58, T2l8m-59, T402m-49 and T220m-60 wherein the burst strength is in pounds per square inch (p.s.i. per pound per ream of 500-24 by inch sheets times 100; the tear strength is in grams per pound per ream of 500-24 by 40 inch sheets times 100; the tensile is the breaking length measured in meters of paper, and double folds is per pound per ream of 500-24 by 40' inch sheets times 100.
In Example 1, which illustrates the process of the present invention, the two phase addition employed a reaction time of 20 minutes for the addition of the first reagent, which was chlorine dioxide and a reaction time of 40 minutes for the addition of the second reagent, which was chlorine. A comparison of the data obtained illustrates the improved results obtained by the present method. Higher third and fifth stage brightnesses are obtained by the sequential method. In addition, higher third and fifth stage viscosities are obtained, compared with normal chlorine treatment. The higher brightness of the final product obtained both before and after aging for an 18-hour period illustrates the superiority of the present process in producing superior product characteristics. The strength of the end product is equal to or better than that obtained when only chlorine was used as the bleaching reagent, as illustrated in Example 3, or that resulting when the bleaching reagent was a mixture as illustrated in Example 2. When other kraft pulps are used, similarly good results are Cir obtained. Furthermore, when a washing step is used in between the chlorine dioxide and chlorine steps, a bleached pulp with good brightness and strength characteristics is obtained.
EXAMPLES 4 THROUGH 6 These examples compare the sequential process of the present invention when used as the first stage of a sixstage bleaching process, with the use of a mixture of chlorine dioxide and chlorine in the first stage and the use of pure chlorine in the first stage. The comparisons were run using the same composition of kraft pulp as that used in Examples 1 through 3, dispersed in an aqueous phase. The results of the experiments are shown in Table II. Example 4 is a typical illustration of the use of chlorine as the bleaching reagent in the first stage. Example 5 shows two-phase chlorine dioxide-chlorine addition of the present invention, wherein the chlorine dioxide was reacted for 20 minutes prior to the addition of chlorine, which was then reacted for 40 minutes. Example 6 illustrates the use of a mixture of chlorine dioxide and chlorine in the first stage.
In all examples equivalent amounts of available chlorine were used. The available chlorine was added as aqueous solutions to the pulp slurries. The first stage operating temperatures was 20 degrees centigrade and the total bleaching period for the first stage in Examples 4 through 6 was 60 minutes.
TAB LE II Example Numbers First stage:
Available 012 ratio, Cl2:ClOz :0 50:50 C102 applies, pereent.. 0 1. 33 C12 applied percent 7.0 3. 50 1st phase C102 residual, percen 0 1st phase C102 residual, perccnt.- 0. 10 1st phase terminal pH 3. 1 End of Stage C12 residual, percent. 0.47 0. 16 End of Stage C102 residual, percent... 0 0.04 5 End of Stage C101- residual, percent" 0 0 0 Total reaction time, minutes 60 60 60 Consistency, percent 4. 2 4. 2 4. 2 Temperature, degrees centigrade 20 20 L0 Second stage:
N aOH applied, percent 3.0 1. 5 1. 5 inal pH 12.1 10.3 10. 1 120 120 Consistency, percent 9. 8 9. 8 9. 8 Temperature, degrees centigrade 74 48 48 Permanganate number 3. 7 3. 5 4. 2 Viscosity, centipoises 200 437 389 Thu (1 stage:
CB.(OC1)2 applied, percent available C12 1- 30 1 30 1.30 Ca(0 CD2 consumed, percent avail- 12", 1.19 1. 28 NaOH applied, pcrcent 0.37 0.45 0. 57 Final pH 10. 1 9. 5 10.3 Reaction time, minutes. 120 1-0 120 Consistency, percent 10.4 10. 4 10. 4 Temperature, degrees centigrade. 35 35 35 Viscosity, centipoises 147 209 G.E. brightness, percent... 70. 4 81. 1 G0. 8 G.E. brightness (l-hr. heat-aged),
percent 74. 6 66. O G.E. brightness (18-hr. heat-aged),
percent 72. 3 64. 2 010 applied, percent- 0. 50 (i. 50 C102 consumed, percent- 0.44 0.48 Reaction time, minutes. 180 Consistency, percent- 6. 0 6. 0 Temperature, degrees centigrade 74 74 Final pH 3. 9 4. 1 3. 1 Viscosity cp 120 148 202 G.E. brightness, pereent 83.0 88. l 83. 8 G.E. brightness (l-hr. heat-aged),
percent 83. 3 81. 5 G.E. brightness (18-hr. heat-aged),
percent 80. 0 77. 6 Fifth stage:
NaOH applied, percent 0.50 O. 50 O. 50 Final pH 12.0 11. 5 11.4 Reaction time, minutes. 120 120 120 Consistency, percent. 10. 8 10. 8 10. 8 Temperature, degrees centigrade 74 74 74 Sixth Stage:
010 applied, percent..- 0. 28 0.28 0. 28 C102 consumed, percent 0.23 0. 16 0. 17 Final pH 5. 9 4. 2 4. 9 Reaction time, minute 240 240 240 Consistency, percent- 6. O 6. 0 6. 0 Temperature, degrees cent 74 74 74 Total available, C12 applied, perce 10. 35 10. 35 1. 35
9 Table II-Continued Example Numbers Product quality:
Vlscosuty, cp 116 162 168 GLE. brightness, percent 90.5 91. 5 89. 5 G.E. brightness, (l hr. heat-aged),
percent 87. 8 87. 3 87. 7 G.E. brightness, (IS-hr. heat-aged),
percent 82. 1 86.0 84. l
This comparison illustrates that by the two phase addiwas 6.5 percent based on the weight of ovendried pulp.
TABLE III Example Numbers First Stage:
Available 011 ratio, ClzzClOz 100:0 80:20 60:40 40:60 :80 0:100 C10 applied, percent 0 O. 494 0. 988 1.48 1. 98 2. 47 C1 applied, percent 6. 50 5. 20 3. 90 2. 60 1. 0 1st phase terminal pH. 5.9 4. l 3. 2 3. 1 2nd phase terminal pH. 2.0 2. l 2. 3 2. 3 2. 4 2. 6 Viscosity, centipoises 147 191 192 179 201 265 Second stage:
NaOH applied, percent. 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 Viscosity, centipoises.... 210 289 238 272 267 292 Permanganate Number... 3. 8 2. 5 1. 8 2. 1 2. 8 4. 8 Third stage:
NaOCl applied, percent avail. C12"..- 1.0 1.0 1.0 1.0 1.0 1.0 Viscosity, centipoise 184 211 181 147 185 243 G. E. brightness, percent 60.8 67. 4 71. 5 75. 5 70. 6 59. 5
G. E. brightness, percent (18 hr heataged 60. 7 65. 0 68. 8 64. 2 55. 0 Fourth stage:
C102 applied, percent... 0.55 O. 55 O. 55 0.55 0. 55 Viscosity, centipoise. 195 175 145 204 238 G. E. brightness, percen 82. 2 84. 8 85. 2 83.4 72. 3 G. E. brightness, percent (1 hr. heataged) 79. 4 80. 4 81. 8 82. 5 80.8 70. 6 G. E. brightness, percent (18 hr. heataged) 75. 2 T7. 0 79. 2 80. 1 78. 6 68. 1
tion of the present invention, it was possible to use 1.5 percent less sodium hydroxide in the second stage than when all chlorine was used as a bleaching reagent. Also, the temperature of the second stage could be operated at 48 degrees centigrade instead of 74 degrees centigrade. This is particularly beneficial in commercial operations, due to the reduction in the chemical and steam requirements. The brightness in the third stage, was 11 points higher with the two phase addition than that obtained with either the chlorine or the mixture. The fourth stage brightness was also 4 to 5 points higher with the two phase method and the final brightness after the sixth stage was again higher than that obtained with chlorine or the mixture. All of the tests were run according to TAPPI Standard Testing methods as indicated in Examples l-3.
When other kraft pulps are used, similarly good results are obtained by the process of this invention. Best results are obtained when no intermediate washing and/ or caustic extraction stage is used between the chlorine dioxide and the chlorine steps of this invention.
Good results are also obtained when other extraction or neutralization agents than caustic, such as ammonia and the like, are used; although it is preferred to use sodium hydroxide.
EXAMPLES 7l2 These examples show the results obtained when various ratios of chlorine to chlorine dioxide are used in the two phase addition of the present invention. Compared with these changes in chlorine to chlorine dioxide ratios is the use of pure chlorine (Example 7) and pure chlorine dioxide (Example 12).
The experiments were run using unbleached kraft pulp consisting of 49 percent western hemlock, 29 percent balsam, 12 percent Douglas fir and 10 percent cedar pulp. The permanganate number of this pulp was 20.2. The The chlorited viscosity was 348 centipoises. Using equal amounts of pulp in an aqueous slurry, the available chlorine was added to the slurries as aqueous solu- An analysis of the example results shows that improved pulp characteristics are obtained at each of the chlorine to chlorine dioxide ratios of the present invention compared to either chlorine. alone or chlorine dioxide alone. Also shown is that a 60:40 chlorine to chlorine dioxide ratio produces the lowest permanganate number with the pulp used. Third and fourth stage brightness and heat-aged brightness are highest at a ratio of about 40:60 Cl :ClO and in all comparable instances are better than either the pure chlorine of Example 7 or the pure chlorine dioxide of Example 12.
Similarly good results are obtained when other kraft pulps are used. While there have been described many embodiments of the present invention, the methods described are not intended to be understood as limiting the scope of the invention as it is realized that changes therein are possible. It is further intended that each element recited in any of the following claims is to be understood as referring to all elements for accomplishing substantially the same results in substantially the same or equivalent manner. It is intended to cover the invention broadly in whatever form its principles may be utilized.
What is claimed is:
1. A process for the sequential bleaching of kraft pulp, comprising the steps of sequentially:
(a) reacting kraft pulp dispersed in aqueous slurry with chlorine dioxide until the chlorine dioxide is at least partially depleted, and then reacting the kraft pulp with chlorine, wherein:
(l) the total available chlorine added by the chlorine dioxide and chlorine is from about 1 to about l0 percent by weight of the kraft pulp,
(2) from about 5 to about percent of the total available chlorine is furnished by chlorine dioxide, the remaining available chlorine being furnished by chlorine,
(3) the chlorine dioxide is reacted with the kraft pulp for from about 2 to about 5 minutes, and the chlorine is reacted with the kraft pulp for from about 2 to about minutes, and
(4) the reactions are run at a temperature of from about to about 100 degrees centigrade, thereby forming a natural to acidic slurry of pulp material with a consistency of from about 20 to about 20 percent (by weight of pulp); and (b) treating said slurry of pulp material with caustic at a temperature of from about 0 to about 100 degrees centigrade for about 15 minutes to about 3 hours until the pH of the slurry is from about 7 to about 12.
2. The process of claim 1, wherein the chlorine dioxide and chlorine are sequentially reacted with the kraft pulp without an intermediate wash.
3. The process of claim 2, wherein:
(a) from about 10 to about 80 percent of total available chlorine is furnished by chlorine dioxide, the total available chlorine added by the chlorine dioxide and chlorine being from about 3 to about 10 percent by weight of the kraft pulp;
(b) the reactions of the kraft pulp with chlorine dioxide and chlorine and the treatment of the kraft pulp with caustic are conducted at a temperature of from about to about 70 degrees centigrade', and
(c) the caustic treatment is conducted for from about 30 to about 120 minutes until the pH of the slurry is frim about 8 to about 11.
4. The process of claim 3, wherein the chlorine dioxide and chlorine are sequentially reacted with the kraft pulp without an intermediate alkali extraction.
5. The process of claim 4, wherein, after the kraft pulp is treated with caustic, it is subsequently bleached with from about 0.1 to about 2 percent (by weight of available chlorine content) of a bleaching reagent selected from the group consisting of chlorine dioxide and hypochlorite.
6. The process of claim 5, wherein, after the kraft pulp has been treated with caustic, it is subsequently bleached with chlorine dioxide at a temperature of from about 50 to about 90 degrees Centigrade for from about 1 to about 5 hours until the pH of the slurry is from about 2 to about 6'.
7. The process of claim 5, wherein, after the kraft pulp has been treated with caustic, it is subsequently bleached with hypochlorite at a temperature of from about to about 70 degrees for from about 1 to about 4 hours until the pH of the slurry is from about 8 to about 12.
8. The process of claim 6, wherein the subsequent chlorine dioxide bleaching is conducted at a temperature of from about 65 to about 75 degrees centigrate until the pH of the slurry is from about 3 to about 5.
9. The process of claim 7, wherein the subsequent hypochlorite bleaching is conducted at a temperature of from about to about degrees centigrade until the pH of the slurry is from about 9 to about 11.
10. The process of claim 8, wherein the caustic treatment is conducted for from about 1 to about 2 hours.
References Cited UNITED STATES PATENTS 2,494,542 1/1950 Casciani 162- 88 X 2,741,536 4/1956 Stone 162-88 3,020,197 2/1962 Schuber 162-89 X HOWARD R. CAINE, Primary Examiner US. Cl. X.R.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,501,37" Dated March 17, I970 Inventofls) Hal ter Q. Jack and Loyd V. Johnson It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 1, lines 29 and 30, delete "caus-ti ce" and insert caustic Column 2, line 25, delete "ti" and insert to Column 2, line 60, delete "riro" and insert prior Column 3, line 3, delete "hypochloriate" and insert -hypochlori te Column 5, line 3l, delete 'drait" and insert --kraft; Column 5, line H, delete "th avai lable" and insert the avai lable Column 5, line 63, delete "degree' and insert degrees Column 5, line 65, delete "centigraded" and insert centigrade. Column 6, line 69, delete "lst phase (2.0 and insert lst phase ClO Column 7, Table I Continued, the heading "First Stage, delete, and insert Second Stage ----3' Column 7, line +1, "6.8." delete, and insert C.S. Column 8, line 40, delete "610 and insert C10 Column 8, line 58, before 010 applied,percent insert Fourtfi Stage Column 8, line 75, Example 6, delete "1.35" and insert G l0-35 Column 9, line 5, delete vi scosuty" and insert vi scosi ty Column 10, line 73, Claim l (3), delete "2 to about 5" and insert 2 to about 75 Column ll, line 3, Claim I delete "natural" and insert neutral Column ll, line Claim l delete "about 20 to about 20" and insert about 2 to about 20 Column ll, line 26, Claim 3 (c), delete "trim" and insert from SIGNED AND SEALED Ausmgm Amt:
3'. a Attesting 0m omissiom 01 M
US787267A 1968-12-26 1968-12-26 Sequential bleaching of kraft pulp with chlorine dioxide and chlorine Expired - Lifetime US3501374A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US78726768A 1968-12-26 1968-12-26

Publications (1)

Publication Number Publication Date
US3501374A true US3501374A (en) 1970-03-17

Family

ID=25140925

Family Applications (1)

Application Number Title Priority Date Filing Date
US787267A Expired - Lifetime US3501374A (en) 1968-12-26 1968-12-26 Sequential bleaching of kraft pulp with chlorine dioxide and chlorine

Country Status (1)

Country Link
US (1) US3501374A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884752A (en) * 1973-09-17 1975-05-20 Int Paper Co Single vessel wood pulp bleaching with chlorine dioxide followed by sodium hypochlorite or alkaline extraction
US3907632A (en) * 1973-10-23 1975-09-23 Ppg Industries Inc Bleaching cellulosic pulps with gaseous chlorine at a pH of 7 to 10 in a multistage bleaching process
USRE28777E (en) * 1969-02-06 1976-04-20 Ethyl Corporation Refining of vegetable matter and delignification of the refined matter with chlorine dioxide
US3992250A (en) * 1974-03-21 1976-11-16 Kamyr A.B. Method for bleaching of high consistency cellulosic pulp
US4039374A (en) * 1975-08-29 1977-08-02 Union Camp Corporation Bleaching of cellulosic pulp fibers with chlorine dioxide in the presence of a vanadium compound
FR2454478A1 (en) * 1979-04-16 1980-11-14 Erco Ind Ltd Two=stage pulp bleaching - using chlorine di:oxide and chlorine in first stage and chlorine alone in second state (SE 17.11.80)
US4259149A (en) * 1978-05-03 1981-03-31 Hooker Chemicals & Plastics Corp. Method of reducing waste stream pollutants by the control and separation of waste contaminants from a multi-stage cellulosic bleaching sequence
US4797010A (en) * 1987-09-22 1989-01-10 Nabisco Brands, Inc. Reheatable, resealable package for fried food
WO2008044988A1 (en) * 2006-10-11 2008-04-17 Akzo Nobel N.V. Bleaching of pulp
US20080087394A1 (en) * 2006-10-11 2008-04-17 Akzo Nobel N.V. Bleaching of pulp

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2494542A (en) * 1946-05-02 1950-01-17 Niagara Alkali Company Method of bleaching pulp
US2741536A (en) * 1952-03-26 1956-04-10 Olin Mathieson Available chlorine multi-stage bleaching of sulfite pulp
US3020197A (en) * 1960-08-05 1962-02-06 Allied Chem Method for production of high brightness high strength wood pulps

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2494542A (en) * 1946-05-02 1950-01-17 Niagara Alkali Company Method of bleaching pulp
US2741536A (en) * 1952-03-26 1956-04-10 Olin Mathieson Available chlorine multi-stage bleaching of sulfite pulp
US3020197A (en) * 1960-08-05 1962-02-06 Allied Chem Method for production of high brightness high strength wood pulps

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE28777E (en) * 1969-02-06 1976-04-20 Ethyl Corporation Refining of vegetable matter and delignification of the refined matter with chlorine dioxide
US3884752A (en) * 1973-09-17 1975-05-20 Int Paper Co Single vessel wood pulp bleaching with chlorine dioxide followed by sodium hypochlorite or alkaline extraction
US3907632A (en) * 1973-10-23 1975-09-23 Ppg Industries Inc Bleaching cellulosic pulps with gaseous chlorine at a pH of 7 to 10 in a multistage bleaching process
US3992250A (en) * 1974-03-21 1976-11-16 Kamyr A.B. Method for bleaching of high consistency cellulosic pulp
US4039374A (en) * 1975-08-29 1977-08-02 Union Camp Corporation Bleaching of cellulosic pulp fibers with chlorine dioxide in the presence of a vanadium compound
US4259149A (en) * 1978-05-03 1981-03-31 Hooker Chemicals & Plastics Corp. Method of reducing waste stream pollutants by the control and separation of waste contaminants from a multi-stage cellulosic bleaching sequence
FR2454478A1 (en) * 1979-04-16 1980-11-14 Erco Ind Ltd Two=stage pulp bleaching - using chlorine di:oxide and chlorine in first stage and chlorine alone in second state (SE 17.11.80)
US4797010A (en) * 1987-09-22 1989-01-10 Nabisco Brands, Inc. Reheatable, resealable package for fried food
WO2008044988A1 (en) * 2006-10-11 2008-04-17 Akzo Nobel N.V. Bleaching of pulp
US20080087394A1 (en) * 2006-10-11 2008-04-17 Akzo Nobel N.V. Bleaching of pulp
EA013901B1 (en) * 2006-10-11 2010-08-30 Акцо Нобель Н.В. Bleaching of pulp
US8920603B2 (en) 2006-10-11 2014-12-30 Akzo Nobel N.V. Bleaching of pulp

Similar Documents

Publication Publication Date Title
US3888727A (en) Treatment of lignocellulosic material in an alkaline pulping liquor containing anthraquinone sulphonic acid followed by oxygen delignification
US4076579A (en) Pulping of lignocellulosic material by sequential treatment thereof with nitric oxide and oxygen
US3433702A (en) Woodpulp bleaching process
US3652388A (en) Bleaching and delignification of partially delignified pulp with a mixture of chlorine and chlorine dioxide
US3501374A (en) Sequential bleaching of kraft pulp with chlorine dioxide and chlorine
US4626319A (en) Process for the delignification and acid bleaching of cellulose with oxygen and hydrogen peroxide
US2975169A (en) Bleaching of cellulose pulp
US3251730A (en) Process for the purification of a pulp by oxidation with oxygen
US3874992A (en) Press alkaline extraction of cellulosic pulp
US2494542A (en) Method of bleaching pulp
US3020197A (en) Method for production of high brightness high strength wood pulps
JPH08511308A (en) Improved ozone / peracid method for delignification of lignocellulosic materials
USRE28887E (en) Sequential bleaching of kraft pulp with chlorine dioxide followed by chlorine
NO163696B (en) PROCEDURE FOR ENCAPPING THE ELECTRIC COMPONENT AND COMPONENT CONCERNED BY THE PROCEDURE.
US2100496A (en) Bleaching of cellulosic materials
USRE28884E (en) Woodpulp bleaching process
US3177111A (en) Hypochlorite sulfamic acid process of bleaching cellulosic materials
US2527563A (en) Method of bleaching semichemical pulps
US3536577A (en) Bleaching of cellulosic materials with chlorine dioxide
CA1080406A (en) Bleach hydrolysis of pulp with substantially reduced use of chlorine
US2779656A (en) Bleaching of kraft pulp
US3619349A (en) Bleaching of shredded or fluffed cellulosic pulp with gaseous chlorine monoxide
NO149394B (en) PROCEDURE FOR AA REMOVAL DISSOLUTED METAL SODIUM FROM ALUMINUM MELTER
US2903326A (en) Improved process for bleaching cellulose pulp using chlorate
US2741536A (en) Available chlorine multi-stage bleaching of sulfite pulp