US3485440A - Sealing apparatus for rotary mechanism - Google Patents

Sealing apparatus for rotary mechanism Download PDF

Info

Publication number
US3485440A
US3485440A US701359A US3485440DA US3485440A US 3485440 A US3485440 A US 3485440A US 701359 A US701359 A US 701359A US 3485440D A US3485440D A US 3485440DA US 3485440 A US3485440 A US 3485440A
Authority
US
United States
Prior art keywords
sealing
rotor
apex
axially
radially
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US701359A
Inventor
Herman J Greif Jr
Uno Kuusik
David A Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Old Carco LLC
Original Assignee
Chrysler Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chrysler Corp filed Critical Chrysler Corp
Application granted granted Critical
Publication of US3485440A publication Critical patent/US3485440A/en
Assigned to FIDELITY UNION TRUST COMPANY, TRUSTEE reassignment FIDELITY UNION TRUST COMPANY, TRUSTEE MORTGAGE (SEE DOCUMENT FOR DETAILS). Assignors: CHRYSLER CORPORATION
Assigned to CHRYSLER CORPORATION reassignment CHRYSLER CORPORATION ASSIGNORS HEREBY REASSIGN, TRANSFER AND RELINQUISH THEIR ENTIRE INTEREST UNDER SAID INVENTIONS AND RELEASE THEIR SECURITY INTEREST. (SEE DOCUMENT FOR DETAILS). Assignors: ARNEBECK, WILLIAM, INDIVIDUAL TRUSTEE, FIDELITY UNION BANK
Assigned to CHRYSLER CORPORATION reassignment CHRYSLER CORPORATION PARTES REASSIGN, TRANSFER AND RELINQUISH THEIR ENTIRE INTEREST UNDER SAID PATENTS ALSO RELEASE THEIR SECURITY INTEREST. (SEE RECORD FOR DETAIL) Assignors: MANUFACTURERS NATIONAL BANK OF DETROIL (CORPORATE TRUSTEE) AND BLACK DONALD E., (INDIVIDUAL TRUSTEE)
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C19/00Sealing arrangements in rotary-piston machines or engines
    • F01C19/10Sealings for working fluids between radially and axially movable parts

Definitions

  • This invention relates to rotary mechanisms, and more particularly to sealing apparatus for a rotary compressor.
  • a rotary compressor of the type comprising an outer body having an axis, side walls axially spaced from one another, and a peripheral wall interconnecting the side walls.
  • the inner surface of the peripheral wall and the side walls form a cavity within which an inner body or rotor is mounted.
  • the inner surface of the peripheral wall is substantially parallel to the axis of the cavity and the cross section of the cavity is generally similar to a conchoid of a circle having a chord approximately equivalent to the length of the rotor.
  • the axis of the rotor is parallel to the axis of the outer body cavity and the rotor has side faces adjacent the side walls of the body.
  • the rotor has two circumferentially spaced apex portions and in side elevation resembles the profile of a football.
  • Rotary compressors of this type include at least one intake or suction port or passage in the outer body for admitting gas, such as refrigerant, to the compressor, and a discharge port or passage in the outer body for discharging compressed gas from the compressor.
  • the working chambers of the compressor for efficient operation of the latter, should be substantially sealed against leakage, although the seal does not have to be as effective as would be required if the mechanism were utilized in rotary combustion engine apparatus since the latter are driving apparatus and must generate pressure for starting, while compressors are driven, rather than driving apparatus.
  • sealing apparatus it is necessary to provide a seal between each rotor apex portion and the inner surface of the peripheral wall of the outer body, as well as between the side faces of the rotor and the side walls of the body to seal against substantial leakage from the high pressure or discharge side of the rotor to the low pressure or suction side of the rotor.
  • This invention relates to such sealing apparatus.
  • this invention comprises a rotary compressor having two apex sealing plates at each apex of the compressor rotor, sealing pins at the radially inner ends of the sealing plates, and side sealing rings engaging the radially inner portions of the sealing pins, means biasing all of the sealing members axially outwardly against side walls of the compressor, the apex sealing plates and sealing pins being located relative to one another and to the rotor so as to permit compressed fluid to aid in the biasing of the sealing members by the aforementioned means.
  • One of the primary objects of this invention is to provide sealing apparatus for the rotor of a rotary compressor, the apparatus being adapted substantially to seal the space between the rotor and walls of the cavity in which the rotor rotates.
  • Another object of this invention is to provide sealing apparatus of the class described in which the gas being compressed is utilized to increase the elfectiveness of the seal against leakage of the gas.
  • a further object of this invention is to provide sealing apparatus such as described in which the apex seals are substantially prevented from becoming improperly aligned during operation.
  • Still another object of this invention is to provide sealing apparatus of the type described wherein the corners of each apex of the rotor are effectively sealed against the walls of the cavity of the outer body without complex interleaved sealing pieces;
  • Another object of this invention is to provide sealing apparatus of the class described which is economical in construction and effective in operation.
  • FIG. 1 is a side elevation of a rotary compressor constructed in accordance with this invention, certain parts being broken away and removed for clarity;
  • FIG. 2 is a view similar to FIG. 1 showing certain parts in a different position than that shown in FIG. 1;
  • FIG. 3 is an enlarged fragmentary view of FIG. 1;
  • FIG. 4 is a section taken along line 4-4 of FIG. 3;
  • FIG. 5 is a section'taken along lines 55 of FIG. 3;
  • a rotary mechanism of this invention in the form of a rotary compressor is generally indicated at 1. Basically, it comprises an outer fixed body 3, and an inner body or rotor 5.
  • the rotor 5 is provided with apex sealing apparatus 7 at each apex of the rotor, and side sealing apparatus 9 forming a seal between the sides of the rotor 5 and the side walls of the outer fixed body.
  • the body 3 has axially spaced side walls 11 and 13 and a peripheral wall 15 disposed therebetween to form a cavity 17. Only one cavity 17 is shown in the body 3 illustrated herein, but it will be understood that the compressor may be constructed with a plurality of cavities 17 therein located side-by-side, if desired.
  • the inner sur) face 21 of the peripheral wall 15 has a profile which closely approximates a conchoid of a circle having a chord approximately equivalent to the length of the rotor.
  • An inlet or suction port 23 is provided in wall 15.
  • Port 23 places a cavity 25, which is adapted to be connected to a suction line of a refrigeration system (not shown), in communication with the cavity 17.
  • An outlet or discharge port 27 is also formed in wall 15 at a point circumferentially displaced from suction port 23.
  • Port 27 is adapted to place cavity 17 in communication with a cavity or passage 29 in wall 15.
  • Port 27 is normally closed by a valve, such as a reed valve 31, which valve is adapted to open upon the existence of a predetermined pressure in port 27.
  • Passage 29 adapted to be connected to a discharge line (not shown) of a refrigeration system by a port 23.
  • Rotor has a cylindrical recess therein in which a ring gear 35 having internal teeth 37 is securely seated and connected to the rotor.
  • the ring gear teeth are adapted to roll on a gear (not shown) fixed to the wall 13 of body 3.
  • the rotor 5 is adapted to be given a uniform movement of rotation by a crankshaft (not shown) which carries an eccentric (not shown) adapted to engage a bearing surface 39 (FIG. 4).
  • the driving mechanism including the fixed gear, the shaft and the eccentric are well known and a detailed description thereof is superfluous to the description of this invention. Suffice to say that the driving mechanism may be similar to the apparatus shown in US. Patent 1,636,486 issued July 19, 1927 to B. R. Planche.
  • Each apex of the rotor 5 has a radially extending generally U-shaped slot 41 therein at the radially inner ends of which there is formed a cylindrical bore 43 extending transversely and axially of the rotor. As will be seen, the bore forms holes in opposite side-s of the rotor. A web 45 forms the U-shape of the slot and is located radially outward of the bore 43.
  • the apex sealing apparatus 7 at each apex portion of the rotor 5 includes two generally L-shaped sealing plates or members 47 and 49 slideably received in slot 41.
  • the plates 47 and 49 respectively, have axially extending portions or legs 51 and 53 and radially extending legs or portions 55 and 57.
  • the radially outer edges of legs 51 and 53 are adapted to contact the inner surface 21 of wall while the axially outer edges of legs 55 and 57 are adapted to contact side walls 11 and 13, respectively.
  • legs 55 and 57 are provided with curved seats 59 and 61, respectively, on the axially inner side thereof against one of which one curved end 63 of a spreader and stabilizing spring 65 seats.
  • Spring 65 is a compression spring formed of three legs 67, 69 and 71.
  • Leg 67 is bowed and contacts the axially inner edge of sealing plate 47 at seat 59 and adjacent the juncture of plate legs 51 and 55'.
  • Leg 69 is generally straight and extends over web 45 to leg 71. The latter leg is bowed and shorter than leg 67 and has a curved end 73 which engages the inner edge of the leg '57 of sealing plate 49.
  • the spring 65 biases the sealing plates 47 and 49 apart against the body side walls 11 and 13.
  • the spring 65 contacts the plates 47 and 49 at three points. This three point contact effectively prevents canting or movement of one plate relative to the other such as might occur if the spring engaged the plates at two or four points, for example.
  • the axially inner ends of legs 51 and 53 are spaced from one another as indicated at 75, which as pointed out hereinafter provides a passage through which a small amount of gas under high pressure may pass from the high pressure side of the cavity 17 to the space between the sealing plates 47 and 49 for increasing the outwardly directed force on the sealing plates.
  • the radial inner ends of legs 55 and 57 extend radially inward beyond the radially inner ends of slot 41 into grooves 77 and 79 extending in an axial direction in cylindrical seal pins 81 and 83 located in bore 43.
  • the axially inner ends of pins 81 and 83 are of reduced diameter so as to form shoulders 85 and 87, respectively, thereon.
  • a compression spring 89 surrounds the reduced diameter ends of the pins and engages the shoulders 85 and 87 to bias the pins axially outward away from one another.
  • the depth of grooves 77 and 79 is sufficient to permit radial movement of the plates 47 and 49 therein. However, as will be made apparent hereinafter, the depth of the grooves is not sufficient to permit the plates 47 and 49 to be moved completely out of the groove in a radial direction when the rotor 5 is in cavity 17.
  • Body 5 is provided with annular grooves or recesses 91 and 93 stepped as indicated at 95 and 97 to provide second annular grooves or recesses 99 and 101. As will be seen with reference to FIGURES 1, 2 and 3, the grooves 99 and 101 intersect the axial outer ends of the bore 43.
  • the side sealing structures 9 Mounted within grooves 91 and 93, 99 and 101, are the side sealing structures 9. These structures include annular side sealing ring members 103 and 105 which respectively are located in the grooves 99 and 101.
  • Sealing rings 103 and 105 are generally rectangular in transverse cross section but have a slight taper on the axially outer side adjacent the radially inner surface thereof.
  • the regions of the rings adjacent the sealing pins 81 and 85 are notched in the form of generally curved cutouts 107.
  • the central portions of each cutout are relatively fiat and engage the radially inner surface of the adjacent corner pin, while the outer portions of each cutout are curved and are spaced a slight distance from the adjacent portions of the sealing pins to permit slight shifting of the rings in a plane generally normal to axis 19 as made apparent hereinafter.
  • the sealing rings 103 and 105 are biased axially outwardly against the side walls 11 and 13 by resilient rings 109 and 111, such as rubber rings, compressed and located in grooves 91 and 93.
  • the rings are also compressed radially inwardly in the region adjacent the pins 81 and 83 by the latter.
  • the sizes of the grooves 91, 93, 99 and 101 and rings 103, 105, 109 and 111 are such that spaces 113 are are provided along the radially outer edges thereof except adjacent the pins 81 and 83.
  • slot 41 is sufficient to permit a slight movement of the plates 47 and 49 against the side thereof away from the compressed refrigerant and away from the side of the slot adjacent the compressed refrigerant, thereby permitting the compressed refrigerant to pass radially inwardly across the faces of the plates 47 and 49 to the space therebetween.
  • a very small portion of the refrigerant under a high pressure also passes into the space between the axially inner ends of the legs 51 and 53 of sealing plates 47 and 49. A small portion of this refrigerant will, of course, escape to the suction side of the rotor 5 through the portion of the space between the inner surface 21 of wall 15 and the outer edges of the apex portions of the rotor.
  • the small amount of high pressurized refrigerant referred to above also passes through space 75 into the space between web 45, plates 47 and 49, and sealing pins 81 and 83.
  • refrigerant under a high pressure passes both across the faces of plates 47 and 49 and through space 75 to the space around web 45.
  • the refrigerant between the axially extending inner surfaces of plates 47 and 49 and the axially extending outer surfaces of web 45 and pins 81 and 83 tend to force the plates radially outwardly against the inner periphery 21 of Wall 15.
  • the refrigerant between the radially extending inner surfaces of the plates 47 and 49 and the radially extending surfaces of web 45 tend to force the plates 47 and 49 axially outwardly against the side walls 11 and 13.
  • the refrigerant between the sealing pins 81 and 83 tends to force them axially outwardly against the side walls.
  • the highly pressurized refrigerant aids the springs 65 and 89 and the radially outward force on plates 47 and 49 in maintaining the plates against the surface 15 and walls 11 and 13.
  • the high pressure refrigerant passes through spaces 113 into contact with resilient rings 109 and 111 which in turn transmit the force exerted thereon against the rings 103 and 105, thereby forcing the latter against side Walls 11 and 13.
  • the sealing structure is constructed to utilize the refrigerant being compressed for increasing the effectiveness of the seal provided by such structure.
  • a rotary mechanism comprising a body formed of axially spaced side walls and a peripheral wall connecting said side walls to form a cavity therebetween, a rotatable rotor in the cavity having a plurality of apex portions movable generally along the peripheral wall as the rotor rotates, the rotor having a centrally located opening in the sides thereof extending in an axial direction, and means for sealing against substantial communication between the portions of said cavity adjacent opposite peripheral sides of each apex of said rotor and between said cavity portions and said opening, said apex portions having generally radially extending slots therein and generally axially extending holes extending inwardly from opposite sides of said rotor at the radially inward ends of said slot, said sides of said rotor having recesses therein ex tending around said opening and intersecting said holes, said means comprising a pair of apex sealing members in each slot and movable radially therein, means biasing the apex sealing members in each slot axially outward away
  • a rotary mechanism comprising a body formed of axially spaced side walls and a peripheral wall connecting said side walls to form a cavity therebetween, a rotatable rotor in the cavity having a plurality of apex portions movable generally along the peripheral wall as the rotor rotates, the rotor having a centrally located opening in the sides thereof extending in an axial direction, and means for sealing against substantial communication between the portions of said cavity adjacent opposite peripheral sides of each apex of said rotor and between said cavity portions and said opening, said apex portions having generally radially extending slots therein and generally axially extending holes extending inwardly from opposite sides of said rotor at the radially inward ends of said slot, said sides of said rotor having recesses therein extending around said opening and intersecting said holes, said means comprising a pair of apex sealing members in each slot and movable radially therein, means biasing the apex sealing members in each slot axially outward away from
  • sealing members extend, means biasing said sealing pins axially outward against said side walls, side sealing members in said recesses, said side sealing members having notches in the radially outer edges thereof adjacent and sealing pins, the side sealing members engaging said sealing pins, and means biasing said side sealing members axially outward against said side walls, said side sealing members being in the shape of a closed loop, said means biasing said side sealing members axially outward are resilient ringshaped members located axially inward of said side sealing members, said side sealing members contacting said sealing pins and being adapted to be deflected into better contact with said sealing pins upon the application of greater pressure adjacent one portion of the side sealing member than against another portion thereof.
  • a rotary mechanism as set forth in claim 2 wherein said means biasing the apex sealing members away from one another comprises a spring extending therebetween
  • said spring contacting one of said apex sealing members at two points and contacting the other apex sealing member at one point to provide a stabilizing bias on the apex sealing members.
  • a rotary mechanism comprising a body formed of axially spaced side walls and a peripheral wall connecting said side walls to form a cavity therebetween, a rotatable rotor in the cavity having a plurality of apex portions movable generally along the peripheral wall as the rotor rotates, the rotor having a centrally located opening in the sides thereof extending in an axial direction, and means for sealing against substantial communication between the portions of said cavity adjacent opposite peripheral sides of each apex of said rotor and between said cavity portions and said opening, said apex portions having generally radially extending slots therein and generally axially extending holes extending inwardly from opposite sides of said rotor at the radially inward ends of said slot, said sides of said rotor having recesses therein extending around said opening and intersecting said holes, said means comprising a pair of apex sealing members in each slot and movable radially therein, means biasing the apex sealing members in each slot axially outward away from
  • a rotary mechanism as set forth in claim 4 said side sealing members are in the shape of a closed loop, said means biasing said side sealing members axially outward are resilient ring-shaped members located axially inward of said side sealing members, said side sealing members contacting said sealing pins and being adapted to be deflected into better contact with said sealing pins upon the application of greater pressure adjacent one portion of the side sealing member than against another portion hereof.
  • a rotary compressor comprising a body formed of axially spaced side walls and a peripheral wall connecting said side walls to form a cavity therebetween, an inlet port for admitting fluid to be compressed to said cavity, an outlet for discharging compressed fluid from said cavity, a rotatable rotor in the cavity having a plurality of apex portions movable generally along the peripheral wall as the rotor rotates to compress fluid admitted to the cavity, the rotor having a centrally located opening in the sides thereof extending in an axial direction, and means for sealing against substantial communication between the portions of said cavity on opposite peripheral sides of each apex of said rotor and between said cavity portions and said opening to prevent substantial transfer of fluid from one peripheral side of the rotor adjacent each apex portion to the other peripheral side of the rotor adjacent the same apex portion and from both peripheral sides of the rotor to said opening, said apex portions having generally radially extending slots therein and generally axially extending holes extending inwardly from opposite lateral
  • a rotary compressor comprising a body formed of axially spaced side walls and a peripheral wall connecting said side walls to form a cavity therebetween, an inlet port for admitting fluid to be compressed to said cavity, an outlet for discharging compressed fluid from said cavity, a rotatable rotor in the cavity having a plurality of apex portions movable generally along the peripheral wall as the rotor rotates to compress fluid admitted to the cavity, the rotor having a centrally located opening in i the sides thereof extending in an axial direction, and
  • said apex portions having generally radially extending slots therein and generally axially extending holes extending inwardly from opposite lateral sides of said rotor at the radially inward ends of said slot, said lateral sides of said rotor having recesses therein extending around said opening and intersecting said holes, said means comprising a pair of apex sealing members in each slot movable radially and axially therein, means biasing the apex sealing members in each slot axially outward away from one another and against said side walls, the axially inward ends of said apex sealing member in each of said slots being axially spaced from one another to provide
  • a rotary compressor comprising a body formed of axially spaced side wal s and a peripheral wall connecting said side walls to form a cavity therebetWeen an inlet port for admitting fluid to be compressed to said cavity, an outlet for discharging compressed fluid from said cavity, a rotatable rotor in the cavity having a plu- Iality of apex portions movable generally along the peripheral wall as the rotor rotates to compress fluid admitted to the cavity, the rotor having a centrally located opening in the sides thereof extending inan axial direction, and means for sealing against substantial communication between the portions of said cavity on opposite peripheral sides of each apex of said rotor and between said cavity portions and said opening to prevent substantial transfer of fluid from one peripheral side of the rotor adjacent each apex portion to the other peripheral side of the rotor adjacent the same apex portion and from both peripheral sides of the rotor to said opening, said apex portions having generally radially extending slots therein and generally axially extending holes extending
  • a rotary compressor as set forth in claim 9 wherein the radially inner ends of said apex sealing members are spaced outwardly from the bottoms of slots in the radially outer portions of said sealing pins when said rotor is rotating, said apex sealing members being thinner than said slots to permit compressed fluid to pass between said apex sealing members and the walls of said slots to force said apex sealing members radially and axially outwardly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

1386- 1969 H. J. GREIF, JR, ETAL SEALING APPARATUS FOR ROTARY MECHANISM 2 Sheets-Sheet 1 Filed Jan. 29, 1968 IV TOXNEY -Y 3. 1969 H. J. GREIF, JR.. ETAL 3,485,440 I SEALING APPARATUS FOR ROTARY MECHANISM 2 Sheets-Sheet 2 Filed Jan. 29, 1968 United States Patent 3,485,440 SEALING APPARATUS FOR ROTARY MECHANISM Herman J. Greif, Jr., Orchard Lake, Uno Kuusik, Royal Oak, and David A. Koch, Southfield, Mich., assignors to Chrysler Corporation, Highland Park, Mich., a corporation of Delaware Filed Jan. 29, 1968, Ser. No. 701,359 Int. Cl. F04c 1 7 02; F01c 1/02; F02b 53/00 U.S. 'Cl. 230-145 Claims ABSTRACT OF THE DISCLOSURE Rotary compressor having a two apex rotor with two apex sealing plates located at each apex and biased away from one another against the side walls of the compressor housing. The radially inner ends of the apex sealing plates are received in slotted sealing pins biased outwardly and engaging one-piece side sealing rings on the sides of the rotor. A passage is provided between the apex sealing plates and the rotor to permit compressed refrigerant to aid in the biasing of the apex sealing plates and the sealing pins and rings.
BACKGROUND OF THE INVENTION This invention relates to rotary mechanisms, and more particularly to sealing apparatus for a rotary compressor.
There are several types of rotary compressors and the present invention is described in connection with, although it is not limited to, a rotary compressor of the type comprising an outer body having an axis, side walls axially spaced from one another, and a peripheral wall interconnecting the side walls. The inner surface of the peripheral wall and the side walls form a cavity within which an inner body or rotor is mounted. The inner surface of the peripheral wall is substantially parallel to the axis of the cavity and the cross section of the cavity is generally similar to a conchoid of a circle having a chord approximately equivalent to the length of the rotor. The axis of the rotor is parallel to the axis of the outer body cavity and the rotor has side faces adjacent the side walls of the body. The rotor has two circumferentially spaced apex portions and in side elevation resembles the profile of a football.
The rotor is rotatable relative to the outer body in such a manner that the apex portions continuously engage the inner surface of the peripheral wall to form two working chambers between the rotor peripheral surface and the inner surface of peripheral wall of the outer body. These chambers vary in volume during compressor operation as a result of the relative rotation of the rotor and outer body. Rotary compressors of this type include at least one intake or suction port or passage in the outer body for admitting gas, such as refrigerant, to the compressor, and a discharge port or passage in the outer body for discharging compressed gas from the compressor.
The working chambers of the compressor, for efficient operation of the latter, should be substantially sealed against leakage, although the seal does not have to be as effective as would be required if the mechanism were utilized in rotary combustion engine apparatus since the latter are driving apparatus and must generate pressure for starting, while compressors are driven, rather than driving apparatus.
In regard to the sealing apparatus, it is necessary to provide a seal between each rotor apex portion and the inner surface of the peripheral wall of the outer body, as well as between the side faces of the rotor and the side walls of the body to seal against substantial leakage from the high pressure or discharge side of the rotor to the low pressure or suction side of the rotor. This invention relates to such sealing apparatus.
BRIEF SUMMARY OF THE INVENTION Briefly, this invention comprises a rotary compressor having two apex sealing plates at each apex of the compressor rotor, sealing pins at the radially inner ends of the sealing plates, and side sealing rings engaging the radially inner portions of the sealing pins, means biasing all of the sealing members axially outwardly against side walls of the compressor, the apex sealing plates and sealing pins being located relative to one another and to the rotor so as to permit compressed fluid to aid in the biasing of the sealing members by the aforementioned means.
One of the primary objects of this invention is to provide sealing apparatus for the rotor of a rotary compressor, the apparatus being adapted substantially to seal the space between the rotor and walls of the cavity in which the rotor rotates.
Another object of this invention is to provide sealing apparatus of the class described in which the gas being compressed is utilized to increase the elfectiveness of the seal against leakage of the gas.
A further object of this invention is to provide sealing apparatus such as described in which the apex seals are substantially prevented from becoming improperly aligned during operation.
Still another object of this invention is to provide sealing apparatus of the type described wherein the corners of each apex of the rotor are effectively sealed against the walls of the cavity of the outer body without complex interleaved sealing pieces;
Another object of this invention is to provide sealing apparatus of the class described which is economical in construction and effective in operation.
Other objects and advantages of the invention will be made apparent as the description progresses.
BRIEF DESCRIPTION OF THE DRAWINGS In the accompanying drawings, in which one of various possible embodiments of this invention is illustrated.
FIG. 1 is a side elevation of a rotary compressor constructed in accordance with this invention, certain parts being broken away and removed for clarity;
FIG. 2 is a view similar to FIG. 1 showing certain parts in a different position than that shown in FIG. 1;
FIG. 3 is an enlarged fragmentary view of FIG. 1;
FIG. 4 is a section taken along line 4-4 of FIG. 3; and
FIG. 5 is a section'taken along lines 55 of FIG. 3;
Like parts are indicated by corresponding reference characters throughout the several views of the drawings.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawings, a rotary mechanism of this invention in the form of a rotary compressor is generally indicated at 1. Basically, it comprises an outer fixed body 3, and an inner body or rotor 5. The rotor 5 is provided with apex sealing apparatus 7 at each apex of the rotor, and side sealing apparatus 9 forming a seal between the sides of the rotor 5 and the side walls of the outer fixed body.
More specifically, the body 3 has axially spaced side walls 11 and 13 and a peripheral wall 15 disposed therebetween to form a cavity 17. Only one cavity 17 is shown in the body 3 illustrated herein, but it will be understood that the compressor may be constructed with a plurality of cavities 17 therein located side-by-side, if desired. When the compressor is viewed in a plane extending transversely to an axis 19 of the cavity 17, the inner sur) face 21 of the peripheral wall 15 has a profile which closely approximates a conchoid of a circle having a chord approximately equivalent to the length of the rotor.
An inlet or suction port 23 is provided in wall 15. Port 23 places a cavity 25, which is adapted to be connected to a suction line of a refrigeration system (not shown), in communication with the cavity 17. An outlet or discharge port 27 is also formed in wall 15 at a point circumferentially displaced from suction port 23. Port 27 is adapted to place cavity 17 in communication with a cavity or passage 29 in wall 15. Port 27 is normally closed by a valve, such as a reed valve 31, which valve is adapted to open upon the existence of a predetermined pressure in port 27. Passage 29 adapted to be connected to a discharge line (not shown) of a refrigeration system by a port 23.
Rotor has a cylindrical recess therein in which a ring gear 35 having internal teeth 37 is securely seated and connected to the rotor. As will be understood, the ring gear teeth are adapted to roll on a gear (not shown) fixed to the wall 13 of body 3. The rotor 5 is adapted to be given a uniform movement of rotation by a crankshaft (not shown) which carries an eccentric (not shown) adapted to engage a bearing surface 39 (FIG. 4). The driving mechanism including the fixed gear, the shaft and the eccentric are well known and a detailed description thereof is superfluous to the description of this invention. Suffice to say that the driving mechanism may be similar to the apparatus shown in US. Patent 1,636,486 issued July 19, 1927 to B. R. Planche. Each apex of the rotor 5 has a radially extending generally U-shaped slot 41 therein at the radially inner ends of which there is formed a cylindrical bore 43 extending transversely and axially of the rotor. As will be seen, the bore forms holes in opposite side-s of the rotor. A web 45 forms the U-shape of the slot and is located radially outward of the bore 43.
The apex sealing apparatus 7 at each apex portion of the rotor 5 includes two generally L-shaped sealing plates or members 47 and 49 slideably received in slot 41. The plates 47 and 49, respectively, have axially extending portions or legs 51 and 53 and radially extending legs or portions 55 and 57. The radially outer edges of legs 51 and 53 are adapted to contact the inner surface 21 of wall while the axially outer edges of legs 55 and 57 are adapted to contact side walls 11 and 13, respectively.
The radially inward end portion of legs 55 and 57 are provided with curved seats 59 and 61, respectively, on the axially inner side thereof against one of which one curved end 63 of a spreader and stabilizing spring 65 seats. Spring 65 is a compression spring formed of three legs 67, 69 and 71. Leg 67 is bowed and contacts the axially inner edge of sealing plate 47 at seat 59 and adjacent the juncture of plate legs 51 and 55'. Leg 69 is generally straight and extends over web 45 to leg 71. The latter leg is bowed and shorter than leg 67 and has a curved end 73 which engages the inner edge of the leg '57 of sealing plate 49. The spring 65 biases the sealing plates 47 and 49 apart against the body side walls 11 and 13. The spring 65 contacts the plates 47 and 49 at three points. This three point contact effectively prevents canting or movement of one plate relative to the other such as might occur if the spring engaged the plates at two or four points, for example. The axially inner ends of legs 51 and 53 are spaced from one another as indicated at 75, which as pointed out hereinafter provides a passage through which a small amount of gas under high pressure may pass from the high pressure side of the cavity 17 to the space between the sealing plates 47 and 49 for increasing the outwardly directed force on the sealing plates.
The radial inner ends of legs 55 and 57 extend radially inward beyond the radially inner ends of slot 41 into grooves 77 and 79 extending in an axial direction in cylindrical seal pins 81 and 83 located in bore 43. The axially inner ends of pins 81 and 83 are of reduced diameter so as to form shoulders 85 and 87, respectively, thereon. A compression spring 89 surrounds the reduced diameter ends of the pins and engages the shoulders 85 and 87 to bias the pins axially outward away from one another. The depth of grooves 77 and 79 is sufficient to permit radial movement of the plates 47 and 49 therein. However, as will be made apparent hereinafter, the depth of the grooves is not sufficient to permit the plates 47 and 49 to be moved completely out of the groove in a radial direction when the rotor 5 is in cavity 17.
Body 5 is provided with annular grooves or recesses 91 and 93 stepped as indicated at 95 and 97 to provide second annular grooves or recesses 99 and 101. As will be seen with reference to FIGURES 1, 2 and 3, the grooves 99 and 101 intersect the axial outer ends of the bore 43.
Mounted within grooves 91 and 93, 99 and 101, are the side sealing structures 9. These structures include annular side sealing ring members 103 and 105 which respectively are located in the grooves 99 and 101.
Sealing rings 103 and 105 are generally rectangular in transverse cross section but have a slight taper on the axially outer side adjacent the radially inner surface thereof. The regions of the rings adjacent the sealing pins 81 and 85 are notched in the form of generally curved cutouts 107. The central portions of each cutout are relatively fiat and engage the radially inner surface of the adjacent corner pin, While the outer portions of each cutout are curved and are spaced a slight distance from the adjacent portions of the sealing pins to permit slight shifting of the rings in a plane generally normal to axis 19 as made apparent hereinafter.
The sealing rings 103 and 105 are biased axially outwardly against the side walls 11 and 13 by resilient rings 109 and 111, such as rubber rings, compressed and located in grooves 91 and 93. The rings are also compressed radially inwardly in the region adjacent the pins 81 and 83 by the latter. The sizes of the grooves 91, 93, 99 and 101 and rings 103, 105, 109 and 111 are such that spaces 113 are are provided along the radially outer edges thereof except adjacent the pins 81 and 83.
Assuming the rotor 5 is in the position shown in FIG. 1 and is rotating in a clockwise direction as viewed in FIGS. 1 and 2, operation of the sealing apparatus is as follows:
Gas, such as refrigerant vapor, has been forced through port 23 into cavity 17 and is dispersed in the cavity on the right-hand side of rotor 5, as viewed in FIG. 1. The refrigerant previously forced into the cavity when the rotor was in a position which precedes the FIG. 1 position by degrees, has been compressed to the volume shown on the left-hand side of the rotor as viewed in FIG. 1. It will be seen that as the rotor 5 rotates the sealing plates 47 and 49 of each apex sealing structure 7 are thrown radially outwardly against the inner surface 21 of peripheral wall 15 to seal against refrigerant leakage, except through the space between the radially outer edges and axially inner ends of the plates 47 and 49. When the pressure of the refrigerant being compressed slightly exceeds the pressure of the refrigerant in the discharge line 33, reed valve 31 is forced open and the compressed refrigerant begins to discharge from cavity 17 into the discharge line. However, prior to being discharged and during discharge the refrigerant which has been compressed exerts a high pressure on the sealing structures 7 and 9 which bound the compressed refrigerant. In this regard, the refrigerant pressure is exerted on the seals generally in the direction of the arrows A in FIGS. 1 and 3. The pressure on the discharge side portion of side sealing rings 103 and 105 forces the rings to the right, as viewed in FIG. 1, against the axially extending and radially outward side of grooves 99 and 101 on the suction side of the rotor, thereby causing the rings to tend to assume a generally elliptical shape, the major axis of which would be aligned with the apex portions of the rotor. Thus, the portions of the sealing rings 103 and 105 adjacent the sealing pins 81 and 83 are forced tightly against the pins to increase the effectiveness of the seal therebetween.
The thickness of slot 41 is sufficient to permit a slight movement of the plates 47 and 49 against the side thereof away from the compressed refrigerant and away from the side of the slot adjacent the compressed refrigerant, thereby permitting the compressed refrigerant to pass radially inwardly across the faces of the plates 47 and 49 to the space therebetween. A very small portion of the refrigerant under a high pressure also passes into the space between the axially inner ends of the legs 51 and 53 of sealing plates 47 and 49. A small portion of this refrigerant will, of course, escape to the suction side of the rotor 5 through the portion of the space between the inner surface 21 of wall 15 and the outer edges of the apex portions of the rotor. However, the small amount of high pressurized refrigerant referred to above also passes through space 75 into the space between web 45, plates 47 and 49, and sealing pins 81 and 83. Thus, refrigerant under a high pressure passes both across the faces of plates 47 and 49 and through space 75 to the space around web 45. The refrigerant between the axially extending inner surfaces of plates 47 and 49 and the axially extending outer surfaces of web 45 and pins 81 and 83 tend to force the plates radially outwardly against the inner periphery 21 of Wall 15. Similarly, the refrigerant between the radially extending inner surfaces of the plates 47 and 49 and the radially extending surfaces of web 45 tend to force the plates 47 and 49 axially outwardly against the side walls 11 and 13. Moreover, the refrigerant between the sealing pins 81 and 83 tends to force them axially outwardly against the side walls. Thus, the highly pressurized refrigerant aids the springs 65 and 89 and the radially outward force on plates 47 and 49 in maintaining the plates against the surface 15 and walls 11 and 13. Furthermore, the high pressure refrigerant passes through spaces 113 into contact with resilient rings 109 and 111 which in turn transmit the force exerted thereon against the rings 103 and 105, thereby forcing the latter against side Walls 11 and 13.
It will be understood that as the refrigerant on the discharge side of the rotor is being compressed, additional refrigerant vapor is being delivered through port 23 to the suction side of the rotor. After the compressed refrigerant is discharged the newly admitted refrigerant on the suction side of the rotor will be compressed due to the continuous .movement of the rotor in the body 3. As shown in FIG. 2, the volume occupied by refrigerant introduced through port 23 in FIG. 1 is considerably reduced and will continue to be reduced until the rotor 5 has rotated clockwise to the FIG. 1 position.
It will be seen that the sealing structure is constructed to utilize the refrigerant being compressed for increasing the effectiveness of the seal provided by such structure.
In view of the foregoing, the various objects and other advantages of this invention are obtained.
It will be understood that the invention is not to be limited to the exact constructions shown and described, but that various changes and modifications may be made without departing from the spirit and scope of the invention.
We claim:
1. A rotary mechanism comprising a body formed of axially spaced side walls and a peripheral wall connecting said side walls to form a cavity therebetween, a rotatable rotor in the cavity having a plurality of apex portions movable generally along the peripheral wall as the rotor rotates, the rotor having a centrally located opening in the sides thereof extending in an axial direction, and means for sealing against substantial communication between the portions of said cavity adjacent opposite peripheral sides of each apex of said rotor and between said cavity portions and said opening, said apex portions having generally radially extending slots therein and generally axially extending holes extending inwardly from opposite sides of said rotor at the radially inward ends of said slot, said sides of said rotor having recesses therein ex tending around said opening and intersecting said holes, said means comprising a pair of apex sealing members in each slot and movable radially therein, means biasing the apex sealing members in each slot axially outward away from one another and against said side walls, the radially outer and axially inward ends of said apex sealing members in each of said slot being axially spaced from one another, sealing pins in said holes, said sealing pins having slots in the radially outer portions thereof into which the axially outer portions of the radially inner ends of said apex sealing members extend, means biasing said sealing pins axially outward against said side walls, side sealing members in said recesses, said side sealing members having notches in the radially outer edges thereof adjacent said sealing pins, the side sealing members engaging said sealing pins, and means biasing said side sealing members axially outward against said side walls, said means biasing the apex sealing members away from one another comprising a spring extending therebetween, said spring contacting one of said apex sealing members at two points and contacting the other apex sealing member at one point to provide a stabilizing bias on the apex sealing members.
2. A rotary mechanism comprising a body formed of axially spaced side walls and a peripheral wall connecting said side walls to form a cavity therebetween, a rotatable rotor in the cavity having a plurality of apex portions movable generally along the peripheral wall as the rotor rotates, the rotor having a centrally located opening in the sides thereof extending in an axial direction, and means for sealing against substantial communication between the portions of said cavity adjacent opposite peripheral sides of each apex of said rotor and between said cavity portions and said opening, said apex portions having generally radially extending slots therein and generally axially extending holes extending inwardly from opposite sides of said rotor at the radially inward ends of said slot, said sides of said rotor having recesses therein extending around said opening and intersecting said holes, said means comprising a pair of apex sealing members in each slot and movable radially therein, means biasing the apex sealing members in each slot axially outward away from one another and against said side walls, the radially outer and axially inward ends of said apex sealing members in each of said slots being axially spaced from one another, sealing pins in said holes, said sealing pins having slots in the radially outer portions thereof into which the axially outer portions of the radially inner ends of said apex. sealing members extend, means biasing said sealing pins axially outward against said side walls, side sealing members in said recesses, said side sealing members having notches in the radially outer edges thereof adjacent and sealing pins, the side sealing members engaging said sealing pins, and means biasing said side sealing members axially outward against said side walls, said side sealing members being in the shape of a closed loop, said means biasing said side sealing members axially outward are resilient ringshaped members located axially inward of said side sealing members, said side sealing members contacting said sealing pins and being adapted to be deflected into better contact with said sealing pins upon the application of greater pressure adjacent one portion of the side sealing member than against another portion thereof.
3. A rotary mechanism as set forth in claim 2 wherein said means biasing the apex sealing members away from one another comprises a spring extending therebetween,
said spring contacting one of said apex sealing members at two points and contacting the other apex sealing member at one point to provide a stabilizing bias on the apex sealing members.
4. A rotary mechanism comprising a body formed of axially spaced side walls and a peripheral wall connecting said side walls to form a cavity therebetween, a rotatable rotor in the cavity having a plurality of apex portions movable generally along the peripheral wall as the rotor rotates, the rotor having a centrally located opening in the sides thereof extending in an axial direction, and means for sealing against substantial communication between the portions of said cavity adjacent opposite peripheral sides of each apex of said rotor and between said cavity portions and said opening, said apex portions having generally radially extending slots therein and generally axially extending holes extending inwardly from opposite sides of said rotor at the radially inward ends of said slot, said sides of said rotor having recesses therein extending around said opening and intersecting said holes, said means comprising a pair of apex sealing members in each slot and movable radially therein, means biasing the apex sealing members in each slot axially outward away from one another and agains said side walls, the radially outer and axially inward ends of said apex sealing members in each of said slots being axially spaced from one another, sealing :pins in said holes, said sealing pins having slots in the radially outer portions thereof into which the axially outer portions of the radially inner ends of said apex sealing members extend, means biasing said sealing pins axially outward against said side walls, side sealing members in said recesses, said side sealing members having notches in the radially outer edges thereof adjacent said sealing pins, the side sealing members engaging said sealing pins, and means biasing said side sealing members axially outward against said side walls, each of said apex sealing members having an axially extending leg at the radially outer end thereof and a radially extending leg at the axially outer side thereof, said means biasing said apex sealing members axially outwardly comprising a spring extending between the radially extending legs of said sealing member and having first and second radially extending legs located respectively adjacent the opposite radially extending legs of said apex sealing members, and a third leg joining said first and second legs of said spring and extending in a generally axial direction, opposite end portions of said first leg of said spring contacting the axially extending leg of the adjacent apex sealing member, only one portion of said second leg of said spring contacting the radially extending leg of the other apex sealing member.
5. A rotary mechanism as set forth in claim 4 said side sealing members are in the shape of a closed loop, said means biasing said side sealing members axially outward are resilient ring-shaped members located axially inward of said side sealing members, said side sealing members contacting said sealing pins and being adapted to be deflected into better contact with said sealing pins upon the application of greater pressure adjacent one portion of the side sealing member than against another portion hereof.
6. A rotary compressor comprising a body formed of axially spaced side walls and a peripheral wall connecting said side walls to form a cavity therebetween, an inlet port for admitting fluid to be compressed to said cavity, an outlet for discharging compressed fluid from said cavity, a rotatable rotor in the cavity having a plurality of apex portions movable generally along the peripheral wall as the rotor rotates to compress fluid admitted to the cavity, the rotor having a centrally located opening in the sides thereof extending in an axial direction, and means for sealing against substantial communication between the portions of said cavity on opposite peripheral sides of each apex of said rotor and between said cavity portions and said opening to prevent substantial transfer of fluid from one peripheral side of the rotor adjacent each apex portion to the other peripheral side of the rotor adjacent the same apex portion and from both peripheral sides of the rotor to said opening, said apex portions having generally radially extending slots therein and generally axially extending holes extending inwardly from opposite lateral sides of said rotor at the radially inward ends of said slot, said lateral sides of said rotor having recesses therein extending around said opening and intersecting said holes, said means comprising a pair of apex sealing members in each slot movable radially and axially therein, means biasing the apex sealing members in each slot axially outward away from one another and against said side walls, the axially inward ends of said apex sealing member in each of said slots being axially spaced from one another to provide a passage therebetween, sealing pins in said holes, said sealing pins having slots in the radially outer portions thereof into which the axially outer portions of the radially inner ends of said apex sealing members extend, means biasing said sealing pins axially outward against said side walls, side sealing members in said recesses, the radially outer edges of said side sealing members adjacent said sealing pins engaging said sealing pins, and means biasing said side sealing members axially outward against said side walls to substantially seal one peripheral side of said rotor adjacent each apex portion from the other peripheral side of said rotor adjacent the same apex portions and both peripheral sides of said rotor adjacent each apex portion from said opening said side sealing members having notches in the radially outer edges thereof adjacent said sealing pins, said side sealing members being adapted to be deflected by the pressure of the fluid being compressed by the rotor into better contact with said sealing pins.
7. A rotary compressor comprising a body formed of axially spaced side walls and a peripheral wall connecting said side walls to form a cavity therebetween, an inlet port for admitting fluid to be compressed to said cavity, an outlet for discharging compressed fluid from said cavity, a rotatable rotor in the cavity having a plurality of apex portions movable generally along the peripheral wall as the rotor rotates to compress fluid admitted to the cavity, the rotor having a centrally located opening in i the sides thereof extending in an axial direction, and
means for sealing against substantial communication between the portions of said cavity on opposite peripheral sides of each apex of said rotor and between said cavity portions and said opening to prevent substantial transfer of fluid from one peripheral side of the rotor adjacent each apex portion to the other peripheral side of the rotor adjacent the same apex portion and from both peripheral sides of the rotor to said opening, said apex portions having generally radially extending slots therein and generally axially extending holes extending inwardly from opposite lateral sides of said rotor at the radially inward ends of said slot, said lateral sides of said rotor having recesses therein extending around said opening and intersecting said holes, said means comprising a pair of apex sealing members in each slot movable radially and axially therein, means biasing the apex sealing members in each slot axially outward away from one another and against said side walls, the axially inward ends of said apex sealing member in each of said slots being axially spaced from one another to provide a passage therebetween, sealing pins in said holes, said sealing pins having slots in the radially outer portions thereof into which the axially outer portions of the radially inner ends of said apex sealing members extend, means biasing said sealing pins axially outward against said side walls, side sealing members in said recesses, the radially outer edges of said side sealing members adjacent said sealing pins engaging said sealing pins, and means biasing said side sealing members axially outward against said side walls to substantially seal one peripheral ide of said rotor adjacent each apex portion from the other peripheral side of said rotor adjacent the same apex portions and both peripheral sides of said rotor adjacent eachapex portion from said opening, the radially inner ends of said apex sealing members being spaced outwardly from the bottoms of slots in the radially outer portions of said sealing pins When said rotor is rotating, said apex sealing members being thinner than said slots to permit compressed fluid to pass between said apex sealing members and the walls of said slots to force said apex sealing members radially and axially outwardly.
8. A rotary compressor comprising a body formed of axially spaced side wal s and a peripheral wall connecting said side walls to form a cavity therebetWeen an inlet port for admitting fluid to be compressed to said cavity, an outlet for discharging compressed fluid from said cavity, a rotatable rotor in the cavity having a plu- Iality of apex portions movable generally along the peripheral wall as the rotor rotates to compress fluid admitted to the cavity, the rotor having a centrally located opening in the sides thereof extending inan axial direction, and means for sealing against substantial communication between the portions of said cavity on opposite peripheral sides of each apex of said rotor and between said cavity portions and said opening to prevent substantial transfer of fluid from one peripheral side of the rotor adjacent each apex portion to the other peripheral side of the rotor adjacent the same apex portion and from both peripheral sides of the rotor to said opening, said apex portions having generally radially extending slots therein and generally axially extending holes extending inwardly from opposite lateral sides of said rotor at the radially inward ends of said slot, said lateral sides of said rotor having recesses therein extending around said opening and intersecting said holes, said means comprising a pair of apex sealing members in each slot movable radially and axially therein, means biasing the apex sealing members in each slot axially outward away from one another and against said side walls, the axially inward ends of said apex sealing member in each of said slots being axially spaced from one another to provide a passage therebetween, sealing pins in said holes, said sealing pins having slots in the radially outer portions thereof into which the axially outer portions of the radially inner ends of said apex sealing members extend, means biasing said sealing pins axially outward against said side walls, side sealing member in said recesses, the
radially outer edges of said side sealing members adjacent said sealing pins engaging said sealing pins, and means biasing said side sealing members axially outward against said side walls to substantially seal one peripheral side of said rotor adjacent each apex portion from the other peripheral side of said rotor adjacent the same apex portions and both peripheral sides of said rotor adjacent each apex portion from saidopening, said means biasing the apex sealing members away from one another comprising a spring extending therebetween, said spring contacting one of said apex sealing members at two points and contacting the other apex sealing member at one point to provide a stabilizing bias on the apex sealing members.
9. A rotary compressor as set forth in claim 8 wherein said side sealing members have notches in the radially outer edges thereof adjacent said sealing pins, said side sealing members being adapted to be deflected by the pressure of the fluid being compressed by the rotor into better contact with said sealing pins.
10. A rotary compressor as set forth in claim 9 wherein the radially inner ends of said apex sealing members are spaced outwardly from the bottoms of slots in the radially outer portions of said sealing pins when said rotor is rotating, said apex sealing members being thinner than said slots to permit compressed fluid to pass between said apex sealing members and the walls of said slots to force said apex sealing members radially and axially outwardly.
References Cited UNITED STATES PATENTS 3,185,387 5/1965 Paschke 230-152 X 3,193,188 7/ 1965 Bentele 3,196,849 7/1965 Paschke 123--8 3,251,541 5/1966 Paschke 230 3,300,127 1/1967 Yamamoto et a1. 230-145 3,301,231 1/1967 Tado.
3,359,951 12/ 1967 Sabet.
3,400,691 9/1968 Jones 230--145 X WILLIAM L. FREEH, Primary Examiner WARREN J. KRAUSS, Assistant Examiner US. Cl. X.R.
US701359A 1968-01-29 1968-01-29 Sealing apparatus for rotary mechanism Expired - Lifetime US3485440A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US70135968A 1968-01-29 1968-01-29

Publications (1)

Publication Number Publication Date
US3485440A true US3485440A (en) 1969-12-23

Family

ID=24817043

Family Applications (1)

Application Number Title Priority Date Filing Date
US701359A Expired - Lifetime US3485440A (en) 1968-01-29 1968-01-29 Sealing apparatus for rotary mechanism

Country Status (1)

Country Link
US (1) US3485440A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2213504A1 (en) * 1971-03-20 1972-10-26 Kawasaki Jukogyo K.K., Kobe, Hyogo (Japan) Sealing device for an air compressor
US3932075A (en) * 1975-03-21 1976-01-13 Curtiss-Wright Corporation Rotor and sealing grid for rotary engines
CN114033695A (en) * 2021-12-22 2022-02-11 安徽杰博恒创航空科技有限公司 Lubricating system of air compressor or vacuum pump

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3185387A (en) * 1962-03-31 1965-05-25 Nsu Motorenwerke Ag Apex sealing means
US3193188A (en) * 1963-04-11 1965-07-06 Curtiss Wright Corp Rotor and seal construction for rotary mechanisms
US3196849A (en) * 1961-03-25 1965-07-27 Nsu Motorenwerke Ag Apex seal construction for rotary combustion engine
US3251541A (en) * 1963-12-20 1966-05-17 Nsu Motorenwerke Ag Sealing construction for rotary mechanisms
US3300127A (en) * 1964-02-26 1967-01-24 Toyo Kogyo Company Ltd Rotary piston and seal therefor
US3301231A (en) * 1964-07-25 1967-01-31 Yanmar Diesel Engine Co Sealing device for rotary piston engines
US3359951A (en) * 1964-11-05 1967-12-26 Sabet Huschang Sealing device
US3400691A (en) * 1966-07-21 1968-09-10 Curtiss Wright Corp Seal construction for rotary combustion engines

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3196849A (en) * 1961-03-25 1965-07-27 Nsu Motorenwerke Ag Apex seal construction for rotary combustion engine
US3185387A (en) * 1962-03-31 1965-05-25 Nsu Motorenwerke Ag Apex sealing means
US3193188A (en) * 1963-04-11 1965-07-06 Curtiss Wright Corp Rotor and seal construction for rotary mechanisms
US3251541A (en) * 1963-12-20 1966-05-17 Nsu Motorenwerke Ag Sealing construction for rotary mechanisms
US3300127A (en) * 1964-02-26 1967-01-24 Toyo Kogyo Company Ltd Rotary piston and seal therefor
US3301231A (en) * 1964-07-25 1967-01-31 Yanmar Diesel Engine Co Sealing device for rotary piston engines
US3359951A (en) * 1964-11-05 1967-12-26 Sabet Huschang Sealing device
US3400691A (en) * 1966-07-21 1968-09-10 Curtiss Wright Corp Seal construction for rotary combustion engines

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2213504A1 (en) * 1971-03-20 1972-10-26 Kawasaki Jukogyo K.K., Kobe, Hyogo (Japan) Sealing device for an air compressor
US3932075A (en) * 1975-03-21 1976-01-13 Curtiss-Wright Corporation Rotor and sealing grid for rotary engines
CN114033695A (en) * 2021-12-22 2022-02-11 安徽杰博恒创航空科技有限公司 Lubricating system of air compressor or vacuum pump

Similar Documents

Publication Publication Date Title
US4437823A (en) Rotary machine with an axially moving partition
US5352295A (en) Rotary vane engine
US5509793A (en) Rotary device with slidable vane supports
US3930767A (en) Circular rotor side seal for rotary machines
US1922363A (en) Rotary engine
US3251541A (en) Sealing construction for rotary mechanisms
US3176909A (en) Sealing structures
US4137024A (en) Rotor for rotary piston mechanism
US3491730A (en) Rotary internal combustion engine
US3860365A (en) Seals and methods and means of sealing for rotary engines and the like
US3899272A (en) Rotary mechanism having apex seals with low contact pressure
US3480203A (en) Sealing apparatus for rotary mechanism
US5681156A (en) Piston machine having a piston mounted on synchronously rotating crankshafts
US3485440A (en) Sealing apparatus for rotary mechanism
US4286933A (en) Rotary vane pump with pairs of end inlet or outlet ports
US2880677A (en) Variable volume vane pump
US4097205A (en) Orbital pump with inlet and outlet through the rotor
US3171587A (en) Sealing structures
US4219315A (en) Sealing member for orbital or rotary motors
US4060352A (en) Sealing grid system for rotary piston mechanism of the Wankel type
US3752607A (en) Rotary machine apex seal
US3794450A (en) Rotary machine apex seal
US3036560A (en) Rotary piston internal combustion engines
US3932075A (en) Rotor and sealing grid for rotary engines
US3721510A (en) Rotor apex seal damping device

Legal Events

Date Code Title Description
AS Assignment

Owner name: FIDELITY UNION TRUST COMPANY, TRUSTEE,NEW JERSEY

Free format text: MORTGAGE;ASSIGNOR:CHRYSLER CORPORATION;REEL/FRAME:003832/0358

Effective date: 19810209

Owner name: FIDELITY UNION TRUST COMPANY, 765 BROAD ST., NEWAR

Free format text: MORTGAGE;ASSIGNOR:CHRYSLER CORPORATION;REEL/FRAME:003832/0358

Effective date: 19810209

AS Assignment

Owner name: CHRYSLER CORPORATION, HIGHLAND PARK, MI 12000 LYNN

Free format text: ASSIGNORS HEREBY REASSIGN, TRANSFER AND RELINQUISH THEIR ENTIRE INTEREST UNDER SAID INVENTIONS AND RELEASE THEIR SECURITY INTEREST.;ASSIGNORS:FIDELITY UNION BANK;ARNEBECK, WILLIAM, INDIVIDUAL TRUSTEE;REEL/FRAME:004063/0604

Effective date: 19820217

AS Assignment

Owner name: CHRYSLER CORPORATION

Free format text: PARTES REASSIGN, TRANSFER AND RELINQUISH THEIR ENTIRE INTEREST UNDER SAID PATENTS ALSO RELEASE THEIR SECURITY INTEREST.;ASSIGNOR:MANUFACTURERS NATIONAL BANK OF DETROIL (CORPORATE TRUSTEE) AND BLACK DONALD E., (INDIVIDUAL TRUSTEE);REEL/FRAME:004355/0154

Effective date: 19840905