US3483125A - Polymeric additives for lubricating oil - Google Patents

Polymeric additives for lubricating oil Download PDF

Info

Publication number
US3483125A
US3483125A US656065A US3483125DA US3483125A US 3483125 A US3483125 A US 3483125A US 656065 A US656065 A US 656065A US 3483125D A US3483125D A US 3483125DA US 3483125 A US3483125 A US 3483125A
Authority
US
United States
Prior art keywords
oil
polymer
carbon atoms
acid
unsaturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US656065A
Inventor
Thomas J Clough
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinclair Research Inc
Original Assignee
Sinclair Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinclair Research Inc filed Critical Sinclair Research Inc
Application granted granted Critical
Publication of US3483125A publication Critical patent/US3483125A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/12Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/62Monocarboxylic acids having ten or more carbon atoms; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F240/00Copolymers of hydrocarbons and mineral oils, e.g. petroleum resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F246/00Copolymers in which the nature of only the monomers in minority is defined
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/024Propene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/06Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/402Castor oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/404Fatty vegetable or animal oils obtained from genetically modified species
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/082Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/04Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen, halogen, and oxygen
    • C10M2211/044Acids; Salts or esters thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/06Perfluorinated compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • C10M2215/224Imidazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/024Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amido or imido group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/028Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a nitrogen-containing hetero ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/042Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds between the nitrogen-containing monomer and an aldehyde or ketone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/043Mannich bases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound

Definitions

  • the mono-l-alkene is normal and has about 14 to 21 carbon atoms
  • the unsaturated acid has about 10 to 21 carbon atoms and, if the ester is used, is esterified with a lower alkanol
  • the diene has 4 to 5 carbon atoms.
  • Detergents for lubricating oils are prepared by condensation of these polymers with an essentially aliphatic polyamine having up to about 11 amino groups, at least one of which is primary, e.g., pentaethylene hexamine.
  • This invention relates to novel polymers having utility as extreme pressure agents for lubricating oils and to novel ashless detergents formed from the polymers. More specifically, the present invention is directed to a Friedel Crafts polymerized polymer of an unsaturated monocarboxylic acid (or ester thereof), an alpha-olefin and, optionally, a conjugated diene, the product being useful as an extreme pressure agent, and to the novel polymeric lubricating oil detergent formed by reacting the polymer with amine compounds. The invention also concerns lubricaitng oils which contain these polymers.
  • the fuel used in this type of engine is, of course, gasoline, usually known as an easily-burned fuel. Gasoline is easily-burned if engine combustion chambers reach a high enough temperature and the fuel therein is properly vaporized and mixed with adequate oxygen. In such combustion the gasoline is completely burned and only harmless carbon dioxide gas and steam are formed. However, if the engine does not operate long enough to heat its jacket water and crackcase to at least 150 F. some carbon dioxide and steam will blow by piston rings, condense in the cold crankcase and form liquid carbonic acid which rusts iron and steel.
  • Another source of trouble from deposits in internal combustion engines is the additives which are conventionally lncorporated in lubricants.
  • metal-containing additives for example, the organic, metal-containing salts which are incorporated in the oil to increase the detergency thereof.
  • any metalcontaming additives present in the oil may form an ash which is partially deposited on the various surfaces of the combustion chambers, spark plugs and valves.
  • the ashless detergents of this invention provide for inhibition of sludge formation in the engine and, further, dispersing of the sludge when formed.
  • the detergent additives successfully employed on a commercial scale were organic, metal-containing compounds such as calcium petroleum sulfonate, calcium cetyl phosphate, calcium octyl salicylate, calcium phenyl stearate or the potassium salt of the reaction product of phosphorous pentasulfide and polybutene.
  • Various of these detergents act by reacting chemically with precursors to form harmless compounds.
  • Detergents capable of performing the dispersant function, as well as the solubilization or emulsification, are preferably employed wherever possible, particularly in automotive engines to be operated under city driving conditions. Although these metal-containing organic compounds have effectiveness as detergents for dispersing these deposit precursors, they have the disadvantage of forming ash deposits in the engine.
  • non-metallic detergents were developed. Sulfurized and phosphosulfurized long chain hydrocarbons have detergent properties; however, these detergents evolve hydrogen sulfide on heating and also have 0.1 to 0.2% ash. Macromolecular compounds, which were mostly phenolics and phenolic resins, have been observed to have some detergent activity. Acrylate polymers have also been employed, and a fraction of the carboxyl function thereof was esterified with long chain oleophilic alcohols and the remainder was esterified with hydrophilic polyglycol ethers, or amidified or neutralized with amines.
  • a base oil-soluble polymer composed essentially of defined olefinically-unsaturated carboxylic acid or ester, mono-l-alkene of about 3 to 25, preferably about 12, or even 14, to 21, carbon atoms, and (optionally) conjugated, diolefinically-unsaturated, aliphatic hydrocarbon of 4 to 12, preferably 4 to 5, carbon atoms can be reacted with organic amines to give a polymer product effective as an ashless detergent.
  • the intermediate polymer i.e., before amine condensation
  • the polymers of the present invention will be composed essentially'of about 15-95, preferably about 20-90, mol percent of the mono-l-alkene, about 3-85, preferably about 5-40, mol percent of the unsaturated acid or ester, and about -70, or even 80, mol percent of the diene hydrocarbon.
  • the polymers when it is desired to exclude the diene hydrocarbon, it is preferred that the polymers contain about 95-15, more preferably about 90-60, mol percent of the mono-l-alkene and about -85, more preferably about -40, mol percent of the unsaturated 1 acid or ester.
  • polymers of about 92-15, more preferably about 85-20, mol percent of the alkene, about 3-55, more preferably about 5-25, mol percent of the unsaturated acid or ester, and Q about 5-80, more preferably about 10-70, mol percent of the diene.
  • the unsaturated acids or esters polymerized with the mono-l-alkenes to form the novel, base oil-soluble extreme pressure additive of this invention are the acids or esters of the formula is separated, however, from the olefinic bond, or bonds, in R by a non-olefinically-unsaturated carbon-to-carbon chain of at least 2, preferably at least about 6 or even at least about 8, carbon atoms.
  • non-olefinically-unsaturated is meant having no olefinic bonds.
  • the carboxylic carbon atom is, however, attached to a non-olefinic carbon atom, and preferably the carboxyl carbon atom is at least about 6, or even at least about 8, carbon atoms removed from the first olefinic bond (i.e., at least 5 or 7 carbon atoms removed from the first olefinic carbon atom).
  • the non-olefinically-unsaturated carbon-to-carbon chain separating the olefinic bond, or bonds, from the carboxylic group may be parafiinic, cycloaliphatic, aromatic, etc., so long as it is not olefinically-unsaturated; it is often preferred that the chain be parafiinic.
  • R in the above formula is hydrogen or alkyl of 1 to carbon atoms, preferably lower alkyl, say of 1 to 3 carbon atoms. When R is alkyl, salt formation of the acid with the catalyst used for the polymerization is prevented, and alcohol which is formed later in the reaction with an organic amine can often be readily distilled from the product.
  • acids which may be used in this polymer are oleic, linoleic, undecylenic, linolenic, ricinoleic, vinyl acetic, etc.
  • the lower alkyl esters of these acids, including the glycerides, may also be employed, especially the methyl esters.
  • the same polymer pro-ducts are, of course, formed from the anhydrides of the acids, as well as from other acid forms, such as the acid amides, which give a condensation type reaction with the aliphatic polyamine.
  • the acid reactant serves to supply the acyl group
  • the mono-l-alkenes employed in the present invention can be represented by the formula wherein R and R" are selected from the group consisting of hydrogen and alkyl, including cycloalkyl, and the total number of carbon atoms is from about 3 to 25, preferably about 12 to 21, carbon atoms. Preferably, one of R and R is hydrogen and the other is a straight chain alkyl to give a normal olefin.
  • the mono-l-alkenes are often used as a mixture and may contain minor amounts, usually less than 10% by weight, of other hydrocarbons such as other olefins, diolefins, saturated hydrocarbons and aromatics.
  • the mono-l-alkene may be substituted with, e.g., halogen, etc., so long as the substituent does not interfere with the polymerization or have any other significant deleterious effect.
  • the conjugated, diethylenically or diolefinically unsaturated, aliphatic hydrocarbons which may be used in making the polymer include the polymerizable, conjugated, diethylenically-unsaturated alkenes having from 4 to 12 carbon atoms, preferably 4 to 5 carbons, e.g., conjugated diolefins with a terminal double bond such as 1,3-butadiene, isoprene, etc.
  • the diolefin may be substituted with, e.g., halogen, etc., so long as the substituent does not interfere with the polymerization or have any other significant deleterious efi'ect.
  • An example of a substituted, conjugated diolefin is chloroprene.
  • the choice of unsaturated acid, conjugated, diethylenically-unsaturated aliphatic hydrocarbon (if employed) and mono-l-alkene, their ratios and the extent of reaction are such as to give an oil-soluble polymer, and usually the total number of carbon atoms in the acid and mono-lalkene reactants is at least about 12, preferably at least about 18. Also, more than one acid, conjugated diethylenically-unsaturated aliphatic hydrocarbon or mono-1- alkene can be used in forming a given polymer, and minor amounts of other polymerizable monomers may be present.
  • the polymer of the present invention can be prepared by subjecting the mono-l-alkene, the diethylenically-unsaturated, conjugated, aliphatic hydrocarbon (if employed) and the unsaturated acid or ester to a polymerization temperature of about 0 to 50 0., preferably about 0 to 25 C., in the presence of a strong Friedel-Crafts catalyst, such as aluminum chloride or boron trifluoride.
  • a preferred catalyst is aluminum chloride, and it is also preferred to add the unsaturated acid or ester, and any conjugated, diethylenically-unsaturated, aliphatic hydrocarbon to be included, to the mono-lalkene.
  • a co-catalyst may also be employed and will generally be present in an amount of about 0.5 to 5 volumes of co-catalyst per volume of acid-alpha olefin-diene feed.
  • a suitable co-catalyst may also be a solvent for the Friedel-Crafts catalyst.
  • Examples of appropriate co-catalysts are the lower alkyl haliies, especially ethyl chloride, methyl chloride and the
  • the strong Friedel-Crafts catalyst will generally be present in the co-catalyst solution in a concentration of about 0.01 to 15%, preferably about 0.5 to 7%, by weight and the amount of the Friedel-Crafts catalyst employed is generally about 0.1 to by weight, preferably about 2 to 15% by weight, of the polymer formed, over and above that portion of the catalyst if any which reacts with the carboxyl group of the acid.
  • the proportions of reactants (diene, unsaturated acid and mono-l-alkene) to catalyst solution employed may often be about 1:2 to 1:10 or even about 1:4 to 1:5 moles of reactants per mole of .catalyst solution. At least 0.5 mole of catalyst is generally used for every mole of acid in the reactants mixture, when the acid form is reacted.
  • the polymer may be formed by simultaneous addition of the catalyst solution and the monomers to a reaction vessel.
  • the volumetric ratio of catalyst solution to the monomer reactants in a given unit of time is often about 2:1 to about 4: 1, preferably about 3 to 1.
  • the polymerization may be permitted to continue for a short period of time, generally about 5 to 45 minutes, to insure polymerization to a base oil-soluble polymer product, for instance, a normally liquid material which may have a kinematic viscosity at 210 F. of, say,
  • the polymerization reaction can then be quenched using, for instance, a lower alkanol, e.g., of 1 to 4 carbon atoms, in solution in a lower alkane.
  • a lower alkanol e.g., of 1 to 4 carbon atoms
  • the resulting polymer can be separated from residual catalyst as by washing with water, alcohol, dilute aqueous caustic soda, hydrochloric acid or other suitable hydrolyzing and washing methods.
  • the resulting polymer is an effective extreme pressure agent when added to lubricating oils.
  • the polymer When employed as an extreme pressure agent in lubricating oils, the polymer is. added in small or minor amounts, sufiicient to impart extreme pressure properties to the oil. The amount added usually will fall Within the range of about 0.001 to 10,
  • novel ashless detergent of the present invention may be prepared by the condensation reaction of the polymer of mono-l-alkene, unsaturated acid (or ester) and diene (if employed) with an essentially aliphatic polyamine.
  • Suitable polyamines may be represented by the general formula:
  • R is an alkylene. radical of 2 to 14 or more carbon atoms, preferably 2 to about 7 carbon atoms; R is selected from hydrogen and hydrocarbon radicals such as alkyl, including cycloalkyl, and the radicals may have, for instance, 1 to 30 or more carbon atoms, preferably 1 to about 7 carbon atoms; and n is a number from 1 to about 10, preferably about 2 to 6.
  • R may extend between two N-atoms, for instance, the two to which R is attache-d, and, in this case, these nitrogen atoms will have only one other bond for further attachment.
  • the R and R substituents are preferably saturated, but may be unsaturated, and may be substituted with non-deleterious substituents, especially lower alkyl.
  • R is selected from hydrogen and hydrocarbon radicals such as alkyl, as noted above, or is amino alkyl of 1 to about 30, preferably 1 to about 7 carbon atoms, and R" is selected from H and alkyl of 1 to about 12 or more carbon atoms, preferably 1 to about 5 carbon atoms.
  • R may also be a hydroxy-alkyl, alkoxy-alkyl or aromatic radical.
  • useful polyamines include, for instance, monoalklenediamines, dialkylaminoalkylamines, polyalkylene-polyamines, N-(p-aminoalkyl)piperazines, etc.
  • suitable monoalkylene diamines are ethylene diamine, propylene diamine, butylene diamine, octylene diamine, etc.
  • suitable dialkylaminoalkylamines are dimethylaminoethylamine, dimethylaminopropylamine, diethylaminoamylamine, dipropylaminopropylamine, methylpropylaminoamylamine, propylbutylaminoethylamine, etc.
  • polyalkylenepolyamines examples include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, hexapropyleneheptamine, tetrabutylene pentamine, polyamine D (a mixture of aliphatic and cyclic polyethyleneamines boiling above 340 C.
  • N-(fi -aminoalkyl) piperazines include N-methyl- N-(;3 -aminoethyl) piperazine, N-(B-aminoisopropyl) piperazine, etc.
  • the polyamine is generally reacted in an amount suflicient to provide about 0.1, or even about 0.6, to about 14 gram atoms of hydrogen-bonded nitrogen per mole equivalent of carboxyl groups in the polymer; preferably, about 1.5 to 4 gram atoms of hydrogen-bonded nitrogen per mole equivalent of carboxyl groups will be provided.
  • hydrogen-bonded nitrogen is meant nitrogen of a primary or secondary amine group of the polyamine, which nitrogen may or may not still be bonded to hydrogen after the polyamine is condensed with the polymer.
  • carboxyl group is meant the group which may, depending on the monomer employed, be supplied either by a carboxylic acid or ester.
  • the condensation reaction is usually conducted at a temperature of about 60 to 320 C. depending upon Whether amide or imidazoline formation is desired.
  • the reaction temperature for amide formation is about to 180 C. and that for imidazoline formation is about 200 to 300 C.
  • the reaction is conducted to give a base oil-soluble product and often the reaction takes about 0.25 to 5 hours, preferably about 0.5 to 3 hours, and water or alcohol is removed as formed.
  • the resulting polymer is base oil-soluble and ordinarily has a kinematic viscosity at F. of from about 1000 to 20,000, preferably about 3000 to about 15,000 centi stokes, and a kinematic viscosity at 210 F.
  • the detergent additives are added to the lubricating oils in minor effective amounts, usually in the range 7 of about 0.1 to or more, preferably about 0.25 to 7.5%, by weight of the oil.
  • Lubricating oils which can be used as the base oil or major component of the lubricating oil compositions of the present invention include a wide variety of oils of lubricating viscosity, such as naphthenic base, paraffinic base, and mixed base mineral lubricating oils; other hydrocarbon lubricants, e.g., lubricating oils derived from coal products; and synthetic oils, e.g.
  • alkylene polymers such as polymers of propylene, butylene, etc., and mixtures thereof
  • alkylene oxide-type polymers e.g., alkylene oxide polymers prepared by polymerizing the alkylene oxide, e.g., propylene oxide, etc., in the presence of water or alcohols, e.g., ethyl alcohol
  • carboxylic acid esters e.g., those which are prepared by esterifying such dicarboxylic acids as adipic acid, azelaic acid, suberic acid, sebacic acid, alkyl succinic acid, fumaric acid, maleic acid, etc.
  • alcohols such as butyl alcohol, hexyl alcohol, Z-ethylhexyl alcohol, dodecyl alcohol, etc.
  • the above base oils may be used individually or in combinations thereof, wherever miscible or wherever made so by the use of mutual solvents.
  • the synthetic oils to which the polymeric reaction products may be added include ester-based synthetic oils of lubricating viscosity which consist essentially of carbon, hydrogen and oxygen, e.g., di-Z-ethylhexyl sebacate.
  • ester-based synthetic oils of lubricating viscosity consist essentially of carbon, hydrogen and oxygen, e.g., di-Z-ethylhexyl sebacate.
  • these lubricating materials have been described in the literature and generally their viscosity ranges from the light to heavy oils, e.g., about 50 SUS at 100 F. to 250 SUS at 210 F. and preferably 30 to 150 SUS at 210 F.
  • These esters are of improved thermal stability, low acid number and high flash and fire points.
  • the complex esters, diesters, monoesters, and polyesters may be used alone or to achieve the most desirable viscosity characteristics; complex esters, diesters and polyesters may be blended with each other or with naturally-occurring esters like castor oil to produce lubricating compositions of wide viscosity ranges which can be tailer-made to meet various specifications. This blending is performed, for example, by stiring together a quantity of diester and complex ester at an elevated temperature, altering the proportions of each component until the desired viscosity is reached.
  • Suitable monoand dicarboxylic acids used to make synthetic ester lubricant bases can be branched or straight chain and saturated or unsaturated, and they frequently contain from about 2 to 12 carbon atoms.
  • the alcohols usually contain from about 4 to 12 carbon atoms.
  • the useful glycols include the aliphatic monoglycols of 4 to or 30 carbon atoms, preferably 4 to 12 carbon atoms.
  • compositions of this invention Materials normally incorporated in lubricating oils to impart special characteristics can be added to the composition of this invention. These include corrosion inhibitors, extreme pressure agents, anti-Wear agents, etc.
  • the amount of such additives included in the composition usually ranges from about 0.01 weight percent up to about 20 or more weight percent, and in general they can be employed in any amounts desired as long as the composition is not unduly deleteriously affected.
  • Component percent Total olefins 95+ Total a-olefins 94
  • Molecular weight distribution, Weight, No. of carbon atoms percent 14 1 was added linoleic acid in a mole ratio of alpha-olefin to linoleic acid of 5 to 1, based on the average molecular weight (243) of the alpha-olefin mixture.
  • a one liter flask was equipped with a Dean-Stark trap and two addition funnels.
  • a Dry Ice trap was mounted on the Dean- Stark trap to remove and condense the volatile solvent, ethyl chloride, used'in the polymerization.
  • One funnel was charged with the olefin-linoleic acid feed, and to the remaining tunnel was charged a catalyst solution consisting of 5.2 grams aluminum chloride per 100 ml. of ethyl chloride at 12 C.
  • Both the olefin-linoleic acid feed and the catalyst solution were introduced into the reaction flask simultaneously, the olefinic-linoleic acid mixture at a rate of 22.0 ml. per minute (.0590 mole per minute C -C alpha olefin, 0.0118 mole per minute linoleic acid), the catalyst solution at a rate of 60 ml. per minute (0.0234 mole per minute aluminum chloride).
  • the total time for the addition of olefin-linoleic acid and catalyst solution was 8 minutes and the polymerization mixture was stirred for an additional 13 minutes.
  • the temperature during the polymerization was 14 C. and 185 ml. of ethyl chloride was trapped out of the polymerization system. Hexane, 400 ml., and 400 ml. of isopropanol were added to quench the catalyst.
  • the polymer was washed with dilute hydrochloric acid and washed three additional times with water.
  • the polymer was stripped of solvents and had a KV at 210 F. of 113.76 cs., acid number of 35.41 and an iodine number of 42.9.
  • EXAMPLE II The same type of reaction equipment was used as in Example I. To a mixture of the alpha-olefin feed as in Example I was added undecylenic acid in a mole ratio of alpha-olefin-to undecylenic acid of 6 to 1, based on the average molecular weight of the alpha-olefin mixture.
  • the catalyst was quenched with isopropanol, and the polymerwashed with dilute hydrochloric acid.
  • the polymer was washed with water and topped of solvents.
  • the polymer had an acid number of 30.68, specific gravity of .8771, iodine number of 45.5 KV at 100 F. of 4882.0 es, and a KV at 210 F.
  • EXAMPLE III The first polymer product of Example I, i.e., the olefin-linoleic acid polymer, was added in an amount of 0.4%, to a synthetic lubricating oil. The resulting composition was tested in a Ryder gear apparatus and the The synthetic lubricant blend was formulated as follows:
  • Example V The same type of reaction equipment was used as in Example I. To a mixture of the normal alpha-olefin feed as used in Example I was added isoprene and linoleic acid in a mole ratio of alpha-olefin to isoprene to linoleic acid of 6.52/2.45/ 1.0, based on the average molecular weight (243) of the alpha-olefin mixture.
  • the olefin intake was charged with olefin-linoleic acid-diethylenicallyunsaturated alkene feed, and the catalyst intake was charged with a catalyst solution consisting of 5.2 grams aluminum chloride per ml. of ethyl chloride at C.
  • Both the reactant feed and the catalyst solution were introduced into the reaction flask simultaneously, the olefinic-linoleic acid-diethylenically unsaturated alkenemixture at a rate of 24.2 ml. per minute (0.0615 mole per minute C C alpha-olefin, 0.026 mole per minute isoprene, 0.00923 mole per minute linoleic acid), the catalyst solution at a rate of 49 ml. per minute (0.01 92 mole per minute aluminum chloride).
  • the total time for the addition was 10 minutes and the polymerization mixture was stirred for an additional 20 minutes.
  • the temperature during the polymerization was 16 C. and 320 ml. (61%) of ethyl chloride was trapped out of the polymerization system. Hexane, 400 ml., and 400 ml. of isopropanol were added to quench the catalyst.
  • the polymer was washed with dilute hydrochloric acid and washed three additional times with water.
  • the polymer was stripped of solvents and had a KV at 100 F. of 3603 cs.; KV at 210 F. of 199.54 cs., acid number of 25.44 and an iodine number of 43.9; and a specific gravity of 0.8778.
  • the system was purged with nitrogen over a 15-minute period as the temperature was increased to 65 C.
  • the temperature was increased to 270 C. over a -minute period and a 15 cm. vacuum was applied at 270 C. for a period of 75 minutes to facilitate the removal of water.
  • the temperature was allowed to reach room temperature under this reduced pressure.
  • the product was washed and stripped of solvents.
  • the polymer was tested as an ashless detergent in a 95 v.1. Mid-Continent neutral oil in the Low Temperature Detergency Bench Test described in US. Patent No. 3,044,860.
  • Both the olefin-acid feed and catalyst solution were introduced into the reaction flask simultaneously, the olefin-acid feed at a rate of 19.6 ml. per minute, the catalyst solution at a rate of 49.4 ml. per minute.
  • the total time for addition was 12 minutes and the polymerization mixture was stirred for an additional 12 minutes.
  • the temperature during polymerization was 15.5 C. and 340 ml. of ethyl chloride (57.5%) were trapped out of the system.
  • the catalyst was quenched with 400 ml. hexane and 400 ml. of isopropanol.
  • the polymer was washed with water and topped of solvents.
  • the polymer had a saponification number of 38.0, specific gravity of .8897, iodine number of 32.0; and a KV at 100 F. of 1317.0 cs.
  • 200 grams was added at 26 TABLE vi Base blend Base plus 1% blend additive Time to incipient deposits (hrs) 96 224 Final rating at 240 hours (so-100% clean) 24. 9 45. 8
  • EXAMPLE VII The same type of reaction equipment was used as in Example I. To a mixture of the alpha-olefin feed as in Example I were added isoprene and methyl oleate to produce a mole ratio of alpha olefin-isoprene-methyl oleate of 6.05 to 2.05 to 1.00, based on the average molecular weight of the alpha-olefin mixture. The same polymerization equipment-was used as in Example 1. One funnel was charged with the reactant feed, and to the remaining funnel was charged a catalyst solution consisting of 5.2 grams aluminum chloride per 100 ml. of ethyl chloride.
  • Both the olefin feed and the catalyst solution were introduced into the reaction flask simultaneously, the olefin mixture at a rate of 20.8 ml. per minute (0.0525 mole per minute alphaolefin, 0.0173 mole per minute isoprene, 0.00860 mole per minute methyl oleate), the catalyst solution at a rate of 39.5 ml. per minute (0.0154 mole per minute aluminum chloride).
  • the total time for addition was 12 minutes and the polymerization was continued for an additional 28 minutes.
  • the temperature during polymerization was 16 C. and 280 ml. (59%) of ethyl chloride was trapped out of the polymerization system. Hexane, 400 ml. and 400 m1.
  • the synthetic lubricant blend is formulated as follows:
  • EXAMPLE IX To a mixture of the alpha-olefin feed as in Example I was added 1,3-butadiene and methyl oleate in a mole ratio'of methyl oleate to butadiene to alpha-olefin of 1 to 6 to 8, based on the average molecular weight of the alpha-olefin mixture.
  • the monomer mixture and catalyst solution (4.8 g. AlCl /100 cc. EtCl solution) were fed separately at a volumetric ratio of catalyst solution to monomer mixture of 3/1 into an empty back mix reactor, and the temperature maintained at 1417 C. by distillation of ethyl chloride. Approximately 50 to 60 volume percent of input catalyst solution was distilled.
  • Feeding was continued and, when a residence time of minutes was attained, portions of the reactant mixture were removed from the reactor at a rate so adjusted that the reactant volume in the reactor remained constant. These portions were immediately quenched in Water at -80 C. and wet ethyl chloride distilled from the quench tank and collected. Operation under these conditions was continued for a total of 4 residence times (160 minutes measured from the initial time) to allow the reactor to reach equilibrium. During the fifth residence time, the quench feed was switched to a new quench tank, and the non-equilibrium product in the first quench tank discarded, Simultaneously and continuous feeding of the reactor and collection of the product was continued until it was desired to cease operations.
  • the product layer was separated from the aqueous layer, solvent washed and stripped to yield a clear, amber liquid having a saponification number of 18.4; specific gravity of 0.8776; iodine number of 23.4; KV at F. of 3870 cs., and a KV at 210 F. of 243.9.
  • the polymer is converted to detergent by mixing in a reactor at room temperature with equimolar quantities of tetraethylenepentamine based on the saponification number of the polymer.
  • a nitrogen stream at 60 to 300 cc./min. is fed to the bottom of the reactor and the mixture is rapidly heated to 230-300 C. at a pressure in the range from 5 microns to atmospheric.
  • the reflux condenser is rigged for distillation. Heating is continued for 2-4 hours and the product then allowed to cool to room temperature. The viscous liquid is mixed with an equal weight of mineral oil, treated with clay and filtered. The final product is a clear, bright, amber liquid.
  • Example XVII The same type of reaction equipment was used as in Example I. To 162 grams of the mixed alpha-olefin feed as in Example I were added 27 grams of butadiene and 14.4 grams of vinylacetic acid, providing a monomer mixture having a molar ratio of alpha-olefin to butadiene to vinyl-acetic acid of 4:3:1. Into one charge vessel was added 280 cc. of a catalyst solution containing 14 grams of aluminum chloride in ethyl chloride. Both the mixed monomer feed and catalyst solution were introduced into the reaction flask simultaneously, the monomer feed at a rate of 6.72 cc. per minute and the catalyst solution at a rate of 25.5 cc. per minute.
  • the temperature during polymerization was about 15 C. There was obtained 26 grams of polymer product which was Washed with dilute hydrochloric acid and stripped of volatiles at 100 C. and mm. Hg to yield an amber-colored rubberlike solid. Infrared analysis indicated absorption at 5.85 microns, thus establishing the presence of carboxylic acid groups in the polymer. Presence of polymerized vinylacetic acid in the polymer was further confirmed by an acid number of 28 (calculated as milligrams of KOH per gram of polymer), indicating that about 60- 65% of the vinylacetic acid was interpolymerized.
  • EXAMPLE XVIII To 158 grams of the mixed alpha-olefin feed as in Example I were added 37 grams of methyl oleate and 1 gram of benzoyl peroxide. The mixture was heated in an autoclave at 80 C. for 16 hours. The product was ditilled to a'final'end point of 155 C; at'0.5 mm. Hg. The residue Weighed 25.5 grams and had a saponification number of 77 (mg. KOH per g. of residue); LR. analysis indicated that 45% of the residue was unreacted methyl oleate. It was concluded, therefore, that no methyl oleate was present in the polymer structure.
  • Example XX The same type of reaction equipment was used as in Example I. To 393 grams of the mixed alpha olefin feed as in Example I were added 65.5 grams of butadiene 1, 3 and 40.5 grams of methyl methacrylate. Into one charge vessel was added the monomer mixture and to the other charge vessel was added a catalyst solution of 75 grams aluminum chloride in 1500 cc. of ethyl chloride.
  • Examples I-XVII illustrate the preparation of the polymers of this invention, their usefulness as extreme pressure additives in lubricating oil compositions and the usefulness of the polymer-polyamine condensation products as ashless detergents for lubricating oil compositions.
  • Examples XV HI and XIX illustrate the inability of organic peroxide catalysis to provide interpolymers of the normal mono-l-alkenes with the unsaturated acids or esters of the present invention; and
  • Example XX illustrates the inability of Friedel-Crafts catalysis to effect interpolymers of the normal mono-1- alkenes of the present invention with acrylic type acids or esters.
  • a lubricating oil composition consisting essentially of a major amount of a base oil of lubricating viscosity and a small amount, sufi icient to enhance the detergent characteristics of the oil, of a base oil-soluble condensation reaction product of (A) a base oil-soluble polymer, formed by use of a strong Friedel-Crafts catalyst, of about 5 to mole percent of material having the formula:
  • R is an olefinically-unsaturated hydrocarbon radical of 3 to about 25 carbon atoms, the carboxyl carbon atom being separated from all olefinic bonds in R by a non-olefinically-unsaturated carbon-to-carbon chain of at least 2 carbon atoms, and R is selected from the group consisting of hydrogen and alkyl of 1 to 15 carbon atoms, and about to '15 mole percent of mono-l-alkene of 3 to 25 carbon atoms, said material and said mono-l-alkene being selected so that the total number of carbon atoms in these components is at least about 12, and (B) polyamine having the formula:
  • R ll wherein R is an alkylene radical of 2 to 14 carbon atoms, R is selected from the group consisting of hydrogen and hydrocarbon radicals of l to 30 carbon atoms, and n is a number from 1 to about 10, said (A) and (B) being reacted in amounts sufficient to provide about 0.1 to 14 gram atoms of hydrogen-bonded nitrogen per mole equivalent of carboxyl groups in (A).
  • composition of claim 1 wherein the base oil is mineral lubricating oil.
  • composition of claim 1 wherein the condensation reaction product is present in amounts of about 0.1 to 10 percent, by weight of the base oil.
  • composition of claim 1 wherein the condensation reaction product is present in amounts of about 0.25 to 7.5 percent, by weight of the base oil.
  • a lubricating oil composition consisting essentially of. a major-amount of base mineral oilof lubricating viscosity and a small amount, sufiicientto enhance the detergent characteristics of the oil, of a base mineral oilsoluble condensation reactionproduct of (A) a base mineral oil-soluble polymer, formed by use of a strong Friedel-Craftscatalyst, of about to 40 mole percent of material; having the formula:
  • R is an olefinically-unsaturated hydrocarbon fadical of about 9 to 20 carbonatoms, the carboxyl carbon atom being separated from all olefinic bonds in R by a parafiinic carbon-to-carbon chain of at least about 6 carbon atoms and Rf is selected from the group consisting of hydrogen and lowerjallgyl, and about 90 to 60 mole per cent.
  • R' is an alkylene radical of .2 to 7 carbon atoms
  • R is selected from the group consistingof hydrogen and alkyl radicals.of .1 to about 7 carbon atoms
  • n is a number from about 2 to 6, said (A) and (B). being reacted in amounts sutficient to provide about 0.6 to 14 gram atoms of hydrogen bonded nitrogen per mole equivalent of carboxyl groups in (A).
  • composition of claim 5 wherein R in the polyamine is hydrogen and R is the polyamine has 2 carbon atoms.
  • composition of claim 6' wherein the material is linoleic acid.
  • component (B) is tetraethylenepentamine and said (A) and (B) are reacted in amounts sufiicient to provide about 0.3 to '2 moles of (B) per mole equivalent of linoleic acid in. (A).
  • a lubricating oil composition consisting essentially of a major amount of a base oil of lubricating viscosity and a small amount, sutficient to enhance the extreme pressure characteristics of the oil, of a base oil-soluble polymer, formed by use of a strong Friedel-Crafts catalyst, of about 5 to 85 mole percent of material having the formula:
  • R is an olefinically-unsaturated hydrocarbon radical of 3 to about 25 carbon atoms, the carboxyl carbon atom being separated from all olefinic bonds in R by a non-olefinically-unsaturated carbon-to-carbon chain of at least 2 carbon atoms and R is selected from the group consisting of hydrogen and alkyl of 1 to carbon atoms, and about 95 to 15 mole percent of mono-l-alkene of 3 to 25 carbon atoms, said material and said mono-l-alkene being selected so that the total number of carbon atoms in these components is at least about 12.
  • composition of claim 9 wherein the base oil is mineral lubricating oil.
  • a lubricating oil composition consisting essentially of a major amount of base mineral oil of lubricating viscosity and a small amount, sufficient to enhance the extreme pressure characteristics of the oil, of a base mineral oil-soluble polymer, formed by use of a strong Friedel- Crafts catalyst, of about 10 to 40 mole percent of material having the formula:
  • R-CO R is an olefinically-unsaturated hydrocarbon radical of about 9 to carbon atoms, the carboxyl carbon atom being separated from all olefinic bonds in R by a paraflinic carbon-to-carbon chain of at least about 6 carbon atoms and R is selected from the group consisting of hydrogen and lower alkyl, and about 90 to 60 mole percent of normal mono-l-alken'e of about 12 to 21 carbon atoms.
  • a v I 12 The composition of claim 11 wherein the material is linoleic acid.
  • R ⁇ N LELH wherein R is an alkylene radical of 2 to 14 carbon atoms, R is selected from the group consisting of hydrogen and hydrocarbon radicals of 1 to 30 carbon atoms, and n is a number from 1 to about 10, said (A) and (B) being reacted in amounts suflicient to provide about 0.1 to 14 gram atoms of hydrogen-bonded nitrogen per mole equivalent of carboxyl groups in (A).
  • composition of claim 13 wherein the base oil is mineral lubricating oil.
  • composition of claim 13 wherein the condensation reaction product is present in amounts of about 0.1 to 10 percent, by weight of the base oil.
  • composition of claim 13 wherein the condensation reaction product is present in amounts of about 0.25 to 7.5 percent, by weight of the base oil.
  • composition of claim 16 wherein the conjugate, diethylenically-unsaturated, aliphatic hydrocarbon is butadiene-1,3.
  • composition of claim 17 wherein the material is methyl oleate.
  • a lubricating oil composition consisting essentially of a major amount of base mineral oil of lubricating vis cosity and a small amount, sufiicient to enhance the detergent characteristics of the oil, of a base mineral oilsoluble condensation reaction product of (A) a base mineral oil-soluble polymer, formed by 'use of a strong Friedel-Crafts catalyst, of about 5 to 25 mole percent of material having the formula:
  • R is an olefinically-unsaturated hydrocarbon radical of about 9 to 20 carbon atoms, the carboxyl carbon atom being separated from all olefinic bonds in R by a paraflinic carbon-to-carbon chain of at least about 6 carbon atoms and R is selected from the group consisting of hydrogen and lower alkyl, about 10 to 70 mole percent of conjugated, diethylenically-unsaturated, aliphatic hydrocarbon of 4 to 5 carbon atoms and about to 20 mole percent of normal mono-l-alkene of about 12 19 to 21 carbon atoms and (B) polyamine having the formula:
  • R is an alkylene. radical of 2 to about 7 carbon atoms
  • R is selected from the group consisting of hydrogen and alkyl radicals of 1 to about 7 carbon atoms
  • n is a number from about 2 to 6, said (A) and (B) being reacted in amounts suflicientto provide about 0.6 to 14 gram atoms of hydrogen-bonded nitrogen per mole equivalent of carboxyl groups in (A).
  • component (B) is tetraethylenepentamine and said (A) and (B) are reacted in amounts sulficient to provide about 0.3 to 2 moles of (B) per mole equivalent of methyl oleate in (A).
  • composition of claim 22 wherein the conjugated, diethylenically-unsaturated, aliphatic hydrocarbon is butadiene-1,3.
  • a lubricating oil composition consisting essentially of a major amount of a base oil of lubricating viscosity and a small amount, sufficient to enhance the extreme pressure characteristics of the oil, of a base oil-soluble polymer, formed by use of a strong Friedel-Crafts catalyst, of about 3 to 55 mole percent of material having the formula:
  • R-( JO R wherein R is an olefinically-unsaturated hydrocarbon radical of 3 to about 25 carbon atoms, the carboxyl carbon atom being separated from all olefinic bonds in R by a nonolefinically-unsaturated carbon-to-carbon chain of at least 2 carbon atoms and R is selected from the group consisting of hydrogen and alkyl of 1 to 15 carbon atoms, about to 80 mole percent of conjugated, diethylenically-unsaturated, aliphatic hydrocarbon of 4 to 12 carbon atoms and about 92 to mole percent of 20 mono-l-alkene of 3 to 25 carbon atoms, said material and said, mono-l-alkene being, selected so l that the total number o'fba-rbon atoms in these components is at least aboutj'12. f a I 4 2 5.
  • a lubricating oil composition consistingessentially of a major amount of base mineral oil of lubricating vis cosity and a small amount, sufficient to enhance the extreme pressure characteristics of the oil, of a base mineral oil-soluble polymer, formed by use of a strong Friedel-Crafts catalyst, of about 5 to 25 mole percent of material having the formula: p l
  • R R( J-O-R i
  • R is an olefinically-un'saturated hydrocarbon, radical of about 9 to 20'carbon atoms, the carboxyl' carbon atom being separated from all olefinic bonds' in R by a paraflinc carbon-to-carbon chain of at least about 6 carbon atoms and R; is selected from the group consisting of hydrogen and lower alkyl, about 10 to mole percent of conjugated, diethylenically-unsaturated, aliphatic hydrocarbon of'4 to 5 carbon atoms and about to 20 mole percent'of normal mono-l-alkene of about 12 to 21 carbon atoms.
  • composition of claim 26 wherein the material is methyl oleate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Lubricants (AREA)

Description

United States Patent POLYMERIC ADDITIVES FOR LUBRICATING OIL Thomas J. Clough, Webster Groves, Mo., assignor to Sinclair Research, Inc., New York, N.Y., a corporation of Delaware No Drawing. Continuation-impart of applications Ser. No.
440,949, Mar. 18, 1965, and Ser. No. 513,125, Dec. 10,
1965. This application July 26, 1967, Ser. No. 656,065
Int. Cl. C10m 1/32, 1/24, 1/26 US. Cl. 25251.5 27 Claims ABSTRACT OF THE DISCLOSURE Extreme pressure additives for lubricating oils are prepared by Friedel-Crafts catalyzed interpolymerization of a mono-l-alkene, an olefinically-unsaturated carboxylic acid (or ester thereof) wherein the olefinic bond is at least 2 carbon atoms away from the carboxyl group and, optionally, a conjugated diene hydrocarbon. Preferably, the mono-l-alkene is normal and has about 14 to 21 carbon atoms, the unsaturated acid has about 10 to 21 carbon atoms and, if the ester is used, is esterified with a lower alkanol, and the diene has 4 to 5 carbon atoms. Detergents for lubricating oils are prepared by condensation of these polymers with an essentially aliphatic polyamine having up to about 11 amino groups, at least one of which is primary, e.g., pentaethylene hexamine.
This application is a continuation-in-part of application S.N. 440,949, filed Mar 18, 1965 now abandoned, and of SN. 513,125, filed Dec. 10, 1965 now abandoned, which latter application is in turn, a continuation-in-part of SN. 446,410, filed Apr. 7, 1965, now abandoned.
This invention relates to novel polymers having utility as extreme pressure agents for lubricating oils and to novel ashless detergents formed from the polymers. More specifically, the present invention is directed to a Friedel Crafts polymerized polymer of an unsaturated monocarboxylic acid (or ester thereof), an alpha-olefin and, optionally, a conjugated diene, the product being useful as an extreme pressure agent, and to the novel polymeric lubricating oil detergent formed by reacting the polymer with amine compounds. The invention also concerns lubricaitng oils which contain these polymers.
Today, many passenger cars are primarily used for driving to and from work, for errands, and for other short trips. This type of driving requires many stops and does not provide for full warmup or utilization of the automobile. Engines are so lightly loaded and operated so intermittently that rarely do they get warm enough to operate efiiciently. The fuel used in this type of engine is, of course, gasoline, usually known as an easily-burned fuel. Gasoline is easily-burned if engine combustion chambers reach a high enough temperature and the fuel therein is properly vaporized and mixed with adequate oxygen. In such combustion the gasoline is completely burned and only harmless carbon dioxide gas and steam are formed. However, if the engine does not operate long enough to heat its jacket water and crackcase to at least 150 F. some carbon dioxide and steam will blow by piston rings, condense in the cold crankcase and form liquid carbonic acid which rusts iron and steel.
When the engine is cold and operated at the low speeds characteristic of short trip driving, combustion is insufficient and incomplete. Under these conditions the gasoline is only partially burned, and much carbon, carbon monoxide gas, partially-oxidized fuel, and highly corrosive fuel acids are formed in the combustion chambers (in addition to the normal carbon dioxide gas and water) and blow by piston rings to foul the crankcase oil. The
3,483,125 Patented Dec. 9, 1969 material resulting from incomplete combustion of gasoline causes numerous engine difiiculties and sometimes expensive damage when collected in the crankcase. Examples of the damage that results are seized and battered hydraulic valve lifters; worn cam lobes; stuck piston rings; h gh piston ring and cylinder wear with consequent high oil consumption and oil contamination; corroded bearings; scuffed pistons; clogged oil pump screens, which may lead to engine oil starvation; burned out bearings; andpiston seizures. A modern lubricant must therefore prevent deposition of solid products on the surfaces of the engine which normally come in contact with the lubricant.
Another source of trouble from deposits in internal combustion engines is the additives which are conventionally lncorporated in lubricants. Particularly, this is the case with metal-containing additives, for example, the organic, metal-containing salts which are incorporated in the oil to increase the detergency thereof. Whenever oil is burned 1n the engine (as occurs with the oil film present in the cylinder wall during the combustion stroke) any metalcontaming additives present in the oil may form an ash which is partially deposited on the various surfaces of the combustion chambers, spark plugs and valves. Accordlngly, it is an object of this invention to provide a lubricant composition which is compounded with metalor mineral-free detergents.
Still the major donor of engine deposits is the incompletely combusted fuel, particularly the metal additives contained in-the fuel. The ashless detergents of this invention provide for inhibition of sludge formation in the engine and, further, dispersing of the sludge when formed. For many years, the detergent additives successfully employed on a commercial scale were organic, metal-containing compounds such as calcium petroleum sulfonate, calcium cetyl phosphate, calcium octyl salicylate, calcium phenyl stearate or the potassium salt of the reaction product of phosphorous pentasulfide and polybutene. Various of these detergents act by reacting chemically with precursors to form harmless compounds. Others act to prevent flocculation or coagulation of solid particles in the oil and maintain the same in a state of suspension as finely-divided particles. Still others not only perform this dispersant function but also effect the solubilization or emulsification of the sparingly-soluble monomers in the oil and thereby greatly reduce the rate of polymerization. In the latter case, such polymer materials as do form within the body of the oil are smaller in size and can be peptized or dispersed in the oil much more readily than is the case with the large polymeric particles which are formed on exposed engine surfaces or in droplets lying within the oil. Detergents capable of performing the dispersant function, as well as the solubilization or emulsification, are preferably employed wherever possible, particularly in automotive engines to be operated under city driving conditions. Although these metal-containing organic compounds have effectiveness as detergents for dispersing these deposit precursors, they have the disadvantage of forming ash deposits in the engine.
To circumvent the problems of metal-containing, organic detergents, non-metallic detergents were developed. Sulfurized and phosphosulfurized long chain hydrocarbons have detergent properties; however, these detergents evolve hydrogen sulfide on heating and also have 0.1 to 0.2% ash. Macromolecular compounds, which were mostly phenolics and phenolic resins, have been observed to have some detergent activity. Acrylate polymers have also been employed, and a fraction of the carboxyl function thereof was esterified with long chain oleophilic alcohols and the remainder was esterified with hydrophilic polyglycol ethers, or amidified or neutralized with amines. Many non-metallic detergents have suffered the liability of low basicity and therefore could not effectively counter the baneful effects of sulfuric acid produced in situ in the oil. In an effort to increase the basicity of the detergents, the art investigated polyamine salts and amides as possible detergents and several patents have been issued, e.g., 3,018,247 to Anderson et al., which disclosed such detergents, e.g., the N-polyamine substituted monoalkenyl succinirnides.
It has now been found that a base oil-soluble polymer composed essentially of defined olefinically-unsaturated carboxylic acid or ester, mono-l-alkene of about 3 to 25, preferably about 12, or even 14, to 21, carbon atoms, and (optionally) conjugated, diolefinically-unsaturated, aliphatic hydrocarbon of 4 to 12, preferably 4 to 5, carbon atoms can be reacted with organic amines to give a polymer product effective as an ashless detergent. Moreover, the intermediate polymer (i.e., before amine condensation) exhibits extreme pressure properties when added to lubricating oils.
Generally, the polymers of the present invention will be composed essentially'of about 15-95, preferably about 20-90, mol percent of the mono-l-alkene, about 3-85, preferably about 5-40, mol percent of the unsaturated acid or ester, and about -70, or even 80, mol percent of the diene hydrocarbon. Often, when it is desired to exclude the diene hydrocarbon, it is preferred that the polymers contain about 95-15, more preferably about 90-60, mol percent of the mono-l-alkene and about -85, more preferably about -40, mol percent of the unsaturated 1 acid or ester. When the inclusion of the diene hydrocarbon is desired, it will often be preferred to prepare polymers of about 92-15, more preferably about 85-20, mol percent of the alkene, about 3-55, more preferably about 5-25, mol percent of the unsaturated acid or ester, and Q about 5-80, more preferably about 10-70, mol percent of the diene.
The unsaturated acids or esters polymerized with the mono-l-alkenes to form the novel, base oil-soluble extreme pressure additive of this invention are the acids or esters of the formula is separated, however, from the olefinic bond, or bonds, in R by a non-olefinically-unsaturated carbon-to-carbon chain of at least 2, preferably at least about 6 or even at least about 8, carbon atoms. By non-olefinically-unsaturated is meant having no olefinic bonds. 'l hat is, while the R group is olefinically-unsaturated, the carboxylic carbon atom is, however, attached to a non-olefinic carbon atom, and preferably the carboxyl carbon atom is at least about 6, or even at least about 8, carbon atoms removed from the first olefinic bond (i.e., at least 5 or 7 carbon atoms removed from the first olefinic carbon atom). The non-olefinically-unsaturated carbon-to-carbon chain separating the olefinic bond, or bonds, from the carboxylic group may be parafiinic, cycloaliphatic, aromatic, etc., so long as it is not olefinically-unsaturated; it is often preferred that the chain be parafiinic. R in the above formula is hydrogen or alkyl of 1 to carbon atoms, preferably lower alkyl, say of 1 to 3 carbon atoms. When R is alkyl, salt formation of the acid with the catalyst used for the polymerization is prevented, and alcohol which is formed later in the reaction with an organic amine can often be readily distilled from the product. Examples of acids which may be used in this polymer are oleic, linoleic, undecylenic, linolenic, ricinoleic, vinyl acetic, etc. The lower alkyl esters of these acids, including the glycerides, may also be employed, especially the methyl esters. Essentially the same polymer pro-ducts are, of course, formed from the anhydrides of the acids, as well as from other acid forms, such as the acid amides, which give a condensation type reaction with the aliphatic polyamine. Thus the acid reactant serves to supply the acyl group,
to the detergent additives.
The mono-l-alkenes employed in the present invention can be represented by the formula wherein R and R" are selected from the group consisting of hydrogen and alkyl, including cycloalkyl, and the total number of carbon atoms is from about 3 to 25, preferably about 12 to 21, carbon atoms. Preferably, one of R and R is hydrogen and the other is a straight chain alkyl to give a normal olefin. The mono-l-alkenes are often used as a mixture and may contain minor amounts, usually less than 10% by weight, of other hydrocarbons such as other olefins, diolefins, saturated hydrocarbons and aromatics. The mono-l-alkene may be substituted with, e.g., halogen, etc., so long as the substituent does not interfere with the polymerization or have any other significant deleterious effect.
The conjugated, diethylenically or diolefinically unsaturated, aliphatic hydrocarbons which may be used in making the polymer include the polymerizable, conjugated, diethylenically-unsaturated alkenes having from 4 to 12 carbon atoms, preferably 4 to 5 carbons, e.g., conjugated diolefins with a terminal double bond such as 1,3-butadiene, isoprene, etc. The diolefin may be substituted with, e.g., halogen, etc., so long as the substituent does not interfere with the polymerization or have any other significant deleterious efi'ect. An example of a substituted, conjugated diolefin is chloroprene.
The choice of unsaturated acid, conjugated, diethylenically-unsaturated aliphatic hydrocarbon (if employed) and mono-l-alkene, their ratios and the extent of reaction are such as to give an oil-soluble polymer, and usually the total number of carbon atoms in the acid and mono-lalkene reactants is at least about 12, preferably at least about 18. Also, more than one acid, conjugated diethylenically-unsaturated aliphatic hydrocarbon or mono-1- alkene can be used in forming a given polymer, and minor amounts of other polymerizable monomers may be present.
The polymer of the present invention can be prepared by subjecting the mono-l-alkene, the diethylenically-unsaturated, conjugated, aliphatic hydrocarbon (if employed) and the unsaturated acid or ester to a polymerization temperature of about 0 to 50 0., preferably about 0 to 25 C., in the presence of a strong Friedel-Crafts catalyst, such as aluminum chloride or boron trifluoride. A preferred catalyst is aluminum chloride, and it is also preferred to add the unsaturated acid or ester, and any conjugated, diethylenically-unsaturated, aliphatic hydrocarbon to be included, to the mono-lalkene. A co-catalyst may also be employed and will generally be present in an amount of about 0.5 to 5 volumes of co-catalyst per volume of acid-alpha olefin-diene feed. A suitable co-catalyst may also be a solvent for the Friedel-Crafts catalyst. Examples of appropriate co-catalysts are the lower alkyl haliies, especially ethyl chloride, methyl chloride and the The strong Friedel-Crafts catalyst will generally be present in the co-catalyst solution in a concentration of about 0.01 to 15%, preferably about 0.5 to 7%, by weight and the amount of the Friedel-Crafts catalyst employed is generally about 0.1 to by weight, preferably about 2 to 15% by weight, of the polymer formed, over and above that portion of the catalyst if any which reacts with the carboxyl group of the acid. The proportions of reactants (diene, unsaturated acid and mono-l-alkene) to catalyst solution employed may often be about 1:2 to 1:10 or even about 1:4 to 1:5 moles of reactants per mole of .catalyst solution. At least 0.5 mole of catalyst is generally used for every mole of acid in the reactants mixture, when the acid form is reacted. The polymer may be formed by simultaneous addition of the catalyst solution and the monomers to a reaction vessel. The volumetric ratio of catalyst solution to the monomer reactants in a given unit of time is often about 2:1 to about 4: 1, preferably about 3 to 1.
After the addition of catalyst and reactants has been completed, the polymerization may be permitted to continue for a short period of time, generally about 5 to 45 minutes, to insure polymerization to a base oil-soluble polymer product, for instance, a normally liquid material which may have a kinematic viscosity at 210 F. of, say,
'about up to about 1000 centistokes, preferably about to 150 or even up to about 300 centistrokes. The polymerization reaction can then be quenched using, for instance, a lower alkanol, e.g., of 1 to 4 carbon atoms, in solution in a lower alkane. The resulting polymer can be separated from residual catalyst as by washing with water, alcohol, dilute aqueous caustic soda, hydrochloric acid or other suitable hydrolyzing and washing methods.
'The resulting polymer is an effective extreme pressure agent when added to lubricating oils. When employed as an extreme pressure agent in lubricating oils, the polymer is. added in small or minor amounts, sufiicient to impart extreme pressure properties to the oil. The amount added usually will fall Within the range of about 0.001 to 10,
preferably 0.05 to 1, weight percent.
The novel ashless detergent of the present invention may be prepared by the condensation reaction of the polymer of mono-l-alkene, unsaturated acid (or ester) and diene (if employed) with an essentially aliphatic polyamine. Suitable polyamines may be represented by the general formula:
wherein R is an alkylene. radical of 2 to 14 or more carbon atoms, preferably 2 to about 7 carbon atoms; R is selected from hydrogen and hydrocarbon radicals such as alkyl, including cycloalkyl, and the radicals may have, for instance, 1 to 30 or more carbon atoms, preferably 1 to about 7 carbon atoms; and n is a number from 1 to about 10, preferably about 2 to 6. R may extend between two N-atoms, for instance, the two to which R is attache-d, and, in this case, these nitrogen atoms will have only one other bond for further attachment. The R and R substituents are preferably saturated, but may be unsaturated, and may be substituted with non-deleterious substituents, especially lower alkyl. Thus, for imidazoline formation, a 1,2-diamine, one amine group of which is primary, can be used; and suitable amines may be represented by the following general formula:
wherein R is selected from hydrogen and hydrocarbon radicals such as alkyl, as noted above, or is amino alkyl of 1 to about 30, preferably 1 to about 7 carbon atoms, and R" is selected from H and alkyl of 1 to about 12 or more carbon atoms, preferably 1 to about 5 carbon atoms. R may also be a hydroxy-alkyl, alkoxy-alkyl or aromatic radical.
Thus, useful polyamines include, for instance, monoalklenediamines, dialkylaminoalkylamines, polyalkylene-polyamines, N-(p-aminoalkyl)piperazines, etc. Illustrative of suitable monoalkylene diamines are ethylene diamine, propylene diamine, butylene diamine, octylene diamine, etc. Examples of suitable dialkylaminoalkylamines are dimethylaminoethylamine, dimethylaminopropylamine, diethylaminoamylamine, dipropylaminopropylamine, methylpropylaminoamylamine, propylbutylaminoethylamine, etc. Examples of polyalkylenepolyamines are diethylenetriamine, triethylenetetramine, tetraethylenepentamine, hexapropyleneheptamine, tetrabutylene pentamine, polyamine D (a mixture of aliphatic and cyclic polyethyleneamines boiling above 340 C. and having an average molecular weight nearly the same as pentaethylene hexamine and having as principal components pentaethylene hexamine, symmetrical and unsymmetrical diaminoethyl triaminoethylamine, symmetrical diaminoethyl triethylenetetramine, symmetrical and unsymmetrical diaminoethyl, diaminoethyl piperazine, piperazinoethyl triethylenetetramine, 4-(N-piperazinoethyl) triethylenetetramine, bispiperazinoethylamine, and aminoethyl (dipiperazinoethane)), polyamine H (bottoms from manufacturing tetraethylene pentamine) etc. Suitable N-(fi -aminoalkyl) piperazines include N-methyl- N-(;3 -aminoethyl) piperazine, N-(B-aminoisopropyl) piperazine, etc.
In the reaction of the polymer with an organic polyamine to prepare the detergent of the invention, the polyamine is generally reacted in an amount suflicient to provide about 0.1, or even about 0.6, to about 14 gram atoms of hydrogen-bonded nitrogen per mole equivalent of carboxyl groups in the polymer; preferably, about 1.5 to 4 gram atoms of hydrogen-bonded nitrogen per mole equivalent of carboxyl groups will be provided. By hydrogen-bonded nitrogen is meant nitrogen of a primary or secondary amine group of the polyamine, which nitrogen may or may not still be bonded to hydrogen after the polyamine is condensed with the polymer. By carboxyl group is meant the group which may, depending on the monomer employed, be supplied either by a carboxylic acid or ester. Often, to provide the above nitrogen-to-carboxyl ratio, there will be used about 0.3 to 1.5, or even 2, moles of the polyamine per mole equivalent of carboxyl groups in the polymer. However, a slight excess 'of amine can be advantageous to insure essentially complete reaction of the carboxyl groups of the polymer and avoid undue cross-linking, and a large excess of amine may be present if desired.
The condensation reaction is usually conducted at a temperature of about 60 to 320 C. depending upon Whether amide or imidazoline formation is desired. Preferably, the reaction temperature for amide formation is about to 180 C. and that for imidazoline formation is about 200 to 300 C. The reaction is conducted to give a base oil-soluble product and often the reaction takes about 0.25 to 5 hours, preferably about 0.5 to 3 hours, and water or alcohol is removed as formed. The resulting polymer is base oil-soluble and ordinarily has a kinematic viscosity at F. of from about 1000 to 20,000, preferably about 3000 to about 15,000 centi stokes, and a kinematic viscosity at 210 F. of at least about 50 to 1000, preferably about to 750, centistokes. The detergent additives are added to the lubricating oils in minor effective amounts, usually in the range 7 of about 0.1 to or more, preferably about 0.25 to 7.5%, by weight of the oil.
Lubricating oils which can be used as the base oil or major component of the lubricating oil compositions of the present invention include a wide variety of oils of lubricating viscosity, such as naphthenic base, paraffinic base, and mixed base mineral lubricating oils; other hydrocarbon lubricants, e.g., lubricating oils derived from coal products; and synthetic oils, e.g. alkylene polymers (such as polymers of propylene, butylene, etc., and mixtures thereof), alkylene oxide-type polymers (e.g., alkylene oxide polymers prepared by polymerizing the alkylene oxide, e.g., propylene oxide, etc., in the presence of water or alcohols, e.g., ethyl alcohol), carboxylic acid esters (e.g., those which are prepared by esterifying such dicarboxylic acids as adipic acid, azelaic acid, suberic acid, sebacic acid, alkyl succinic acid, fumaric acid, maleic acid, etc. with alcohols, such as butyl alcohol, hexyl alcohol, Z-ethylhexyl alcohol, dodecyl alcohol, etc.). The above base oils may be used individually or in combinations thereof, wherever miscible or wherever made so by the use of mutual solvents.
The synthetic oils to which the polymeric reaction products may be added include ester-based synthetic oils of lubricating viscosity which consist essentially of carbon, hydrogen and oxygen, e.g., di-Z-ethylhexyl sebacate. Various of these lubricating materials have been described in the literature and generally their viscosity ranges from the light to heavy oils, e.g., about 50 SUS at 100 F. to 250 SUS at 210 F. and preferably 30 to 150 SUS at 210 F. These esters are of improved thermal stability, low acid number and high flash and fire points. The complex esters, diesters, monoesters, and polyesters may be used alone or to achieve the most desirable viscosity characteristics; complex esters, diesters and polyesters may be blended with each other or with naturally-occurring esters like castor oil to produce lubricating compositions of wide viscosity ranges which can be tailer-made to meet various specifications. This blending is performed, for example, by stiring together a quantity of diester and complex ester at an elevated temperature, altering the proportions of each component until the desired viscosity is reached. Suitable monoand dicarboxylic acids used to make synthetic ester lubricant bases can be branched or straight chain and saturated or unsaturated, and they frequently contain from about 2 to 12 carbon atoms. The alcohols usually contain from about 4 to 12 carbon atoms. In general, the useful glycols include the aliphatic monoglycols of 4 to or 30 carbon atoms, preferably 4 to 12 carbon atoms.
Materials normally incorporated in lubricating oils to impart special characteristics can be added to the composition of this invention. These include corrosion inhibitors, extreme pressure agents, anti-Wear agents, etc. The amount of such additives included in the composition usually ranges from about 0.01 weight percent up to about 20 or more weight percent, and in general they can be employed in any amounts desired as long as the composition is not unduly deleteriously affected.
The following examples are included to further illustrate the present invention.
EXAMPLE I To a mixture of olefins (predominantly normal monol-alkenes) of the following approximate composition:
Weight,
Component: percent Total olefins 95+ Total a-olefins 94 Straight chain a-olefins 86 Branched and naphthenic olefins 3 Straight chain a,w-diOlfinS 6 Saturated and aromatic hydrocarbons 4 Molecular weight distribution, Weight, No. of carbon atoms: percent 14 1 was added linoleic acid in a mole ratio of alpha-olefin to linoleic acid of 5 to 1, based on the average molecular weight (243) of the alpha-olefin mixture. A one liter flask was equipped with a Dean-Stark trap and two addition funnels. A Dry Ice trap was mounted on the Dean- Stark trap to remove and condense the volatile solvent, ethyl chloride, used'in the polymerization. One funnel was charged with the olefin-linoleic acid feed, and to the remaining tunnel was charged a catalyst solution consisting of 5.2 grams aluminum chloride per 100 ml. of ethyl chloride at 12 C.
Both the olefin-linoleic acid feed and the catalyst solution were introduced into the reaction flask simultaneously, the olefinic-linoleic acid mixture at a rate of 22.0 ml. per minute (.0590 mole per minute C -C alpha olefin, 0.0118 mole per minute linoleic acid), the catalyst solution at a rate of 60 ml. per minute (0.0234 mole per minute aluminum chloride). The total time for the addition of olefin-linoleic acid and catalyst solution was 8 minutes and the polymerization mixture was stirred for an additional 13 minutes. The temperature during the polymerization was 14 C. and 185 ml. of ethyl chloride was trapped out of the polymerization system. Hexane, 400 ml., and 400 ml. of isopropanol were added to quench the catalyst.
The polymer was washed with dilute hydrochloric acid and washed three additional times with water. The polymer was stripped of solvents and had a KV at 210 F. of 113.76 cs., acid number of 35.41 and an iodine number of 42.9.
To a 500 ml. reaction flask was charged gms. of the polymer made as noted above and 8.7 grams tetraethylenepentamine. The system was purged with nitrogen over a 15 minute period as the temperature was increased to 65 C. The temperature was increased to 270 C. over a 15 minute period and a 13 cm. vacuum was applied at 270 C. for a period of one hour and 50 minutes to facilitate the removal of water. The temperature was allowed to reach room temperature under this reduced pressure. The polymer had a specific gravity of 0.8907; KV at 100 F., 25.787 cs.; KV at 210 R, 741.02 cs.; iodine number, 44.5 and 4.00% nitrogen. Infrared detccted the C=N bond and confirmed the imidazoline ring structure with a trace of amide present. The polymer was tested as an ashless detergent in a V.I. Mid-Continent neutral oil in the Low Temperature Detergency Bench Test described in US. Patent No. 3,044,860.
The following results were obtained:
The additive was further tested in the C.L.R. Oil Test Engine at 1% concentration using the Motor Car Manufacturers Sequence 5A for Motor Oils for Service MS results were noted and compared with those from evaluation of the same blend not having therein the first polymer product of Example I.
TABLE II.TEST CYCLE Test duration: 240 hours No oil change Oil charge: one quart Oil added as required Fuel: Certified MS 08 Samples: 2 oz. at the end of 61 125 189 hours.
Water in water Approx. out
Approx. #lhr. Mixture Blow H O Oil oil difier- Approx. Spark temp., by out, gallery, presence,
Phase Time R.p.m. torque advance AFR Feed Air F. CHF F. F. sure F.
1 45 min 550-650 Idle (0.2) 14 9.5-105 0.6-0.7 6-7 195-205 123-127 100-125 1-2 2 2hrs 1, 790-1, 810 W.0.T.(3.5-5) 14 15. 516.5, 4.5 70 95-105 Record 123-127 160-170 40 4-5 The engine was shut down and water circulated at 203- 207 F. for 2% hours (16 hours total). The engine was permitted to cool to room temperature over a 2 hour period. This over-all cycle was repeated 15 times to give 240 hours total time. p
The results are shown in Table III.
The data of Tables I and III demonstrate the effective detergent properties provided lubricating oils by the additives of the present invention. Similar results can be obtained by substituting methyloleate for the linoleic acid of this example.
EXAMPLE II The same type of reaction equipment was used as in Example I. To a mixture of the alpha-olefin feed as in Example I was added undecylenic acid in a mole ratio of alpha-olefin-to undecylenic acid of 6 to 1, based on the average molecular weight of the alpha-olefin mixture.
Into one charge vessel was added the olefin-undecylenic acid mixture and to the other charge vessel was added a catalyst solution of. 5.2 grams aluminum chloride per 100 ml. ethyl chloride at 12 C. Both the olefin-acid feed and catalyst solution were introduced into the reaction flask simultaneously, the olefin-acid feed at a rate of 21.2 ml. per minute, the catalyst solution at a rate of 60 ml. per minute. The total time for addition'was 12 minutes and the polymerization mixture was stirred for an additional 13 minutes. The temperature during polymerization was 14 C. and 220 ml. of ethyl chloride were trapped out of the system. The catalyst was quenched with isopropanol, and the polymerwashed with dilute hydrochloric acid. The polymer was washed with water and topped of solvents. The polymer had an acid number of 30.68, specific gravity of .8771, iodine number of 45.5 KV at 100 F. of 4882.0 es, and a KV at 210 F.
- of 229.86 cs. This polymer was reacted with an equimolar amount (based on the undecylenic acid of the polymer) of tetraethylenepentamine as in Example I to obtain an ashless dispersant of this invention.
EXAMPLE III The first polymer product of Example I, i.e., the olefin-linoleic acid polymer, was added in an amount of 0.4%, to a synthetic lubricating oil. The resulting composition was tested in a Ryder gear apparatus and the The synthetic lubricant blend was formulated as follows:
Comment: "Parts by weight Pentaerythritol ester of fatty acids having an average of 6 carbon atoms 71.99
Acid No. 0.01. Viscosity at 210 F., 4.3 cs. Dipentaerythritol ester of mixed C C fatty acids. Acid No. 0.1, viscosity at 210 F., 8.8 cs. 24.25
EXAMPLE IV To a 500 ml. reaction flask is charged 70 gms. of the linoleic acid-first polymer made in Example I and 4.1 grams dimethyl aminoethylamine. The system is purged with nitrogen over a 15-minute period as the temperature is increased to 65 C. The temperature is increased to 270 C. over a 15-minute period and a 13 cm. Hg vacuum is applied at 270 C. for a period of one hour and 50 minutes to facilitate the removal of water. The temperature is allowed to reach room temperature under this reduced pressure. The resulting polymer is tested as an ashless detergent in a VI. Mid-Continent neutral oil in the Low Temperature Detergency Bench Test described in U.S. Patent No. 3,044,860 and a substantial increase in merit rating is noted.
EXAMPLE V The same type of reaction equipment was used as in Example I. To a mixture of the normal alpha-olefin feed as used in Example I was added isoprene and linoleic acid in a mole ratio of alpha-olefin to isoprene to linoleic acid of 6.52/2.45/ 1.0, based on the average molecular weight (243) of the alpha-olefin mixture. The olefin intake was charged with olefin-linoleic acid-diethylenicallyunsaturated alkene feed, and the catalyst intake was charged with a catalyst solution consisting of 5.2 grams aluminum chloride per ml. of ethyl chloride at C.
Both the reactant feed and the catalyst solution were introduced into the reaction flask simultaneously, the olefinic-linoleic acid-diethylenically unsaturated alkenemixture at a rate of 24.2 ml. per minute (0.0615 mole per minute C C alpha-olefin, 0.026 mole per minute isoprene, 0.00923 mole per minute linoleic acid), the catalyst solution at a rate of 49 ml. per minute (0.01 92 mole per minute aluminum chloride). The total time for the addition was 10 minutes and the polymerization mixture was stirred for an additional 20 minutes. The temperature during the polymerization was 16 C. and 320 ml. (61%) of ethyl chloride was trapped out of the polymerization system. Hexane, 400 ml., and 400 ml. of isopropanol were added to quench the catalyst.
The polymer was washed with dilute hydrochloric acid and washed three additional times with water. The polymer was stripped of solvents and had a KV at 100 F. of 3603 cs.; KV at 210 F. of 199.54 cs., acid number of 25.44 and an iodine number of 43.9; and a specific gravity of 0.8778.
TABLE V.TEST CYCLE Test duration: 240 hours No oil change Oil charge: one quart Oil added as required Fuel: Certified MS 08 Samples: 2 oz. at; the end of 61%, 125%, 189% hours.
Water in water Approx. out
Approx. #lhr. Mixture Blow H2O Oil oil difier- Approx. Spark mp., by out, gallery, presence Phase Time Rpm. torque advance AFR Feed Air F. CHF F. F. sure F 1 45 min 550-650 Idle (0.2) 14 9. 5-10. 5 0. 6-0. 7 6-7 195-205 123-127 100-125 20 1-2 2 2 hrs 1, 790-1, 810 W.O.T.(3. 5-5) 14 15. 5-16. 5 4. 5 70 95-105 Record 123-127 160-170 40 4-5 To a 500 ml. reaction flask was charged 100 grns. of the polymer made as noted above and 8.0 grams tetraethylenepentamine. The system was purged with nitrogen over a 15-minute period as the temperature was increased to 65 C. The temperature was increased to 270 C. over a -minute period and a 15 cm. vacuum was applied at 270 C. for a period of 75 minutes to facilitate the removal of water. The temperature was allowed to reach room temperature under this reduced pressure. The product was washed and stripped of solvents. The polymer had a specific gravity of 0.8933; KV at 100 F., 13,500 cs.; KV at 210 R, 550.63 cs.; iodine number, 47.4; and 2.51 nitrogen. Infrared detected the C=N bond and confirmed the imidazoline ring structure with a trace of amide present. The polymer was tested as an ashless detergent in a 95 v.1. Mid-Continent neutral oil in the Low Temperature Detergency Bench Test described in US. Patent No. 3,044,860.
The following results were obtained:
TABLE IV Merit rating 100: clean) Base oil 22 Base oil plus 2 additive 87 EXAMPLE VI The same type of reaction equipment was used as in Example I. To a mixture of the alpha-olefin feed as in Example I was added 1,3-butadiene and methyl oleate in a mole ratio of methyl oleate to butadiene to alphaolefin of 1 to 3 to 4, based on the average molecular weight of the alpha-olefin mixture. Into one charge vessel was added the olefin-methyl oleate-butadiene feed and to the other charge vessel was added a catalyst solution of 5.2 grams aluminum chloride per 100 ml. ethyl chloride at 12 C. Both the olefin-acid feed and catalyst solution were introduced into the reaction flask simultaneously, the olefin-acid feed at a rate of 19.6 ml. per minute, the catalyst solution at a rate of 49.4 ml. per minute. The total time for addition was 12 minutes and the polymerization mixture was stirred for an additional 12 minutes. The temperature during polymerization was 15.5 C. and 340 ml. of ethyl chloride (57.5%) were trapped out of the system. The catalyst was quenched with 400 ml. hexane and 400 ml. of isopropanol. The polymer was washed with water and topped of solvents. The polymer had a saponification number of 38.0, specific gravity of .8897, iodine number of 32.0; and a KV at 100 F. of 1317.0 cs. To the polymer, 200 grams, was added at 26 TABLE vi Base blend Base plus 1% blend additive Time to incipient deposits (hrs) 96 224 Final rating at 240 hours (so-100% clean) 24. 9 45. 8
EXAMPLE VII The same type of reaction equipment was used as in Example I. To a mixture of the alpha-olefin feed as in Example I were added isoprene and methyl oleate to produce a mole ratio of alpha olefin-isoprene-methyl oleate of 6.05 to 2.05 to 1.00, based on the average molecular weight of the alpha-olefin mixture. The same polymerization equipment-was used as in Example 1. One funnel was charged with the reactant feed, and to the remaining funnel was charged a catalyst solution consisting of 5.2 grams aluminum chloride per 100 ml. of ethyl chloride. Both the olefin feed and the catalyst solution were introduced into the reaction flask simultaneously, the olefin mixture at a rate of 20.8 ml. per minute (0.0525 mole per minute alphaolefin, 0.0173 mole per minute isoprene, 0.00860 mole per minute methyl oleate), the catalyst solution at a rate of 39.5 ml. per minute (0.0154 mole per minute aluminum chloride). The total time for addition was 12 minutes and the polymerization was continued for an additional 28 minutes. The temperature during polymerization was 16 C. and 280 ml. (59%) of ethyl chloride was trapped out of the polymerization system. Hexane, 400 ml. and 400 m1. of isopropanol were added to quench the catalyst. The polymer was Washed with water and after topping of solvents, had the following properties: KV at 100 F. of 1190 cs.; KV at 210 F. of 94.54 cs.; iodine number, 30.7; Saponification number, 24.3; specific gravity, 0.8780.
To a 500 ml. reaction flask was charged grams of the polymer and 10 grams of tetraethylene pentamine. The system was purged with nitrogen over a 15-minute period as the temperature was increased to 65 C. The temperature was increased to 270 C. over a 25-minute period and a 15-cm. vacuum was applied at 270 C. These conditions Infrared detected the C=N bond and determined the structure to be an imidazoline with some amide present.
The polymer was tested as an ashless detergent in a 95 VI Mid Continent neutral oil in the Sinclair Low Temperature Detergency Bench Test, shown in U.S. Patent 3,044,860. The results shown in Table VII were obtained:
TABLE VII Merit rating (100=clean) Base oil 22 Base oil+2% additive 55 EXAMPLE VIII Each of the first polymer products of Example V-VII, i.e., the alpha-olefin-diene-linoleic acid or methyl oleate polymers, is added in an amount of 0.4%, to a synthetic ester lubricating oil. The resulting synthetic oil composition is tested in a Ryder gear apparatus, and the load carrying results are significantly improved when compared with those from evaluation of the same blend not having therein the first polymer products of Examples V-VII.
The synthetic lubricant blend is formulated as follows:
Component: Parts by weight (1) Pentaerythritol ester of fatty acids having an average of 6 carbon atoms. Acid number,
0.01, viscosity at 210 F, 4.3 cs 71.99 (2) Dipentaerythritol ester of mixed C C fatty acids. Acid number 0.1, viscosity at 210 F., 8.8 cs. 24.25
(3) Phenyl-u-naphthylamine 1.00 (4) Tetrabutyl ester of ethylene diamine tetracetic acid 1.50 (5) Di(p-octyl phenyl) amine 1.00 (6) Sodium perfluorobutyrate 0.06
Mineral lubricating oils of improved extreme pressure properties are also obtained when the first polymer products of Examples V-VII are added in amounts of 1% to the 95 VI oil of Example VII.
EXAMPLE IX To a mixture of the alpha-olefin feed as in Example I was added 1,3-butadiene and methyl oleate in a mole ratio'of methyl oleate to butadiene to alpha-olefin of 1 to 6 to 8, based on the average molecular weight of the alpha-olefin mixture. The monomer mixture and catalyst solution (4.8 g. AlCl /100 cc. EtCl solution) were fed separately at a volumetric ratio of catalyst solution to monomer mixture of 3/1 into an empty back mix reactor, and the temperature maintained at 1417 C. by distillation of ethyl chloride. Approximately 50 to 60 volume percent of input catalyst solution was distilled. Feeding was continued and, when a residence time of minutes was attained, portions of the reactant mixture were removed from the reactor at a rate so adjusted that the reactant volume in the reactor remained constant. These portions were immediately quenched in Water at -80 C. and wet ethyl chloride distilled from the quench tank and collected. Operation under these conditions was continued for a total of 4 residence times (160 minutes measured from the initial time) to allow the reactor to reach equilibrium. During the fifth residence time, the quench feed was switched to a new quench tank, and the non-equilibrium product in the first quench tank discarded, Simultaneously and continuous feeding of the reactor and collection of the product was continued until it was desired to cease operations. The product layer Was separated from the aqueous layer, solvent washed and stripped to yield a clear, amber liquid having a saponification number of 18.4; specific gravity of 0.8776; iodine number of 23.4; KV at F. of 3870 cs., and a KV at 210 F. of 243.9. The polymer is converted to detergent by mixing in a reactor at room temperature with equimolar quantities of tetraethylenepentamine based on the saponification number of the polymer. A nitrogen stream at 60 to 300 cc./min. is fed to the bottom of the reactor and the mixture is rapidly heated to 230-300 C. at a pressure in the range from 5 microns to atmospheric. At a temperature of 200 C., the reflux condenser is rigged for distillation. Heating is continued for 2-4 hours and the product then allowed to cool to room temperature. The viscous liquid is mixed with an equal weight of mineral oil, treated with clay and filtered. The final product is a clear, bright, amber liquid.
EXAMPLES X-XIII The terpolymers of these examples were prepared according to the procedure given in Example IX, altering the monomer ratios, catalyst ratio and residence times as indicated in the following table:
TAB LE VIII Molar Ratios Catalyst Residence Methyl Alph a- Butamonomer, times; oleate olefin diene vol. min:
The resulting polymer products analyzed as follows:
TABLE IX Kinematic Viscosity, cs. Sap. Spec. Iod. N o. Grav. No. 100 F. 210 F.
EXAMPLES XIV-XVI Polymers of the mono-l-alkene of Example I, butadicue-1,3 and methyl oleate were prepared in varying monomer ratios. The reactor unit consisted of 4 major sections: catalyst charge vessel, monomer feed vessel, reactor vessel and quench vessel. The catalyst solution consisted of aluminum chloride dissolvedin ethyl chloride in a ratio of 5 grams AlCl per 100 ml. of solution. The monomer feed and catalyst solution were simultaneously pumped to the reactor, which was a 4-inch by 16-inch glass vessel equipped with stirrer. Residence times were adjusted by flow rates. Reaction temperature was maintained at about 6266 F. by distillation of the solvent, ethyl chloride. Product withdrawn from the reactor was directed to the quench vessel where it was quenched in water at F. Polymer product was extracted with nhexane and the hexane phase sequentially Washed with water, 5% NaOH solution and, finally, twice more with water. The n-hexane was removed by distillation to a maximum pot temperature of 300 F. Reactant ratios,
reaction conditions and product analyses are given in Table X.
monomer feed at a rate of 8.4 cc. per minute and the catalyst solution at a rate of 25 cc. per minute. The
TABLE X Product Analysis Composition of monomer feed, molar Catalyst percentages (weight percentages) to Molecular Weight monomer, Residence Saponi- Methyl Alphamolsr time, Iodine fieation Osmotic oleate Olefin Hutadiene ratio min. number number pressure Cryostatic Example:
XIV 9.6 (18. 4) 39.9 (64) 50.5 (17.6) 5.93 33.4 36.0 1,204 1,113 XV 12,5 (30) 19.8 (40) 8.7 (30) 1.98 30 42.6 53.6 1,460 1,355 XVI 4.1 (14. 6) 15.3 (39. 9) 80.6 (45. 5) 3.59 24 38.9 24.2 1,370 1, 225
EXAMPLE XVII The same type of reaction equipment was used as in Example I. To 162 grams of the mixed alpha-olefin feed as in Example I were added 27 grams of butadiene and 14.4 grams of vinylacetic acid, providing a monomer mixture having a molar ratio of alpha-olefin to butadiene to vinyl-acetic acid of 4:3:1. Into one charge vessel was added 280 cc. of a catalyst solution containing 14 grams of aluminum chloride in ethyl chloride. Both the mixed monomer feed and catalyst solution were introduced into the reaction flask simultaneously, the monomer feed at a rate of 6.72 cc. per minute and the catalyst solution at a rate of 25.5 cc. per minute. The temperature during polymerization was about 15 C. There was obtained 26 grams of polymer product which was Washed with dilute hydrochloric acid and stripped of volatiles at 100 C. and mm. Hg to yield an amber-colored rubberlike solid. Infrared analysis indicated absorption at 5.85 microns, thus establishing the presence of carboxylic acid groups in the polymer. Presence of polymerized vinylacetic acid in the polymer was further confirmed by an acid number of 28 (calculated as milligrams of KOH per gram of polymer), indicating that about 60- 65% of the vinylacetic acid was interpolymerized.
EXAMPLE XVIII To 158 grams of the mixed alpha-olefin feed as in Example I were added 37 grams of methyl oleate and 1 gram of benzoyl peroxide. The mixture was heated in an autoclave at 80 C. for 16 hours. The product was ditilled to a'final'end point of 155 C; at'0.5 mm. Hg. The residue Weighed 25.5 grams and had a saponification number of 77 (mg. KOH per g. of residue); LR. analysis indicated that 45% of the residue was unreacted methyl oleate. It was concluded, therefore, that no methyl oleate was present in the polymer structure.
EXAMPLE XIX To 756 grams of the mixed alpha-olefin feed as in Example I were added 209 grams of methyl oleate, 129 grams of butadiene-l,3 and 5.5 grams of benzoyl peroxide. The mixture was heated in an autoclave at 80 C. for 16 hours. Distillation of the product gave 940 grams of a mixture of unreacted monomers and 67 grams of residue. Analysis of the two fractions indicated saponification numbers of 41.9 for the monomer mixture and 50.9 for the residue. Unreacted methyl oleate account for 208 grams of the monomer mixture fraction. It is apparent, then, that methyl oleate did not enter into the polymer structure. The saponification number for the residue is attributable to the formation of benzoyl esters from the benzoyl peroxide.
EXAMPLE XX The same type of reaction equipment was used as in Example I. To 393 grams of the mixed alpha olefin feed as in Example I were added 65.5 grams of butadiene 1, 3 and 40.5 grams of methyl methacrylate. Into one charge vessel was added the monomer mixture and to the other charge vessel was added a catalyst solution of 75 grams aluminum chloride in 1500 cc. of ethyl chloride.
' Both the mixed monomer feed and catalyst solution were introduced into the reaction flask simultaneously, the
temperature during polymerization was 1517 C. There was obtained 341 grams of washer-washed polymer roduct. This was stripped of volatiles to 115 C. and 25 mm. Hg. The resultant viscous liquid had a saponification number of 2.9; I.R. analysis showed only a very small amount of absorption due to ester groups, indicating that methyl methacrylate was almost completely absent from the polymer.
The foregoing Examples I-XVII illustrate the preparation of the polymers of this invention, their usefulness as extreme pressure additives in lubricating oil compositions and the usefulness of the polymer-polyamine condensation products as ashless detergents for lubricating oil compositions. Examples XV HI and XIX illustrate the inability of organic peroxide catalysis to provide interpolymers of the normal mono-l-alkenes with the unsaturated acids or esters of the present invention; and Example XX illustrates the inability of Friedel-Crafts catalysis to effect interpolymers of the normal mono-1- alkenes of the present invention with acrylic type acids or esters.
I claim:
1. A lubricating oil composition consisting essentially of a major amount of a base oil of lubricating viscosity and a small amount, sufi icient to enhance the detergent characteristics of the oil, of a base oil-soluble condensation reaction product of (A) a base oil-soluble polymer, formed by use of a strong Friedel-Crafts catalyst, of about 5 to mole percent of material having the formula:
0 Ri JO R wherein R is an olefinically-unsaturated hydrocarbon radical of 3 to about 25 carbon atoms, the carboxyl carbon atom being separated from all olefinic bonds in R by a non-olefinically-unsaturated carbon-to-carbon chain of at least 2 carbon atoms, and R is selected from the group consisting of hydrogen and alkyl of 1 to 15 carbon atoms, and about to '15 mole percent of mono-l-alkene of 3 to 25 carbon atoms, said material and said mono-l-alkene being selected so that the total number of carbon atoms in these components is at least about 12, and (B) polyamine having the formula:
R ll wherein R is an alkylene radical of 2 to 14 carbon atoms, R is selected from the group consisting of hydrogen and hydrocarbon radicals of l to 30 carbon atoms, and n is a number from 1 to about 10, said (A) and (B) being reacted in amounts sufficient to provide about 0.1 to 14 gram atoms of hydrogen-bonded nitrogen per mole equivalent of carboxyl groups in (A).
2. The composition of claim 1 wherein the base oil is mineral lubricating oil.
3. The composition of claim 1 wherein the condensation reaction product is present in amounts of about 0.1 to 10 percent, by weight of the base oil.
4. The composition of claim 1 wherein the condensation reaction product is present in amounts of about 0.25 to 7.5 percent, by weight of the base oil.
5. A lubricating oil composition consisting essentially of. a major-amount of base mineral oilof lubricating viscosity and a small amount, sufiicientto enhance the detergent characteristics of the oil, of a base mineral oilsoluble condensation reactionproduct of (A) a base mineral oil-soluble polymer, formed by use of a strong Friedel-Craftscatalyst, of about to 40 mole percent of material; having the formula:
wherein R is an olefinically-unsaturated hydrocarbon fadical of about 9 to 20 carbonatoms, the carboxyl carbon atom being separated from all olefinic bonds in R by a parafiinic carbon-to-carbon chain of at least about 6 carbon atoms and Rf is selected from the group consisting of hydrogen and lowerjallgyl, and about 90 to 60 mole per cent. of norma1' mono-l alkene of about 12 to 21 carbon atomsjand (B) polyaminehaving the formula:
wherein R' is an alkylene radical of .2 to 7 carbon atoms, R is selected from the group consistingof hydrogen and alkyl radicals.of .1 to about 7 carbon atoms, and n is a number from about 2 to 6, said (A) and (B). being reacted in amounts sutficient to provide about 0.6 to 14 gram atoms of hydrogen bonded nitrogen per mole equivalent of carboxyl groups in (A). t
6. The composition of claim 5 wherein R in the polyamine is hydrogen and R is the polyamine has 2 carbon atoms.
. 7. The composition of claim 6'wherein the material is linoleic acid. v
8. The composition of claim 7 wherein component (B) is tetraethylenepentamine and said (A) and (B) are reacted in amounts sufiicient to provide about 0.3 to '2 moles of (B) per mole equivalent of linoleic acid in. (A).
9. A lubricating oil composition consisting essentially of a major amount of a base oil of lubricating viscosity and a small amount, sutficient to enhance the extreme pressure characteristics of the oil, of a base oil-soluble polymer, formed by use of a strong Friedel-Crafts catalyst, of about 5 to 85 mole percent of material having the formula:
wherein R is an olefinically-unsaturated hydrocarbon radical of 3 to about 25 carbon atoms, the carboxyl carbon atom being separated from all olefinic bonds in R by a non-olefinically-unsaturated carbon-to-carbon chain of at least 2 carbon atoms and R is selected from the group consisting of hydrogen and alkyl of 1 to carbon atoms, and about 95 to 15 mole percent of mono-l-alkene of 3 to 25 carbon atoms, said material and said mono-l-alkene being selected so that the total number of carbon atoms in these components is at least about 12.
10. The composition of claim 9 wherein the base oil is mineral lubricating oil.
11. A lubricating oil composition consisting essentially of a major amount of base mineral oil of lubricating viscosity and a small amount, sufficient to enhance the extreme pressure characteristics of the oil, of a base mineral oil-soluble polymer, formed by use of a strong Friedel- Crafts catalyst, of about 10 to 40 mole percent of material having the formula:
i R-CO R wherein R is an olefinically-unsaturated hydrocarbon radical of about 9 to carbon atoms, the carboxyl carbon atom being separated from all olefinic bonds in R by a paraflinic carbon-to-carbon chain of at least about 6 carbon atoms and R is selected from the group consisting of hydrogen and lower alkyl, and about 90 to 60 mole percent of normal mono-l-alken'e of about 12 to 21 carbon atoms. A v I 12. The composition of claim 11 wherein the material is linoleic acid.
13. A lubricating oil co'mpositionconsisting essentially of a major 'amountof a base oil of lubricating viscosity and'a small amount, sufiicient to enhance the detergent characteristics of the oil, of a base-oil soluble condensation reaction product of (A) a base oil-soluble polymer,- formed -by use of a strong Friedel-Crafts catalyst, 'of about 3 to 55 mole percent of material having the formula:
ethylenically-unsaturated, aliphatic hydrocarbon of 4 to 12 carbon atoms and about 92 to 15 mole percent of mono-l-alkene of 3 to 25 carbon atoms, said material and said mono-l-alkene being selected so that the total number of carbon atoms in these components is at least about 12, and (B) polyamine having the formula:
R\N LELH wherein R is an alkylene radical of 2 to 14 carbon atoms, R is selected from the group consisting of hydrogen and hydrocarbon radicals of 1 to 30 carbon atoms, and n is a number from 1 to about 10, said (A) and (B) being reacted in amounts suflicient to provide about 0.1 to 14 gram atoms of hydrogen-bonded nitrogen per mole equivalent of carboxyl groups in (A).
14. The composition of claim 13 wherein the base oil is mineral lubricating oil.
, 15. The composition of claim 13 wherein the condensation reaction product is present in amounts of about 0.1 to 10 percent, by weight of the base oil.
16. The composition of claim 13 wherein the condensation reaction product is present in amounts of about 0.25 to 7.5 percent, by weight of the base oil.
17. The composition of claim 16 wherein the conjugate, diethylenically-unsaturated, aliphatic hydrocarbon is butadiene-1,3.
18. The composition of claim 17 wherein the material is methyl oleate.
19. A lubricating oil composition consisting essentially of a major amount of base mineral oil of lubricating vis cosity and a small amount, sufiicient to enhance the detergent characteristics of the oil, of a base mineral oilsoluble condensation reaction product of (A) a base mineral oil-soluble polymer, formed by 'use of a strong Friedel-Crafts catalyst, of about 5 to 25 mole percent of material having the formula:
0 R( -O R' wherein R is an olefinically-unsaturated hydrocarbon radical of about 9 to 20 carbon atoms, the carboxyl carbon atom being separated from all olefinic bonds in R by a paraflinic carbon-to-carbon chain of at least about 6 carbon atoms and R is selected from the group consisting of hydrogen and lower alkyl, about 10 to 70 mole percent of conjugated, diethylenically-unsaturated, aliphatic hydrocarbon of 4 to 5 carbon atoms and about to 20 mole percent of normal mono-l-alkene of about 12 19 to 21 carbon atoms and (B) polyamine having the formula:
R H l 1 N R-NH R/ )1:
wherein R is an alkylene. radical of 2 to about 7 carbon atoms, R is selected from the group consisting of hydrogen and alkyl radicals of 1 to about 7 carbon atoms, and n is a number from about 2 to 6, said (A) and (B) being reacted in amounts suflicientto provide about 0.6 to 14 gram atoms of hydrogen-bonded nitrogen per mole equivalent of carboxyl groups in (A).
20. The composition of claim 19 wherein R in the polyamine is hydrogen and R in the polyamine has 2 carbon atoms.
21. The composition of claim 20 wherein the material 7 is methyl oleate.
2 2. The composition of claim 21 wherein component (B) is tetraethylenepentamine and said (A) and (B) are reacted in amounts sulficient to provide about 0.3 to 2 moles of (B) per mole equivalent of methyl oleate in (A).
23. The composition of claim 22 wherein the conjugated, diethylenically-unsaturated, aliphatic hydrocarbon is butadiene-1,3.
24. A lubricating oil composition consisting essentially of a major amount of a base oil of lubricating viscosity and a small amount, sufficient to enhance the extreme pressure characteristics of the oil, of a base oil-soluble polymer, formed by use of a strong Friedel-Crafts catalyst, of about 3 to 55 mole percent of material having the formula:
R-( JO R wherein R is an olefinically-unsaturated hydrocarbon radical of 3 to about 25 carbon atoms, the carboxyl carbon atom being separated from all olefinic bonds in R by a nonolefinically-unsaturated carbon-to-carbon chain of at least 2 carbon atoms and R is selected from the group consisting of hydrogen and alkyl of 1 to 15 carbon atoms, about to 80 mole percent of conjugated, diethylenically-unsaturated, aliphatic hydrocarbon of 4 to 12 carbon atoms and about 92 to mole percent of 20 mono-l-alkene of 3 to 25 carbon atoms, said material and said, mono-l-alkene being, selected so l that the total number o'fba-rbon atoms in these components is at least aboutj'12. f a I 4 2 5. The composition of claim 24 wherein the base goil is mineral lubricating oil. I
26. A lubricating oil composition consistingessentially of a major amount of base mineral oil of lubricating vis cosity and a small amount, sufficient to enhance the extreme pressure characteristics of the oil, of a base mineral oil-soluble polymer, formed by use of a strong Friedel-Crafts catalyst, of about 5 to 25 mole percent of material having the formula: p l
= R( J-O-R i wherein R is an olefinically-un'saturated hydrocarbon, radical of about 9 to 20'carbon atoms, the carboxyl' carbon atom being separated from all olefinic bonds' in R by a paraflinc carbon-to-carbon chain of at least about 6 carbon atoms and R; is selected from the group consisting of hydrogen and lower alkyl, about 10 to mole percent of conjugated, diethylenically-unsaturated, aliphatic hydrocarbon of'4 to 5 carbon atoms and about to 20 mole percent'of normal mono-l-alkene of about 12 to 21 carbon atoms.
27. The composition of claim 26 wherein the material is methyl oleate.
References Cited UNITED STATES PATENTS 2,737,496 3/1956 Catlin 2s2 51.s 2,800,452 7/1957 Bondi et a1. 2525l,5' 2,892,791 6/1959 Lowe et al. 252--56 2,912,416 11/1959 Newey 25251.5 3,046,260 7/1962 Stewart et a1. 252--5l.5
DANIEL E. WYMAN, Primary Examiner W. J. SHINE, Assistant Examiner US. Cl. X.R. 252-56 V I UNI'IEDSTAlES PATNT OFFICE CERTIFICATE OF CORRECTION Patent No. 3 :83,125 Dated December 9, 1969 IhJentods) Thomas J. Clough It is certified that error appears in the above-identified patent i and that said Letters Patent are hereby corrected as shown below:
Column 3, line 52, delete "R" and insert therefor -R' Column 6, line 11, immediate1y after "dimethylaminopropylamil insert --dimethylaminobutylamine, diethylaminopropyla;
\ mine,-.
Column 10, line 26, delete "comment" and -insert therefor --component--.
Column 10, line 59, delete "6.52/2A5/1QO", and insert therefor ----6.65/2. l5/l.O---.
Column 10, line 66, delete 120C. I and insert therefor --l2( Column 11, line 51, delete "2", and insert therefor --2$5--.
' Column .12, line should be line 1.
Table X "Cryostatic" (heading of last column of table) shou] read --Cryoscopic--.
- C03 mm 16, line 1h, delete "washer-washed" and insert therefc --1-zater-'.-.'eshed--.
Claim 6, Second line, delete Q "is" and insert therefor --in--.
I SIGNED AND SEALED AUG4-1970 Afloat:
t Murmur .m .Attestin Offi Commissioner of Patents
US656065A 1965-03-18 1967-07-26 Polymeric additives for lubricating oil Expired - Lifetime US3483125A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US44094965A 1965-03-18 1965-03-18
US51312565A 1965-12-10 1965-12-10
US65606567A 1967-07-26 1967-07-26

Publications (1)

Publication Number Publication Date
US3483125A true US3483125A (en) 1969-12-09

Family

ID=27412076

Family Applications (1)

Application Number Title Priority Date Filing Date
US656065A Expired - Lifetime US3483125A (en) 1965-03-18 1967-07-26 Polymeric additives for lubricating oil

Country Status (1)

Country Link
US (1) US3483125A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3896038A (en) * 1973-06-05 1975-07-22 Gulf Research Development Co Lubricating oil containing a polyamide pour point depressant
US4051198A (en) * 1975-11-28 1977-09-27 Dr. Kurt Herberts & Co. Gesellschaft Mit Beschrankter Haftung Vorm. Otto Louis Herberts Modified water-dilutable polymer oil imides containing carboxyl groups
US4209598A (en) * 1975-11-28 1980-06-24 Dr. Kurt Herberts & Co. Gesellschaft Mit Beschrankter Haftung Vorm. Otto Louis Herberts Modified, water-dilutable polymer oil imides containing carboxyl groups

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2737496A (en) * 1952-02-16 1956-03-06 Du Pont Lubricating oil compositions containing polymeric additives
US2800452A (en) * 1954-07-12 1957-07-23 Shell Dev Stabilized hydrocarbon compositions
US2892791A (en) * 1956-02-03 1959-06-30 California Research Corp Lubricant composition
US2912416A (en) * 1954-07-12 1959-11-10 Shell Dev Amide containing copolymers and their preparation
US3046260A (en) * 1956-02-03 1962-07-24 California Research Corp Detergent copolymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2737496A (en) * 1952-02-16 1956-03-06 Du Pont Lubricating oil compositions containing polymeric additives
US2800452A (en) * 1954-07-12 1957-07-23 Shell Dev Stabilized hydrocarbon compositions
US2912416A (en) * 1954-07-12 1959-11-10 Shell Dev Amide containing copolymers and their preparation
US2892791A (en) * 1956-02-03 1959-06-30 California Research Corp Lubricant composition
US3046260A (en) * 1956-02-03 1962-07-24 California Research Corp Detergent copolymer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3896038A (en) * 1973-06-05 1975-07-22 Gulf Research Development Co Lubricating oil containing a polyamide pour point depressant
US4051198A (en) * 1975-11-28 1977-09-27 Dr. Kurt Herberts & Co. Gesellschaft Mit Beschrankter Haftung Vorm. Otto Louis Herberts Modified water-dilutable polymer oil imides containing carboxyl groups
US4209598A (en) * 1975-11-28 1980-06-24 Dr. Kurt Herberts & Co. Gesellschaft Mit Beschrankter Haftung Vorm. Otto Louis Herberts Modified, water-dilutable polymer oil imides containing carboxyl groups

Similar Documents

Publication Publication Date Title
US3131150A (en) Lubricating oil compositions containing n-substituted alkenyl succinimides in combination with polyamines
US3366569A (en) Lubricating compositions containing the reaction product of a substituted succinic acid-producing compound, an amino compound, and an alkenyl cyanide
US3018250A (en) Lubricating oil compositions containing nu-dialkylaminoalkyl alkenyl succinimides
US3288714A (en) Lubricating oil compositions containing alkenyl succinic anhydrides
US3185647A (en) Lubricant composition
US3361673A (en) Lubricating oil compositions containing alkenyl succinimides of tetraethylene pentamine
US3024195A (en) Lubricating oil compositions of alkylpiperazine alkenyl succinimides
US3278550A (en) Reaction products of a hydrocarbonsubstituted succinic acid-producing compound, an amine and an alkenyl cyanide
US3018247A (en) Lubricating oil compositions containing metal dithiophosphate-nu-dialkylaminoalkyl alkenyl succinimide blends
US3367943A (en) Process for preparing oil soluble additives which comprises reacting a c2 to c5 alkylene oxide with (a) reaction product of an alkenylsuccinic anhydride and an aliphaticpolyamine (b) reaction product of alkenylsuccinic anhydride, a c1 to c30 aliphatic hydrocarbon carboxylic acid and an aliphatic polyamine
US3216936A (en) Process of preparing lubricant additives
US3428615A (en) Detergent copolymer acyl amido alkyl ethers of polyalkylene glycol
US3438899A (en) Alkenyl succinimide of tris (aminoalkyl) amine
US3525693A (en) Alkenyl succinic polyglycol ether
US2892786A (en) Lubricant composition
US4142980A (en) Mannich reaction products made with alkyphenol substituted aliphatic unsaturated carboxylic acids
US3287271A (en) Combined detergent-corrosion inhibitors
US3390083A (en) Polyester additives for hydrocarbon oil compositions and process of preparing the same
US3048544A (en) Lubricant composition
US3458495A (en) Reaction product of a phosphosulfurized hydrocarbon and an alkylene amino phenol and method for preparing
US3526661A (en) Oil-soluble multifunctional detergent-dispersant comprising an amide of a polyamine and an alkaryl keto acid
US3185643A (en) Oxidation resistant lubricants
US3850822A (en) Ashless oil additive combination composed of a nitrogen-containing ashless dispersant phosphosulfurized olefin and phosphorothionyl disulfide
US3647731A (en) Condensation product of oil-soluble polymers with polyamine
US2892816A (en) Detergent copolymers