US3483976A - Flexible screening panel - Google Patents

Flexible screening panel Download PDF

Info

Publication number
US3483976A
US3483976A US599931A US3483976DA US3483976A US 3483976 A US3483976 A US 3483976A US 599931 A US599931 A US 599931A US 3483976D A US3483976D A US 3483976DA US 3483976 A US3483976 A US 3483976A
Authority
US
United States
Prior art keywords
screening
bars
screen
panel
screens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US599931A
Inventor
Charles J Williams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Erie Development Co
Original Assignee
Erie Development Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Erie Development Co filed Critical Erie Development Co
Application granted granted Critical
Publication of US3483976A publication Critical patent/US3483976A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/46Constructional details of screens in general; Cleaning or heating of screens
    • B07B1/4609Constructional details of screens in general; Cleaning or heating of screens constructional details of screening surfaces or meshes
    • B07B1/4618Manufacturing of screening surfaces

Definitions

  • Dutch State Mines type is a unitary flexible slab of urethane rubber, or the like, comprising interconnecting screening bars and support bars, the latter extending at an angle with respect to the screening bars. Screening bars are parallel to each other, and so are support bars. Screening bars and support bars lie in the same plane and have identical cross-section in form of truncated pyramids whose bases together constitute a screening surface.
  • the panel has a clamping strengthening flap extending laterally from at least one edge thereof.
  • This invention relates to the screening art, and is concerned with the provision of an improved fixed fine screen of the type disclosed in US. Patent No. 2,916,142, Fontein, dated Dec. 8, 1959.
  • Said type of fine screen is characterized by an inclined screening deck-fiat, or curved-composed of parallel spaced rod-like members which are disposed transversely to the direction of flow thereover of a slurry of a material to be screened.
  • the spaces-styled slotsbetween said rod-like members mayand usually dohave positive relief.
  • the size of solid particles passing through these slots is not more than one-half the width of said slots, and hence the rodlike members are spaced in a dimension predetermined with regard to the critical size of screeningor, split to be effected by said screen.
  • a slurry of a material to be screened is flowed, at a relatively high velocity, over and substantially parallel to the screening deck in a direction transverse to the long axis of said slots. That is to say, the direction of the solid particles (in such slurry) with respect to said slots is such that the particles are traveling substantially parallel to the screen surface and those the diameters of which are not more than onehalf the width of said slots are diverted (by the hydraulic action of the liquid of the slurry flowing through the slots) to a direction perpendicular to the screen surface and are transported by such liquid through said slots.
  • the aforesaid screens are styled stationary to distinguish them from screens which are vibrated or oscillated during their use.
  • these screens must be made such that the openings or slots must be larger at the bottom than they are at the top. This is termed slots with relief.
  • the slot relief is obtained by the use of parallel wedge-shaped bars. Fabrication of presently used screens consists of laboriously welding or otherwise fastening individual wedge-shaped bars to support members or ribs.
  • inobvious improvements in a fine screen of the aforesaid stationary type are realized by forming the screening deck thereof of a moldable synthetic organic material, which term I employ herein as including synthetic organic elastomeric materials and plastics.
  • the mode of fabricating the screening deck is that of molding from a liquid as by liquid casting, pressure forming, injection casting or like procedure, or by suitably calendering a material in readily impressionable"intermediate-state.
  • elastomeric materials for use in forming the fine screen of the present invention are the following: neoprene, butyl rubber, butadiene-styrene rubber and urethane rubbers; fiuorocarbons; silicones.
  • plastics for this use are the following: various resinous compounds such as nylon, polystyrene, polyethers, alkyd resins, melamine resins, phenolic resins.
  • the fine screen panel of the present invention consists essentially of a unitary slab or body having on one side thereof a plane screening surface, said slab comprising an array of interconnecting screening bars and support bars.
  • the spaced screening bars are parallel to each other, and the spaced support bars-parallel to each other-preferably are disposed at an angle of less than to said screening bars.
  • Each of said screening bars and support bars has, in cross-section, the shape of a truncated pyramid or wedge, the bases of the pyramids lying in a single plane and providing the aforesaid screening surface.
  • FIG. 1 is a perspective view of apparatus for carrying out the process of the present invention
  • FIG. 2 is a perspective view of a fragment of a screening deck (hereinafter referred to as a panel) embodying features of the present invention.
  • FIG. 3 is a side elevational view of the fragment shown in FIG. 1, in section.
  • the mold M was composed of a lower plate (or, mold cavity) 11 and cooperating upper plate 12.
  • Lower plate 11 was a piece of free-machining steel 1.25 inches in thickness by 16.0 inches square. The steel piece was machined top and bottom to fiat parallel surfaces.
  • On the top side of lower plate 11 a first series of 72 similar parallel grooves 15, 15, were machined in the surface, the grooves being 0.15 inch in depth and spaced apart so as to leave an uncut portion of the surface, between each two adjacent grooves, 0.07 inch in width. At the top the grooves were 0.09 inch in width. These dimensions provide a positive draft angle of 8.5.
  • the first series of grooves, the second series of grooves and the third series of grooves were in a form complemental to a symmetrical truncated pyramid their sides having the same angle of inclination.
  • Upper plate (cover) 12 was a piece of steel 16 inches square and 1.25 inches thick, machined to have flat parallel upper and lower surfaces. Bolt holes 27, 27 matching holes 26, 26 were drilled in plate 12.
  • Teflon tetrafluoroethylene
  • Teflon sheet having a thickness of one thirty-second of an inch, which Teflon sheet was of a size just covering the aforesaid 12-inch square but having at each of its four corners an ear projection 30 having therein an aperture 31 matching bolt holes 26 and 27.
  • Bolts 34 were provided for securing together the upper plate 11, Teflon sheet 28, and lower plate 12.
  • the upper surface of mold cavity 11 presented a network of interconnecting grooves, surrounded by a lower (deeper) peripheral groove, which interconnecting grooves isolated the mold cavity surface into a multitude of parallelogram-shaped islands of metal. It is noted, at this point, that the purpose of the Teflon sheet was to allow the parallelogram-shaped islands in the mold surface to protrude up into the Teflon a distance on the order of magnitude of .001". This protrusion resulted in the production of screen castings with flashfree parallelogram-shaped openings.
  • the starting material was a room temperature-curing urethane (Flexane 85, liquid) consisting of an isocyanate resin in liquid form and a liquid hardening agent.
  • the two liquid components were mixed together at room temperature and thereupon were ready for use.
  • THE CASTING PROCEDURE The surfaces of the mold cavity were sprayed with a liquid mold release compound, to prevent the elastomer from sticking, and was allowed to dry.
  • the aforesaid two-part urethane rubber mixture was poured into the mold cavity and spread so that there was an excess of the mixture over that amount required to completely fill the interconnecting grooves.
  • the Teflon sheet 28 was then positioned over the filled mold cavity 11, the upper plate (i.e., cover) 12 was placed on top of the Teflon sheet, and the three parts were bolted together by means of bolts 34.
  • the liquid urethane mixture set in approximately one hour, and hardened overnight to the point where demolding was feasible.
  • the so-produced screen panel 35 was easily stripped from the open mold.
  • the completed panel was a square slab 12 inches on a side, and comprised 72 parallel wedge-shaped screening bars 37, 37 supported by 32 diagonally disposed supporting bars 39 and by a somewhat larger dimensioned peripheral supporting rib 40.
  • a stationary fine screening deck was fabricated by fixing the above-described screen panel to a support frame characterized by an array of parallel arcuate metal support rods, spaced apart on two inch centers, and joined at top and bottom by transverse beam members. The same was then associated with conventional adjustable means for positioning the curved screening deck at a suitable angle for use in screening an aqueous slurry or pulp of finely divided solid oxidic iron ore particles of various sizes the panel was secured to the frame by suitable clamps engaging the peripheral supporting ribs 40.
  • the above-described screening deck was used in classifying an aqueuos slurry of finely subdivided particles of iron oxide ore material varying in sizes between 100 mesh and microns. A sharp split was realized.
  • Molded or cast screens of the sort above described have an advantage over welded metal screens in that the cant or attitude of the wedge-shaped bar can be more accurately controlled.
  • the top surface of each wedge-shaped screening bar should be parallel to the screening surface so that the screen panel can be reversed with respect to the direction of slurry flow.
  • a screen panel embodying principles of this invention can be constructed such that in its use a controlled amount of screening bar flutter or movement will result which movement minimizes the tendency for the slots to become blinded or plugged.
  • the flutter or movement of the bars can be controlled by selecting the appropriate stiffness of the wedge section, the distance between the supports or ribs, and the method of inducing flutter.
  • the flutter may be induced by slurry flow, by sound waves, by machine vibration, or by mechanical shock.
  • a screen panel made in accordance with this invention can be used as a flat screening surface or as a curved screening surface merely by substitution of spaced metal frame members, called support rods, which are straight or curved to any radius. Furthermore, by the use of semiflexible support rods, the curvature of the screen can be varied from straight to any desired curvature while the screen is in operation. This feature allows an additional means of performance control as slurry characteristics change.
  • Another unique feature of a screen panel made under this invention utilizing elastomers consists in the fact that the panel can be made so that the width of the screen opening is variable. The variation is obtained by stretching the panel in a direction parallel to the screening slots. ln this manner, the width of the slots is controllably adjustable.
  • the removal of the casting from the mold is facilitated by the fact that the screening bars and the support ribs are in the same plane and all interconnecting members have a positive draft.
  • the screening bars were welded on top of the support bars, and hence the two sets of bars lay in different planes.
  • the mold grooves having been cut with care, the screening bars were unvarying in straightness and in cross-sectional dimensions, and their spacing was exact.
  • the individual panels were repeatedly duplicated (in the same mold) with no variation in any measurement. The exactness of these dimensions and of this spacing and the uniformity of panels could not be duplicated by the most painstaking welding of individual metal bars to metal support members. Notwithstanding this superiority, the cost of manufacturing the screening panels was very significantly less than was the cost of manufacturing a similar metal screening panel.
  • the chief advantage of the cast elastomeric screens of the present invention is that they are made of a material that outwears steel (traditional material for this type of screen) by a factor of 10-100 times, and outwears natural rubber by a factor of 2-5 times.
  • Production of the screens may be accomplished by pressure forming, liquid casting, and injecting casting. With increased draft angle on the mold and the mold actually on a roller, the screen material can be manufactured in continuous rolls (i.e., by continuous casting techniques).
  • a screening panel for a screen of the D.S.M. (Dutch State Mines) type said screen comprising a rigid screen frame and at least one screening panel removably secured to said frame, said panel consisting essentially of a flexible unitary slab of synthetic organic material, selected from the group consisting of moldable elastomers and moldable plastics, comprising interconnecting screening bars and support bars, said screening bars being parallel to each other and spaced to provide screen openings therebetween, said support bars being parallel to each other and disposed at an angle of less than 90 to said screening bars, said screening bars and said support bars lying in the same plane, each of said screening bars and support bars having a width which is at least no greater than is its height, the cross-section of said screening bars and said support bars constituting substantially symmetrical truncated pyramids whose angles of inclination from the bases of said pyramids coverage and are substantially equal to each other, the bases of the pyramids lying in a single plane and constituting in toto a screening surface a substantial portion of the perip

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Combined Means For Separation Of Solids (AREA)

Description

Dec. 16, 1969 c. J. WILLIAMS FLEXIBLE SCREENING PANEL Filed Dec. 7, 1966 nited States Patent 3,483,976 FLEXIBLE SCREENING PANEL Charles J. Williams, Aurora, Minn., assignor to Erie Development Company, Cleveland, Ohio, a corporation of Delaware Filed Dec. 7, 1966, Ser. No. 599,931 Int. Cl. 1307b 1/12, 1/04 US. Cl. 209-395 2 Claims ABSTRACT OF THE DISCLOSURE A screening panel for a screen of the D.S.M. (Dutch State Mines) type is a unitary flexible slab of urethane rubber, or the like, comprising interconnecting screening bars and support bars, the latter extending at an angle with respect to the screening bars. Screening bars are parallel to each other, and so are support bars. Screening bars and support bars lie in the same plane and have identical cross-section in form of truncated pyramids whose bases together constitute a screening surface. The panel has a clamping strengthening flap extending laterally from at least one edge thereof.
This invention relates to the screening art, and is concerned with the provision of an improved fixed fine screen of the type disclosed in US. Patent No. 2,916,142, Fontein, dated Dec. 8, 1959.
Said type of fine screen is characterized by an inclined screening deck-fiat, or curved-composed of parallel spaced rod-like members which are disposed transversely to the direction of flow thereover of a slurry of a material to be screened. In screens of this category the spaces-styled slotsbetween said rod-like members mayand usually dohave positive relief. The size of solid particles passing through these slots is not more than one-half the width of said slots, and hence the rodlike members are spaced in a dimension predetermined with regard to the critical size of screeningor, split to be effected by said screen. In carrying out a screening operation on a screen of this type a slurry of a material to be screened is flowed, at a relatively high velocity, over and substantially parallel to the screening deck in a direction transverse to the long axis of said slots. That is to say, the direction of the solid particles (in such slurry) with respect to said slots is such that the particles are traveling substantially parallel to the screen surface and those the diameters of which are not more than onehalf the width of said slots are diverted (by the hydraulic action of the liquid of the slurry flowing through the slots) to a direction perpendicular to the screen surface and are transported by such liquid through said slots.
The aforesaid screens are styled stationary to distinguish them from screens which are vibrated or oscillated during their use.
The performance of fine screens of the aforesaid type depends on a large extent on the sharpness of the rodlike members or bars which form the slots. Inasmuch as materials normally screened are abrasive, the screens that are presently in use rapidly become less effective as the leading edges of the bars become dulled through wear.
Also, characteristically these screens must be made such that the openings or slots must be larger at the bottom than they are at the top. This is termed slots with relief. In presently used screens the slot relief is obtained by the use of parallel wedge-shaped bars. Fabrication of presently used screens consists of laboriously welding or otherwise fastening individual wedge-shaped bars to support members or ribs.
The ability of screens of the aforesaid type to differentiate between particles of different sizes in a uniform "ice manner depends on the uniformity of slot width. This characteristic becomes increasingly more important as the slot width is decreased. Because of the inherent difiiculty of jigging a wedge-sectioned rod or wire in fabrication, variation in slot width is inevitable and increases percentage wise as the slot opening is decreased. As a result, sharpness of separation decreases as variation in slot opening increases.
According to the present invention inobvious improvements in a fine screen of the aforesaid stationary type are realized by forming the screening deck thereof of a moldable synthetic organic material, which term I employ herein as including synthetic organic elastomeric materials and plastics. The mode of fabricating the screening deck is that of molding from a liquid as by liquid casting, pressure forming, injection casting or like procedure, or by suitably calendering a material in readily impressionable"intermediate-state.
Amongst elastomeric materials for use in forming the fine screen of the present invention are the following: neoprene, butyl rubber, butadiene-styrene rubber and urethane rubbers; fiuorocarbons; silicones. Amongst plastics for this use are the following: various resinous compounds such as nylon, polystyrene, polyethers, alkyd resins, melamine resins, phenolic resins.
The fine screen panel of the present invention consists essentially of a unitary slab or body having on one side thereof a plane screening surface, said slab comprising an array of interconnecting screening bars and support bars. The spaced screening bars are parallel to each other, and the spaced support bars-parallel to each other-preferably are disposed at an angle of less than to said screening bars. Each of said screening bars and support bars has, in cross-section, the shape of a truncated pyramid or wedge, the bases of the pyramids lying in a single plane and providing the aforesaid screening surface.
The invention will now be described in greater particularity and with reference to the appended drawing, in Which- FIG. 1 is a perspective view of apparatus for carrying out the process of the present invention;
FIG. 2 is a perspective view of a fragment of a screening deck (hereinafter referred to as a panel) embodying features of the present invention; and
FIG. 3 is a side elevational view of the fragment shown in FIG. 1, in section.
THE MOLD The mold M was composed of a lower plate (or, mold cavity) 11 and cooperating upper plate 12. Lower plate 11 was a piece of free-machining steel 1.25 inches in thickness by 16.0 inches square. The steel piece was machined top and bottom to fiat parallel surfaces. On the top side of lower plate 11 a first series of 72 similar parallel grooves 15, 15, were machined in the surface, the grooves being 0.15 inch in depth and spaced apart so as to leave an uncut portion of the surface, between each two adjacent grooves, 0.07 inch in width. At the top the grooves were 0.09 inch in width. These dimensions provide a positive draft angle of 8.5.
At a 45 angle to the grooves of said first series there were cut into the piece a second series of 36 parallel grooves 20, 20 of the same cross-section as were the grooves of said first series, the spacing between adjacent grooves of said second series being 0.354 inch. A third series of 4 grooves 25, 25', having a depth of 0.2 inch and a width of 0.2 inch, were cut around the periphery of the grooved portion of the plate to define a 12 inch square.
The first series of grooves, the second series of grooves and the third series of grooves were in a form complemental to a symmetrical truncated pyramid their sides having the same angle of inclination.
In the four corners of plate 11, bolt holes 26, 26 having a diameter of inch were drilled.
Upper plate (cover) 12 was a piece of steel 16 inches square and 1.25 inches thick, machined to have flat parallel upper and lower surfaces. Bolt holes 27, 27 matching holes 26, 26 were drilled in plate 12.
In addition to the above-described components of the mold, there was provided a sheet 28 of Teflon (tetrafluoroethylene), having a thickness of one thirty-second of an inch, which Teflon sheet was of a size just covering the aforesaid 12-inch square but having at each of its four corners an ear projection 30 having therein an aperture 31 matching bolt holes 26 and 27.
Bolts 34 were provided for securing together the upper plate 11, Teflon sheet 28, and lower plate 12.
The upper surface of mold cavity 11 presented a network of interconnecting grooves, surrounded by a lower (deeper) peripheral groove, which interconnecting grooves isolated the mold cavity surface into a multitude of parallelogram-shaped islands of metal. It is noted, at this point, that the purpose of the Teflon sheet was to allow the parallelogram-shaped islands in the mold surface to protrude up into the Teflon a distance on the order of magnitude of .001". This protrusion resulted in the production of screen castings with flashfree parallelogram-shaped openings.
THE MOLDING MIXTURE In this specific example the starting material was a room temperature-curing urethane (Flexane 85, liquid) consisting of an isocyanate resin in liquid form and a liquid hardening agent. The two liquid components were mixed together at room temperature and thereupon were ready for use.
THE CASTING PROCEDURE The surfaces of the mold cavity were sprayed with a liquid mold release compound, to prevent the elastomer from sticking, and was allowed to dry.
Thereupon, the aforesaid two-part urethane rubber mixture was poured into the mold cavity and spread so that there was an excess of the mixture over that amount required to completely fill the interconnecting grooves. The Teflon sheet 28 was then positioned over the filled mold cavity 11, the upper plate (i.e., cover) 12 was placed on top of the Teflon sheet, and the three parts were bolted together by means of bolts 34.
The liquid urethane mixture set in approximately one hour, and hardened overnight to the point where demolding was feasible. The so-produced screen panel 35 was easily stripped from the open mold.
The completed panel was a square slab 12 inches on a side, and comprised 72 parallel wedge- shaped screening bars 37, 37 supported by 32 diagonally disposed supporting bars 39 and by a somewhat larger dimensioned peripheral supporting rib 40.
A stationary fine screening deck was fabricated by fixing the above-described screen panel to a support frame characterized by an array of parallel arcuate metal support rods, spaced apart on two inch centers, and joined at top and bottom by transverse beam members. The same was then associated with conventional adjustable means for positioning the curved screening deck at a suitable angle for use in screening an aqueous slurry or pulp of finely divided solid oxidic iron ore particles of various sizes the panel was secured to the frame by suitable clamps engaging the peripheral supporting ribs 40.
The above-described screening deck was used in classifying an aqueuos slurry of finely subdivided particles of iron oxide ore material varying in sizes between 100 mesh and microns. A sharp split was realized.
Molded or cast screens of the sort above described have an advantage over welded metal screens in that the cant or attitude of the wedge-shaped bar can be more accurately controlled. The top surface of each wedge-shaped screening bar should be parallel to the screening surface so that the screen panel can be reversed with respect to the direction of slurry flow.
A screen panel embodying principles of this invention can be constructed such that in its use a controlled amount of screening bar flutter or movement will result which movement minimizes the tendency for the slots to become blinded or plugged. The flutter or movement of the bars can be controlled by selecting the appropriate stiffness of the wedge section, the distance between the supports or ribs, and the method of inducing flutter. The flutter may be induced by slurry flow, by sound waves, by machine vibration, or by mechanical shock.
A screen panel made in accordance with this invention can be used as a flat screening surface or as a curved screening surface merely by substitution of spaced metal frame members, called support rods, which are straight or curved to any radius. Furthermore, by the use of semiflexible support rods, the curvature of the screen can be varied from straight to any desired curvature while the screen is in operation. This feature allows an additional means of performance control as slurry characteristics change.
Another unique feature of a screen panel made under this invention utilizing elastomers consists in the fact that the panel can be made so that the width of the screen opening is variable. The variation is obtained by stretching the panel in a direction parallel to the screening slots. ln this manner, the width of the slots is controllably adjustable.
In the manufacture of stationary fine screens heretofore the parallel-wedge-shaped bars were fastened to the support bars by welding each individual joint which resulted in an extremely high fabrication cost. An outstandingly unique feature of the present method resides in the fact that as the simple casting is made all of the intersections (of screening bars with support bars) are formed simultaneously and automatically. The forming of the joints is made possible by making a draft angle on the support bars so that the cross section of the support bars is the same as that of the wedge-shaped screening bars.
The removal of the casting from the mold is facilitated by the fact that the screening bars and the support ribs are in the same plane and all interconnecting members have a positive draft. In the traditional method of fabricating fine stationary screens the screening bars were welded on top of the support bars, and hence the two sets of bars lay in different planes. The mold grooves having been cut with care, the screening bars were unvarying in straightness and in cross-sectional dimensions, and their spacing was exact. The individual panels were repeatedly duplicated (in the same mold) with no variation in any measurement. The exactness of these dimensions and of this spacing and the uniformity of panels could not be duplicated by the most painstaking welding of individual metal bars to metal support members. Notwithstanding this superiority, the cost of manufacturing the screening panels was very significantly less than was the cost of manufacturing a similar metal screening panel.
The chief advantage of the cast elastomeric screens of the present invention is that they are made of a material that outwears steel (traditional material for this type of screen) by a factor of 10-100 times, and outwears natural rubber by a factor of 2-5 times.
The efficiency with which fine stationary screens operate depends largely on the sharpness of screening openings. By the present method an extremely sharp screening opening is produced as the metal parallelogram-shaped openings on the surface of the mold protrude up into the Teflon. Furthermore, as Teflon has memory and returns to normal shape when the pressure is removed, it is usable over and over again.
It is to be appreciated that the data of the above specific example are not limitative of the scope of the present invention. Thus, the screening panels have been cast using Du Ponts Adiprene, Thiokols Solithane and Devcons Flexane, all of which are urethane liquid elastomers. This description is not intended to be restrictive to the materials just enumerated, since other plastics and elastomers could be used as well.
Nor are the specific angles between screening bars and support bars critical. While the invention has been illustrated through disposing first and second series of bars at approximately 45 to each other, it is a fact that any angle between about 90 and about will be found to be operable, depending upon the particular slurry involved and other variables.
Moreover, the particular widths of the screening bars and the particular sizes of the screen openings or slots are matters of engineering and experience.
Production of the screens may be accomplished by pressure forming, liquid casting, and injecting casting. With increased draft angle on the mold and the mold actually on a roller, the screen material can be manufactured in continuous rolls (i.e., by continuous casting techniques).
I claim:
1. A screening panel for a screen of the D.S.M. (Dutch State Mines) type, said screen comprising a rigid screen frame and at least one screening panel removably secured to said frame, said panel consisting essentially of a flexible unitary slab of synthetic organic material, selected from the group consisting of moldable elastomers and moldable plastics, comprising interconnecting screening bars and support bars, said screening bars being parallel to each other and spaced to provide screen openings therebetween, said support bars being parallel to each other and disposed at an angle of less than 90 to said screening bars, said screening bars and said support bars lying in the same plane, each of said screening bars and support bars having a width which is at least no greater than is its height, the cross-section of said screening bars and said support bars constituting substantially symmetrical truncated pyramids whose angles of inclination from the bases of said pyramids coverage and are substantially equal to each other, the bases of the pyramids lying in a single plane and constituting in toto a screening surface a substantial portion of the periphery of the slab being provided with a supporting rib, constituting a clamping flap, laterally projecting from an edge of said slab rearwardly beyond the bars, for clamping the panel to the frame of the screen.
2. A screening panel as defined in claim 1, which is formed of urethane rubber.
References Cited UNITED STATES PATENTS 2,617,600 11/1952 Cole 209-397 X 2,719,524 10/ 1955 Brinkley 209-399 X 2,740,525 4/ 1956 Wenner 209-399 3,081,874 3/1963 Corbin 209408 3,194,397 7/1965 Taege 209398 X 3,352,418 11/1967 Swallow 209403 1,916,393 7/1933 Smith 209--397 2,419,155 4/1947 Orton 209397 2,689,379 9/1954 Nissel 264292 2,712,159 7/1955 Ter Marsch 264292 2,267,372 12/ 1941 Calkins 264 3,228,665 1/1966 Dolan 210499 X FOREIGN PATENTS 108,053 8/ 1939 Australia.
475,428 11/ 1937 Great Britain.
767,619 10/ 1952 Germany.
969,768 9/ 1964 Great Britain.
HARRY B. THORNTON, Primary Examiner R. HALPER, Assistant Examiner U.S. Cl. X.R.
2 3 UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION P n 34, 3,97 Dated December 16, 1 969 Inventor M It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Claim 1, line 18, the word "coverage" should be: converge SIGNED NND SEALED Attest:
Edward M. Fletcher, 1!. mm ES 38.
Dominican or hunt! Attcsfing Officer
US599931A 1966-12-07 1966-12-07 Flexible screening panel Expired - Lifetime US3483976A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US59993166A 1966-12-07 1966-12-07

Publications (1)

Publication Number Publication Date
US3483976A true US3483976A (en) 1969-12-16

Family

ID=24401704

Family Applications (1)

Application Number Title Priority Date Filing Date
US599931A Expired - Lifetime US3483976A (en) 1966-12-07 1966-12-07 Flexible screening panel

Country Status (1)

Country Link
US (1) US3483976A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2080919A1 (en) * 1970-01-21 1971-11-26 Bba Group Ltd
FR2091820A5 (en) * 1970-05-21 1972-01-14 Bridgestone Tire Co Ltd
US3811570A (en) * 1971-05-20 1974-05-21 Goodyear Tire & Rubber Polyurethane screen with backing member
US3900628A (en) * 1973-06-13 1975-08-19 Linatex Corp Of America Pretensioned screen panel
US3905894A (en) * 1973-10-02 1975-09-16 Murskauskone Oy Apparatus for wet fine screening
US3970550A (en) * 1972-01-28 1976-07-20 Bba Group Limited Moulded elastomeric screen mat for sieving devices
US4062769A (en) * 1974-12-19 1977-12-13 Durex Products, Inc. Elastomer screen units for shaker-screen bodies
US4213855A (en) * 1974-01-23 1980-07-22 Bennigsen Mackiewicz A Von Sifting equipment for fine-grained bulk material, particularly flour
US4265742A (en) * 1977-07-25 1981-05-05 Hermann Screens Manufacturing Company (Proprietary) Limited Screen element
US4374169A (en) * 1981-09-14 1983-02-15 Uop Inc. Abrasion resistant, reinforced screen panel member
US5944197A (en) * 1997-04-24 1999-08-31 Southwestern Wire Cloth, Inc. Rectangular opening woven screen mesh for filtering solid particles
US20030030184A1 (en) * 2000-11-08 2003-02-13 Enoch Kim Method of making device for arraying biomolecules and for monitoring cell motility in real-time
US6736271B1 (en) * 2001-12-17 2004-05-18 Peter C. Hall Screen apparatus and method

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB969768A (en) *
US1916393A (en) * 1931-09-23 1933-07-04 Richmond W Smith Pulp screen plate
GB475428A (en) * 1936-05-26 1937-11-19 Head Wrightson & Co Ltd Improvements in or relating to means for screening or classifying solid materials
US2267372A (en) * 1940-09-05 1941-12-23 Chrysler Corp Powdered metal product
US2419155A (en) * 1944-02-19 1947-04-15 Union Screen Plate Company Wood pulp screen plate
US2617600A (en) * 1950-07-26 1952-11-11 Viking Mfg Company Screen with slot-and-circular opening-pattern for hammer mills
DE767619C (en) * 1938-12-23 1952-11-24 Ig Farbenindustrie Ag Sieve mesh or mesh
US2689379A (en) * 1949-09-08 1954-09-21 Union Carbide & Carbon Corp Method of producing riddled thermoplastic sheets
US2712159A (en) * 1950-12-28 1955-07-05 Marsch Jacob Ter Method and device for manufacturing articles of latex rubber material provided with openings
US2719524A (en) * 1952-11-17 1955-10-04 James R Brinkley Seed screen attachment for strawwalkers of a combined harvester
US2740525A (en) * 1953-05-20 1956-04-03 Brueckenbau Flender Gmbh Screen bottoms
US3081874A (en) * 1960-06-27 1963-03-19 Orville Simpson Company Screen tensioning device
US3194397A (en) * 1961-05-27 1965-07-13 H G Schauenburg Verwaltung Und Adjustable sieves
US3228665A (en) * 1963-10-04 1966-01-11 Melvin C Dolan Water purification device
US3352418A (en) * 1963-11-26 1967-11-14 Southwestern Eng Co Remountable separator screen

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB969768A (en) *
US1916393A (en) * 1931-09-23 1933-07-04 Richmond W Smith Pulp screen plate
GB475428A (en) * 1936-05-26 1937-11-19 Head Wrightson & Co Ltd Improvements in or relating to means for screening or classifying solid materials
DE767619C (en) * 1938-12-23 1952-11-24 Ig Farbenindustrie Ag Sieve mesh or mesh
US2267372A (en) * 1940-09-05 1941-12-23 Chrysler Corp Powdered metal product
US2419155A (en) * 1944-02-19 1947-04-15 Union Screen Plate Company Wood pulp screen plate
US2689379A (en) * 1949-09-08 1954-09-21 Union Carbide & Carbon Corp Method of producing riddled thermoplastic sheets
US2617600A (en) * 1950-07-26 1952-11-11 Viking Mfg Company Screen with slot-and-circular opening-pattern for hammer mills
US2712159A (en) * 1950-12-28 1955-07-05 Marsch Jacob Ter Method and device for manufacturing articles of latex rubber material provided with openings
US2719524A (en) * 1952-11-17 1955-10-04 James R Brinkley Seed screen attachment for strawwalkers of a combined harvester
US2740525A (en) * 1953-05-20 1956-04-03 Brueckenbau Flender Gmbh Screen bottoms
US3081874A (en) * 1960-06-27 1963-03-19 Orville Simpson Company Screen tensioning device
US3194397A (en) * 1961-05-27 1965-07-13 H G Schauenburg Verwaltung Und Adjustable sieves
US3228665A (en) * 1963-10-04 1966-01-11 Melvin C Dolan Water purification device
US3352418A (en) * 1963-11-26 1967-11-14 Southwestern Eng Co Remountable separator screen

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2080919A1 (en) * 1970-01-21 1971-11-26 Bba Group Ltd
FR2091820A5 (en) * 1970-05-21 1972-01-14 Bridgestone Tire Co Ltd
US3811570A (en) * 1971-05-20 1974-05-21 Goodyear Tire & Rubber Polyurethane screen with backing member
US3970550A (en) * 1972-01-28 1976-07-20 Bba Group Limited Moulded elastomeric screen mat for sieving devices
US3900628A (en) * 1973-06-13 1975-08-19 Linatex Corp Of America Pretensioned screen panel
US3905894A (en) * 1973-10-02 1975-09-16 Murskauskone Oy Apparatus for wet fine screening
US4213855A (en) * 1974-01-23 1980-07-22 Bennigsen Mackiewicz A Von Sifting equipment for fine-grained bulk material, particularly flour
US4062769A (en) * 1974-12-19 1977-12-13 Durex Products, Inc. Elastomer screen units for shaker-screen bodies
US4265742A (en) * 1977-07-25 1981-05-05 Hermann Screens Manufacturing Company (Proprietary) Limited Screen element
US4374169A (en) * 1981-09-14 1983-02-15 Uop Inc. Abrasion resistant, reinforced screen panel member
US5944197A (en) * 1997-04-24 1999-08-31 Southwestern Wire Cloth, Inc. Rectangular opening woven screen mesh for filtering solid particles
US20030030184A1 (en) * 2000-11-08 2003-02-13 Enoch Kim Method of making device for arraying biomolecules and for monitoring cell motility in real-time
US7211209B2 (en) * 2000-11-08 2007-05-01 Surface Logix, Inc. Method of making device for arraying biomolecules and for monitoring cell motility in real-time
US6736271B1 (en) * 2001-12-17 2004-05-18 Peter C. Hall Screen apparatus and method

Similar Documents

Publication Publication Date Title
US3483976A (en) Flexible screening panel
US4062769A (en) Elastomer screen units for shaker-screen bodies
US3285413A (en) Screen apparatus
US2089548A (en) Means of filtration
US4832834A (en) Elastomer sieve screen
DE19646229A1 (en) Sieve assembly, especially for vibrating sieve processes,
US6736271B1 (en) Screen apparatus and method
US3557276A (en) Method of making a fine screen
DE2909564B1 (en) Device for reducing vibrations in a record player
US3970550A (en) Moulded elastomeric screen mat for sieving devices
DE19508152A1 (en) Vibrating shape
DE2826734A1 (en) FILTER SECTOR
US11504744B2 (en) Modular, pre-tensioned, self-cleaning screening panels
US4614325A (en) Apparatus for molding panels, particularly of cementitious material
US2419155A (en) Wood pulp screen plate
US2127270A (en) Method of making sewage screens
US3456795A (en) Sieve elements
GB2092917A (en) Screens
US703683A (en) Screen-plate for pulp-strainers.
US3305090A (en) Readily renewable sectionalized trommel
EP0081471A1 (en) Screening system
US2983381A (en) Metal openwork screens
DE3721062A1 (en) METHOD FOR PRODUCING A SCREENING ELEMENT AND SCREENING ELEMENT USING THIS METHOD
DE2108854A1 (en) Riddle floor - of elastic material gratings reinforced with cross bars
JPH0268380A (en) Screen for paper making and production thereof