US3459756A - N-(2',6'-dimethyl-piperidyl-(1'))-3-sulfamyl-4-chloro-benzoic acid amide - Google Patents

N-(2',6'-dimethyl-piperidyl-(1'))-3-sulfamyl-4-chloro-benzoic acid amide Download PDF

Info

Publication number
US3459756A
US3459756A US645082A US3459756DA US3459756A US 3459756 A US3459756 A US 3459756A US 645082 A US645082 A US 645082A US 3459756D A US3459756D A US 3459756DA US 3459756 A US3459756 A US 3459756A
Authority
US
United States
Prior art keywords
chloro
sulfamyl
dimethyl
benzoic acid
acid amide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US645082A
Inventor
Ernst Jucker
Adolf J Lindenmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sandoz AG
Original Assignee
Sandoz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH1254760A external-priority patent/CH396905A/en
Application filed by Sandoz AG filed Critical Sandoz AG
Application granted granted Critical
Publication of US3459756A publication Critical patent/US3459756A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/22Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with hetero atoms directly attached to ring nitrogen atoms
    • C07D295/28Nitrogen atoms
    • C07D295/32Nitrogen atoms acylated with carboxylic or carbonic acids, or their nitrogen or sulfur analogues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/46Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with hetero atoms directly attached to the ring nitrogen atom
    • C07D207/50Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D245/00Heterocyclic compounds containing rings of more than seven members having two nitrogen atoms as the only ring hetero atoms
    • C07D245/02Heterocyclic compounds containing rings of more than seven members having two nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/08Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D263/16Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D263/18Oxygen atoms
    • C07D263/20Oxygen atoms attached in position 2
    • C07D263/26Oxygen atoms attached in position 2 with hetero atoms or acyl radicals directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/021,2-Oxazines; Hydrogenated 1,2-oxazines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/22Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with hetero atoms directly attached to ring nitrogen atoms

Definitions

  • the present invention relates to a diuretic composition in unit dosage form containing as the active ingredient thereof N [2,6 dimethyl piperidyl (1')] 3- sulfamyl 4 chloro benzoc acid amide of the Formula I,
  • the acid addition salts of N [2,6' dimethvlpiperidyl (1')] 3 sulfamyl 4 chloro benzoic acid and pharmaceutical compositions containing the aforesaid compound in addition to an inert carrier. as well as the pharmaceutically acceptable acid addition salt thereof, are effective in dosages for administration of 2-100 mg. per day and are also part of the present invention.
  • the reabsorption of sodium and accompanying anion by the renal tubule is the process which requires the greatest expenditure of energy by the kidney since the sodium ion is the principal cation of extracellular fluid. Interference with its reabsorption represents a significant mechanism for withdrawing sodium from the extracellular fluid, e.g. for the elimination of sodium from the body.
  • the organic mercurial inhibitors inhibit SH-activated enzyme systems through release of the mercuric ion.
  • the diuretic action of the organic mercurial is inhibited by certain mercaptans.
  • the sulfhydryl inhibition is believed to implicate the succinic dehydrogenase enzyme system.
  • the extreme toxicity of mercury represents its principal disadvantage.
  • Urine excreted in response to a mercurial diuretic contains chloride as the predominant ion and the loss of fixed sodium is secondary. Persistent systemic alkalosis develops quite readily and the patient becomes refractory to the desired action of the diuretic.
  • acetazoleamide depresses tubular reabsorption transport of electrolyte by promoting the bicarbonate excretion and serves as a specific inhibitor of carbonic anhydrase anzyme.
  • This compound shares with sulfanilamide the specific inhibition of carbonic anhydrase to thereby create acidification of the urine.
  • Carbonic anhydrase enzyme is present in red blood cells, renal cortex, pancreas, and the gastric mucosa, and functions to provide a source of hydrogen and bicarbonate ions. In the renal tubular cell, hydrogen is exchanged with sodium. The source of the hydrogen is carbonic acid.
  • the dosages of the present invention which are smaller than the maximum diuretically active dose, e.g. at dosages of between 20 and 40 milligrams per day, provide completely unexpected interference with catecholamine dependent functions which makes thepresent composition in unit dosage form outstandingly useful for the treatment of hypertension in which there is a benefit from the control of sodium chloride diuresis within narrow limits.
  • N[2',6'-dimethyl-piperidyll) I-3-sulfamyl-Hhloro-benzoic acid amide is much greater than that of each of the following:
  • d 4-chloro-3-sulfamoyl-benzoic acid hlydrazide
  • e 4.-chloro-3-sulfamoylbenzoic acid N ,N -dimethyl hydrazide.
  • the present active ingredient N-[2',6' dimethylpiperidyl (l)]-3-sulfamyl-4-chioro-benzoic acid amide has shown an unexpectedly high antagonistic activity in reserpine hydrothermia which is effective, remarkably, in doses smaller than the maximally diuretic active dose.
  • compounds (a), (b), (c), (d) and (e) above are inactive in this respect (reserpine hypothermia) when administered in dosages throughout each of their effective diuretic ranges and even up to the maximally diuretic active dose.
  • the ED value of the compound of the present invention for the inhibition of reserpine hypothermia over 3 hours was found to be 0.05 mg./ltg.
  • N [pyrrolidinyl l')t-3-sulfamyl-4- chloro-benzoic acid amide appears to be explained by assuming an interference with the catecholamine metabolism of the body. This assumption is substantiated by the fact that continuous treatment of animals with the present active ingredient also increases the sensitivity of their vascular walls to noradrenaline, just as happens with continuous treatment of animals with reserpine.
  • a process for the preparation of the new compound is characterized in that a 3-sulfamyl'4-chl0ro-benzoyl-halide of the Formula II, V
  • N [2,6 dimcihylpiperidyl r l (1')! 3 sulfamyl-4-chloro-benzoic acid amide obtained as a residue, is purified in accordance with known methods.
  • 3-sulfamyl-4-chloro-benzoyl-halides may be mentioned 3-sulfamyl-4-chloro-benzoyl chloride or bromide.
  • action product is either sucked off or the solution is evaporated to dryness, the residue is dissolved in an indifferent organic solvent, e.g. chloroform. and treated with ammonia.
  • the ammonia can be added as an aqueous solution, in the form of liquid ammonia, as ammonia gas in chloroform or diluted in alcohol.
  • the solution is then chloride, the 3-chloro-sult'onyl-4-chloro-benzoyl bromide.
  • halogen signifies a chlorine and bromine atom
  • the liquid phase in the process may be homogeneous or not homogeneous and may be achieved by an excess of l-amino-2,6-dimethylpiperidine when this is liquid under the reaction conditions otherwise, the presence of an inert organic solvent, e.g. a halogenated hydrocarbon such as chloroform, is necessary.
  • an inert organic solvent e.g. a halogenated hydrocarbon such as chloroform
  • Triethylamine is added to a suspension of l-amino-2,6- dimethyl-piperidine or a salt thereof in chloroform.
  • the 3-bromo-sulfonyl-4-chloro-benzoyl bromide is preferably produced by heating a mixture of 3-chloro-sulfonyl- Hhloro-benzoic acid and thionyl chloride to C.
  • the mixture is'then evaporated to dryness in a vacuum, the residuetaken up in 200 cc.
  • M.P. 155157 1-amino-2,6-dimethyl-piperidine hydrochloride
  • the solution is then heated at reflux for 8 hours to l00-105 and, after cooling down to room temperature, the crystalline precipitated N-[2,6-dimethyl-piperidyl-(1)] 3 chlorosulfonyl-4-chloro-benzoic acid amide is filtered off. After drying in a vacuum at 100, the sulfochloride is suspended in 15 cc. of chloroform and added carefully to 60 cc. of liquid ammonia. The reaction mixture is left to stand at room temperature until the excess ammonia has volatilized and it is then evaporated to dryness in a vacuum.
  • the reaction mixture is allowed to stand at room temperature until the excess ammonia has volatilized.
  • the chloroform is removed in a vacuum, the solid residue suspended in a solvent mixture of cc. of water and 250 cc. of ethyl acetate and shaken thoroughly.
  • the ethyl acetate solution is separated, dried over magnesium sulfate and evaporated to dryness in a vacuum.
  • the solid residue i.e. the N [2,6-dimethylpiperidyl (1')] 3 sulfamyl 4 chloro benzoic acid amide, melts at 232-234".
  • the reaction solution is allowed to stand at room temperature until the excess ammonia has volatilized and then evaporated to dryness in a vacuum.
  • the residue is suspended in a solvent mixture of 100 cc. of water and 200 cc. of ethyl acetate and thoroughly shaken. After filtering off and separating the aqueous phase, the ethyl acetate solution is dried over magnesium sulfate and the solvent is evaporated in a vacuum. The residue and the undissolved part are united and recrystallized from methanol-ether.
  • the N [2,6 dimethyl piperidyl (1')]- 3 sulfamyl 4 chloro benzoic acid amide melts at 234235.
  • N [2,6' dimethyl piperidyl-(1) 3 sulfamyl 4 chloro benzoic acid amide can also be obtained from 3 chloro sulfonyl 4 chloro-benzoylchloride and 1 amino 2,6 dimethyl piperidinehydrochloride using acetone as a solvent.
  • N [2,6' dimethyl piperidyl- (1')] 3 sulfamyl 4 chloro benzoic acid amide is a crystalline compound useful as a pharmaceutical or as an intermediate for the production of other compounds.
  • the exemplified compound is administered in therapeutic dosages of 2-100 mg. per day, preferably 2040 mg. per day, in conventional pharmaceutical acceptable vehicles as well as in the form of tablets.
  • the dosage of the present invention is effective upon enteral and parenteral arministration.
  • the compounds of the invention are worked up with organic or inorganic adjuvants which are physiologically acceptable and inert. Examples of such adjuvants or carriers for various medicinal preparations are as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Hydrogenated Pyridines (AREA)

Description

nited States Patent Ofice 3,459,756 Patented Aug. 5, 1969 US. Cl. 260-293.4 1. Claim ABSTRACT OF THE DISCLOSURE This invention is directed to a new chemical compound, N-[2, 6-dimethyl-piperidyl-( l)]-3-sulfamyl 4 chlorobenzoic acid amide, a compound having useful diuretic properties.
The present invention relates to a diuretic composition in unit dosage form containing as the active ingredient thereof N [2,6 dimethyl piperidyl (1')] 3- sulfamyl 4 chloro benzoc acid amide of the Formula I,
and is a division of application Ser. No. 560,062, filed June 24, 1966, which in turn is a continuation-in-part of our application Ser No. 325,784, filed Nov. 22, 1963, now abandoned, which is in turn a continuation-in-part of application Ser. No. 153,776 filed Nov. 7, 1966, now abandoned. In the file of this co-pending application, Ser. No. 153,776, there was submitted a verified affidavit of Dr. Edward W. Fluckiger comparing the salidiuretic activity of the pharmaceutically active compound of the present invention, through testing in adult rats, with the structurally closest and most active prior art compound of the US. De Wald et al. Patent No. 3,043,874, namely N [pyrrolidinyl (1')] 3 sulfamyl 4 chloro benzoic acid amide, as well as with related compounds in the De Wald et al. patent in which the pyrrolidine ring was replaced by the morpholine ring. The verified afiidavit demonstrated for the compound of the present invention a minimal effective dose in the adult rat at 0.01 mg.-/kg. (the dose necessary to increase sodium excretion by 0.5 meq. in 3 hours) and the maximally effective dose at l mg./kg. In contrast to the dose for the compound of said De Wald et al. patent, N-[pyrrolidinyl- (1')] 3 sulphamyl 4 chloro benzoic acid amide, the minimal dose for the compound of the invention is 10 times smaller than the minimal dose of the reference compound, the medium dose is 10 times smaller and the maximal effect dose which can be elicited is 5 times smaller. thereby demonstrating that the compound of the invention is unexpectedly superior to said De Wald et al. reference compound in respect to both effectiveness and clinical usefulness. Neither the compound of the present invention nor the compound of said De Wald et al. patent showed any notable effect on potassium excretion.
The acid addition salts of N [2,6' dimethvlpiperidyl (1')] 3 sulfamyl 4 chloro benzoic acid and pharmaceutical compositions containing the aforesaid compound in addition to an inert carrier. as well as the pharmaceutically acceptable acid addition salt thereof, are effective in dosages for administration of 2-100 mg. per day and are also part of the present invention.
PRIOR DIURETICS FOR NaCl Goodman and Gilman, in The Pharmacological Basis of Therapeutics, 2nd Edition, MacMillan Company, New York (1955), at pages 840 and 841, classifiessodium chloride diuretics on the basis of structural composition, e.g. organic mercurials, xanthines, acetazoleamides, etc., and the physiological action, e.g. inhibition of renal tubular transport. It is observed that during a 24 hour period the average adult filters, through the glomeruli, about liters of fluid containing over 1600 grams of sodium salts; and, under normal circumstances, 179 liters of fluid and 1590 grams of sodium salts are reabsorbed. The source of the glomerular filtrate is extracellular fluid. The reabsorption of sodium and accompanying anion by the renal tubule is the process which requires the greatest expenditure of energy by the kidney since the sodium ion is the principal cation of extracellular fluid. Interference with its reabsorption represents a significant mechanism for withdrawing sodium from the extracellular fluid, e.g. for the elimination of sodium from the body.
The organic mercurial inhibitors inhibit SH-activated enzyme systems through release of the mercuric ion. The diuretic action of the organic mercurial is inhibited by certain mercaptans. The sulfhydryl inhibition is believed to implicate the succinic dehydrogenase enzyme system. The extreme toxicity of mercury represents its principal disadvantage. Urine excreted in response to a mercurial diuretic contains chloride as the predominant ion and the loss of fixed sodium is secondary. Persistent systemic alkalosis develops quite readily and the patient becomes refractory to the desired action of the diuretic.
In contrast, acetazoleamide depresses tubular reabsorption transport of electrolyte by promoting the bicarbonate excretion and serves as a specific inhibitor of carbonic anhydrase anzyme. This compound shares with sulfanilamide the specific inhibition of carbonic anhydrase to thereby create acidification of the urine. Carbonic anhydrase enzyme is present in red blood cells, renal cortex, pancreas, and the gastric mucosa, and functions to provide a source of hydrogen and bicarbonate ions. In the renal tubular cell, hydrogen is exchanged with sodium. The source of the hydrogen is carbonic acid. By depressing the rate of formation of carbonic acid through the inhibitory action of the drug, the bicarbonate reabsorption is diminished, acid and ammonia disappear and the kidney elaborates an increased volume of alkaline urine. The net result is a loss of extracellular sodium bicarbonate and an osmotic equivalent of water. This treatment develops metabolic acidosis in contrast to the mercurial treatment which develops a metabolic alkalosis.
Both of the aforesaid types of prior art treatment, although of proven value, possess serious disadvantages, particularly in respect to the effect on the central nervous system. The anticonvulsant potency of sulfanilamide and acetazoleamide are correlated directly with the degree of inhibition of brain carbonic anhydrase which each compound produces in vivo. Large doses cause drowsiness and disorientation. It has always been thought that the inhibitory enzyme mechanism for the interaction of the sulfanilamide structure with carbonic anhydrase is a structural characteristic of the sulfonamide and the sulfanilamide radicals.
THE UNEXPECTED PROPERTIES OF THE PRESENT COMPOSITION The dosages of the present invention which are smaller than the maximum diuretically active dose, e.g. at dosages of between 20 and 40 milligrams per day, provide completely unexpected interference with catecholamine dependent functions which makes thepresent composition in unit dosage form outstandingly useful for the treatment of hypertension in which there is a benefit from the control of sodium chloride diuresis within narrow limits.
The salidiuretic activity of N[2',6'-dimethyl-piperidyll) I-3-sulfamyl-Hhloro-benzoic acid amide is much greater than that of each of the following:
a N-lPyrrolidinyl-( l') ]-3-sulfamyl-4-chloro-benzoic acid amide b) N-[morpholinyl-(4') l-3-sulfamyl-4-chloro-benzoic acid amide 4 t c) N [piperidyl-(1')] 3-sulfamyl-4-chloro-benz0ic acid amide (d) 4-chloro-3-sulfamoyl-benzoic acid hlydrazide (e) 4.-chloro-3-sulfamoylbenzoic acid N ,N -dimethyl hydrazide.
The present active ingredient, N-[2',6' dimethylpiperidyl (l)]-3-sulfamyl-4-chioro-benzoic acid amide has shown an unexpectedly high antagonistic activity in reserpine hydrothermia which is effective, remarkably, in doses smaller than the maximally diuretic active dose. In contrast, compounds (a), (b), (c), (d) and (e) above are inactive in this respect (reserpine hypothermia) when administered in dosages throughout each of their effective diuretic ranges and even up to the maximally diuretic active dose. In the case of rats the ED value of the compound of the present invention for the inhibition of reserpine hypothermia over 3 hours was found to be 0.05 mg./ltg.
The action of N [pyrrolidinyl l')t-3-sulfamyl-4- chloro-benzoic acid amide appears to be explained by assuming an interference with the catecholamine metabolism of the body. This assumption is substantiated by the fact that continuous treatment of animals with the present active ingredient also increases the sensitivity of their vascular walls to noradrenaline, just as happens with continuous treatment of animals with reserpine. In the light of the present understanding of the patho-physiology of essential hypertension and in view of the present significance attributed to the catecholamines in hypertension, this interfering property appears to provide an unexpected advantage in the application of N [2,6' dirnethyl piperidyl (1')] 3 sulfamyll-chloro-benzoic acid amide for the treatment of hypertensive diseases. in short, the sympathetic involvement in hypertension is unexpectedly influenced by the present active compound thereby permitting its use where no other compound can be successful.
A process for the preparation of the new compound is characterized in that a 3-sulfamyl'4-chl0ro-benzoyl-halide of the Formula II, V
, somu,
O-halogen it 3-sulfamyl-4-chloro-benzoyl-halide is then added to the solution and the mixture is stirred at room temperature for l to 4 days. The mixture is then evaporated to dry ness, the residue taken up with a water immiscible solvent, cg. ethyl acetate, and washed with water.
After drying the solution and evaporating the solvent preferably at reduced pressure, N [2,6 dimcihylpiperidyl r l (1')! 3 sulfamyl-4-chloro-benzoic acid amide, obtained as a residue, is purified in accordance with known methods.
"As suitable 3-sulfamyl-4-chloro-benzoyl-halides may be mentioned 3-sulfamyl-4-chloro-benzoyl chloride or bromide.
Another process for the preparation of the new compound is characterized in that a 3-halogeno-sulfonyl-4- chloro-benzoyl halogenide of general Formula Ill,
l halogen 0:8 I] I wherein halogen has the above significance, is reacted with a l-amino-2,6dimethyl piperidine and the resulting compound of general Formula lV,
Clix
wherein halogen has the above significance. is treated with ammonia to give the N-l2',6-dimethyl-piperidyl- (1')] 3 sulfamyl-4-chloro-benzoic acid amide. The lamino-2,6-dimethyl piperidine can be reacted with a compound of' general Formula lll, as well as in the form of a free base as in the form of a salt. The process mentioned above can be effected as follows:
The suspension or solution of a 3-halogeno-suif0nyl-4- chloro-benzoyl halogenide of general Formula III is reacted with l-amino-2,6-dimethyl piperidine in an indifferent solvent, e.g. acetone, chloroform or chlorobenzcne. and heated for several hours. After the cooling down of the reaction mixture, the eventually crystallized rchalogen S O; l\'
. action product is either sucked off or the solution is evaporated to dryness, the residue is dissolved in an indifferent organic solvent, e.g. chloroform. and treated with ammonia. The ammonia can be added as an aqueous solution, in the form of liquid ammonia, as ammonia gas in chloroform or diluted in alcohol. The solution is then chloride, the 3-chloro-sult'onyl-4-chloro-benzoyl bromide.
in which halogen signifies a chlorine and bromine atom,
is reacted in the liquid phase with l-amino-2,64iimethylpiperidine, or a salt thereof. The liquid phase in the process may be homogeneous or not homogeneous and may be achieved by an excess of l-amino-2,6-dimethylpiperidine when this is liquid under the reaction conditions otherwise, the presence of an inert organic solvent, e.g. a halogenated hydrocarbon such as chloroform, is necessary. It is advantageous to add a proton acceptor, for example, a tertiary organic base, to the reaction mixture to take up the hydrogen halide produced during the reaction, but this is not essential.
The following is a method of carrying out the process: Triethylamine is added to a suspension of l-amino-2,6- dimethyl-piperidine or a salt thereof in chloroform. A
the 3-bromo-sulfonyl-4-chloro-benzoyl bromide. Of these compounds, the acid chlorides have been found to be the most suitable, but the acid bromides can also be used. The 3-chloro-sulfonyl-4-chloro-benzoyl chloride is preferably produced by heating a mixture of 3-chloro-sulfonyl- Hhloro-benzoic acid and thionyl chloride to C. It can also be obtained by reacting equimolecular quantitics of 3 -chloro-sulfonyl --4 chloro-benzoic acid and thionyl chloride in the presence of a little dimethyl formani'ide and using chlorobenzene as a solvent.
In the following non-limiting examples, all temperatures are indicated in degrees centigrade and are corrected.
Example l.-N-[ 2',6'-dimethyl-piperidyl-( l) 1- 3-sulfamyl-4-chloro-benzoic acid amide I 7.6 g. of 3-sulfamyl-4-chloro-benzoyl chloride are added to a solution of 3.8 g. of l-amino 2,6-dimethyl-piperidine and 3.0 g. of triethylamine in 150 cc. of chloroform within 20 minutes while stirring=at 20-25 and the yellow reaction solution is then stirred for another 48 .hours at room temperature. The mixture is'then evaporated to dryness in a vacuum, the residuetaken up in 200 cc. of ethyl acetic and Washed with a total of 200 cc. of water. After drying over magnesium sulfate, the ethyl acetate is distilled off in a vacuum and the residue chromatographed on aluminum oxide, the N-[2',6'-dirnethyl-piperidyl-(1) 3-sulfamyl-4-chloro-benzoic acid amide being eluted with a solvent mixture of chloroformhnethanol (9:1). After recrystallization from methanol/diisopropyl ether, the hydrazine derivative melts at 233-235".
Example 2.-N-[2',6'-dimethyl-piperidyl-( 1) 3-sulfamyl-4-chloro-benzoic acid amide (a) 3.3 g. of 1-amino-2,6-dimethyl-piperidine hydrochloride (M.P. 155157) are added portionwise to a solution of 5.5 g. of 3-chloro-sulfonyl-4-chloro-benzoyl chloride in 20 cc. of chlorobenzene with agitation at room temperature. Complete dissolution is obtained. The solution is then heated at reflux for 8 hours to l00-105 and, after cooling down to room temperature, the crystalline precipitated N-[2,6-dimethyl-piperidyl-(1)] 3 chlorosulfonyl-4-chloro-benzoic acid amide is filtered off. After drying in a vacuum at 100, the sulfochloride is suspended in 15 cc. of chloroform and added carefully to 60 cc. of liquid ammonia. The reaction mixture is left to stand at room temperature until the excess ammonia has volatilized and it is then evaporated to dryness in a vacuum. The residue is chromatographed on aluminum oxide, the N- [2,6 dimethyl-piperidyl( l')] 3 sulfamyl 4 chlorobenzoic acid amide being eluted with a mixture of the solvents chloroform/methanol (9:1)[After recrystallization from methanol/ether, the benzoic acid derivative melts at 235-237.
(b) 3.3 g. of 1-amino-2,6-dimethyl-piperidinc-hydrochloride are added portionwise to a solution of 5.5 g. of 3-chloro-sulfonyl-4-chloro-benzoyl chloride in 20 cc. of benzene while agitating at room temperature. The suspension is then boiled at reflux for 12 hours. The crystalline portion, i.e. the N-[2',6'-dimethyl piperidyl-(1)]-3- chloro-sulfamyl-4-chloro-benzoic acid amide, is filtered off and the filtrate evaporated to dryness in a vacuum. After drying for a short time, the sulfochloride is carefully added to 60 cc. of liquid ammonia. Complete dissolution is obtained. The reaction mixture is left to stand at room temperature until the excess ammonia has volatilized. The solid residue is then suspended in a solvent mixture of 125 cc. of water and 250 cc. of ethyl acetate and shaken thoroughly. After filtering and separating the aqueous phase, the ethyl acetate solution is dried over magnesium sulfate and the ethyl acetate is evaporated in a vacuum. The residue and the residue which had been filtered off are united and recrystallized from methanol/ ether. The N-[2,6-dimethyl-piperidyl-(1') ]-3-sulfamyl-4- chloro-benzoic acid amide.
(c) 3.3 g. of 1-amino-2,6-dimethyl-piperidine hydrochloride are added portionwise to a solution of 5.5 g. of 3-chloro-sulfonyl-4-benzoyl chloride in 20 cc. of chlorobenzene While agitating at room temperature. The reaction mixture is then refluxed for 2 /2 hours and evaporated to dryness in a vacuum. The residue is suspended in 15 cc. of chloroform and added carefully to 60 cc. of liquid ammonia. The reaction mixture is allowed to stand at room temperature until the excess ammonia has volatilized and is then evaporated to dryness in a vacuum. The residue is suspended in 15 cc. of chloroform and added carefully to 60 cc. of liquid ammonia. The reaction mixture is allowed to stand at room temperature until the excess ammonia has volatilized and is then evaporated to dryness in a vacuum. The residue is chromatographed on aluminum oxide, the N-[2,6'-dimethyl-piperidyl-(1) 1- 3-sulfamyl-4-chloro-benzoic acid amide being eluted with a solvent mixture of chloroform/ methanol (9:1). After 6 recrystallization from methanol-ether, the benzoic acid derivative melts at 235-236.
((1) 3.3 g. of l amino 2,6 dimethyl piperidinehydrochloride are added portionwise to a solution of 5.5 g. of 3 chloro-sulfonyl 4 chloro benzoyl chloride in 20 cc. of absolute benzene while agitating at room temperature. The suspension is then boiled at reflux for 24 hours. The crystalline portion, i.e. the N [2,6 dimethyl piperidyl (1')] 3 chloro sulfonyl 4- chloro benzoic acid amide is filtered off and the filtrate evaporated to dryness in a vacuum. The filter residue is suspended in 10 cc. of chloroform and added carefully to 60 cc. of liquid ammonia. The reaction mixture is allowed to stand at room temperature until the excess ammonia has volatilized. The chloroform is removed in a vacuum, the solid residue suspended in a solvent mixture of cc. of water and 250 cc. of ethyl acetate and shaken thoroughly. The ethyl acetate solution is separated, dried over magnesium sulfate and evaporated to dryness in a vacuum. After recrystallization from methanol-ether, the solid residue, i.e. the N [2,6-dimethylpiperidyl (1')] 3 sulfamyl 4 chloro benzoic acid amide, melts at 232-234".
(e) A solution of 2.58 g. of 1 amino 2,6 dimethylpiperidine in 5 cc. of benzene is added dropwise to a solution of 5.5 g. of 3 chloro sulfonyl 4 chlorobenzoyl chloride in 15 cc. of benzene at room temperature while agitating, a reddening of the reaction solution with slightly increasing temperature being obtained. After boiling for 12. hours at reflux, the crystalline portion, i.e. the N [2,6 dimethyl piperidyl (1')] 3 chlorosulfonyl 4 chloro benzoic acid amide is filtered off, suspended in 10 cc. of chloroform and slowly added to 60 cc. of liquid ammonia. Complete dissolution is obtained. The reaction solution is allowed to stand at room temperature until the excess ammonia has volatilized and then evaporated to dryness in a vacuum. The residue is suspended in a solvent mixture of 100 cc. of water and 200 cc. of ethyl acetate and thoroughly shaken. After filtering off and separating the aqueous phase, the ethyl acetate solution is dried over magnesium sulfate and the solvent is evaporated in a vacuum. The residue and the undissolved part are united and recrystallized from methanol-ether. The N [2,6 dimethyl piperidyl (1')]- 3 sulfamyl 4 chloro benzoic acid amide melts at 234235.
(f) Analogously, N [2,6' dimethyl piperidyl-(1) 3 sulfamyl 4 chloro benzoic acid amide can also be obtained from 3 chloro sulfonyl 4 chloro-benzoylchloride and 1 amino 2,6 dimethyl piperidinehydrochloride using acetone as a solvent.
At room temperature N [2,6' dimethyl piperidyl- (1')] 3 sulfamyl 4 chloro benzoic acid amide is a crystalline compound useful as a pharmaceutical or as an intermediate for the production of other compounds. The exemplified compound is administered in therapeutic dosages of 2-100 mg. per day, preferably 2040 mg. per day, in conventional pharmaceutical acceptable vehicles as well as in the form of tablets. The dosage of the present invention is effective upon enteral and parenteral arministration. In order to produce such medicinal prep.- arations, the compounds of the invention are worked up with organic or inorganic adjuvants which are physiologically acceptable and inert. Examples of such adjuvants or carriers for various medicinal preparations are as follows:
Tablcts and drages.Lactose, starch, talc, magnesium stearate, gellative and stearic acid,
Syrups.Solutions of cane sugar invort sugar and glucose,
Injectable solutions-Water, physiologically acceptable alcohols, glycerine and physiologically acceptable vegetable fats,
Suppositories-Pbysiologically acceptable, natural or hardened oils and waxes,
The preparations may contain suitable preserving, 5
stabilizing or wetting agents, solubilizers, sweetening and colouring substances or flavourings, with the proviso that they must be physiologically acceptable.
What is claimed is:
1 N [2,6' dimethyl piperidyl (1')] 3 sul- 10 famyl 4 chloro-benzoic acid amide.
References Cited UNITED STATES PATENTS 7/1962 De Wald et al. 260293.47 8/1967 Jucker et al. 260-29147 HENRY R. J ILES, Primary Examiner R. T. BOND, Assistant Examiner us. 01. X.R.
US645082A 1960-11-09 1967-04-17 N-(2',6'-dimethyl-piperidyl-(1'))-3-sulfamyl-4-chloro-benzoic acid amide Expired - Lifetime US3459756A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CH1254760A CH396905A (en) 1960-11-09 1960-11-09 Process for the preparation of new hydrazine derivatives
CH1354460 1960-12-02
CH654761A CH418335A (en) 1960-11-09 1961-06-06 Process for the preparation of new hydrazine derivatives
CH1518864A CH412892A (en) 1960-11-09 1961-09-11 Process for the preparation of new hydrazine derivatives
CH1047461 1961-09-11

Publications (1)

Publication Number Publication Date
US3459756A true US3459756A (en) 1969-08-05

Family

ID=43798563

Family Applications (2)

Application Number Title Priority Date Filing Date
US560062A Expired - Lifetime US3445573A (en) 1960-11-09 1966-06-24 Pharmaceutical compositions with salidiuretic and reserpine antagonist activity comprising n-(2',6'-dimethyl-piperidyl-(1'))-3-sulfamyl - 4 - chlorobenzoic acid amide
US645082A Expired - Lifetime US3459756A (en) 1960-11-09 1967-04-17 N-(2',6'-dimethyl-piperidyl-(1'))-3-sulfamyl-4-chloro-benzoic acid amide

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US560062A Expired - Lifetime US3445573A (en) 1960-11-09 1966-06-24 Pharmaceutical compositions with salidiuretic and reserpine antagonist activity comprising n-(2',6'-dimethyl-piperidyl-(1'))-3-sulfamyl - 4 - chlorobenzoic acid amide

Country Status (7)

Country Link
US (2) US3445573A (en)
BR (1) BR6134007D0 (en)
CH (2) CH418335A (en)
FR (1) FR1748M (en)
GB (1) GB939468A (en)
LU (1) LU40792A1 (en)
NL (1) NL270803A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004017964A1 (en) 2002-08-19 2004-03-04 Pfizer Products Inc. Combination therapy for hyperproliferative diseases
US20060247272A1 (en) * 2004-09-23 2006-11-02 Pfizer Inc 4-Amino Substituted-2-Substituted-1,2,3,4-tetrahydroquinoline Compounds
WO2007062314A2 (en) 2005-11-23 2007-05-31 Bristol-Myers Squibb Company Heterocyclic cetp inhibitors
WO2008070496A2 (en) 2006-12-01 2008-06-12 Bristol-Myers Squibb Company N- ( (3-benzyl) -2, 2- (bis-phenyl) -propan-1-amine derivatives as cetp inhibitors for the treatment of atherosclerosis and cardiovascular diseases
EP2392567A1 (en) 2005-10-21 2011-12-07 Bristol-Myers Squibb Company Benzothiazine derivatives and their use as lxr modulators
WO2014170786A1 (en) 2013-04-17 2014-10-23 Pfizer Inc. N-piperidin-3-ylbenzamide derivatives for treating cardiovascular diseases
WO2016055901A1 (en) 2014-10-08 2016-04-14 Pfizer Inc. Substituted amide compounds
WO2020150473A2 (en) 2019-01-18 2020-07-23 Dogma Therapeutics, Inc. Pcsk9 inhibitors and methods of use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1586468A (en) * 1976-10-29 1981-03-18 Anphar Sa Piperidine derivatives

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3043874A (en) * 1960-05-09 1962-07-10 Parke Davis & Co 4-halo-3-sulfamoylbenzoic acid derivatives and methods for producing same
US3337547A (en) * 1963-12-20 1967-08-22 Sandoz Ltd N-(dilomer alkyl piperidino and morpholino)-2, 4-dichloro-5-sulphamyl benzoic acid amides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3043874A (en) * 1960-05-09 1962-07-10 Parke Davis & Co 4-halo-3-sulfamoylbenzoic acid derivatives and methods for producing same
US3337547A (en) * 1963-12-20 1967-08-22 Sandoz Ltd N-(dilomer alkyl piperidino and morpholino)-2, 4-dichloro-5-sulphamyl benzoic acid amides

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004017964A1 (en) 2002-08-19 2004-03-04 Pfizer Products Inc. Combination therapy for hyperproliferative diseases
US20060247272A1 (en) * 2004-09-23 2006-11-02 Pfizer Inc 4-Amino Substituted-2-Substituted-1,2,3,4-tetrahydroquinoline Compounds
EP2392567A1 (en) 2005-10-21 2011-12-07 Bristol-Myers Squibb Company Benzothiazine derivatives and their use as lxr modulators
WO2007062314A2 (en) 2005-11-23 2007-05-31 Bristol-Myers Squibb Company Heterocyclic cetp inhibitors
WO2008070496A2 (en) 2006-12-01 2008-06-12 Bristol-Myers Squibb Company N- ( (3-benzyl) -2, 2- (bis-phenyl) -propan-1-amine derivatives as cetp inhibitors for the treatment of atherosclerosis and cardiovascular diseases
WO2014170786A1 (en) 2013-04-17 2014-10-23 Pfizer Inc. N-piperidin-3-ylbenzamide derivatives for treating cardiovascular diseases
WO2016055901A1 (en) 2014-10-08 2016-04-14 Pfizer Inc. Substituted amide compounds
WO2020150473A2 (en) 2019-01-18 2020-07-23 Dogma Therapeutics, Inc. Pcsk9 inhibitors and methods of use thereof

Also Published As

Publication number Publication date
NL270803A (en)
CH418335A (en) 1966-08-15
GB939468A (en) 1963-10-16
LU40792A1 (en) 1962-05-07
FR1748M (en) 1963-03-25
CH412892A (en) 1966-05-15
BR6134007D0 (en) 1973-05-31
US3445573A (en) 1969-05-20

Similar Documents

Publication Publication Date Title
US4569939A (en) Diuretic 6-vinyl-furo-(3,4-c)-pyridine derivatives
WO1994014780A1 (en) Pyrimidine, pyridine, pteridinone and indazole derivatives as enzyme inhibitors
EP0365183A1 (en) Biologically active compounds
US3459756A (en) N-(2',6'-dimethyl-piperidyl-(1'))-3-sulfamyl-4-chloro-benzoic acid amide
SU1498383A3 (en) Method of producing derivatives of aminoguanidine or their acid-additive salts
PL187691B1 (en) N-methyl n-/(1s)-1-phenyl-2-/(3s)-3-hydroxypyrrolidin-1-yl/ethyl/-2,2-diphenylacetamide
NZ195318A (en) Imidazolylurea derivatives; pharmaceutical compositions
KR840000794B1 (en) Process for preparing quinazoline derivatives
US4897423A (en) Dinitrobenzenesulfonamides
JPH09512815A (en) Novel hydroxamic acid derivatives, pharmaceutical compositions containing them and method for producing
US2957883A (en) Sulfamyl derivatives of certain saccharins and process
JPS5914037B2 (en) Isoquinoline derivatives, their production methods and pharmaceutical compositions containing them
TW200304823A (en) Substituted 4-phenyltetrahydroisoquinolinium salts, process for their preparation, their use as medicament, and medicament containing them
US4025508A (en) 6-(Trifluoromethyl)-benzothiadiazines
US3683085A (en) Secondaryamino pyridazines
CA1095055A (en) Benzamidine derivatives, process for their preparation and applications thereof
US4539402A (en) Quinazolinone derivatives
JPS631314B2 (en)
US3294640A (en) Controlling blood sugar with sulfonyl pyrazoles
US4521606A (en) 5-Indolyl substituted aminoethanols
US4153702A (en) Basically alkylated dithiosalicyclic acid amides and their use as medicaments
US4018793A (en) Benzo (b) thiophene derivatives
CA1083151A (en) Naphthalenone phthalazinylhydrazones
US4562200A (en) 5(Indolyl) and 5(2,3-dihydroindolyl) substituted aminoethanols and their use as anti-hypertensives
NO142035B (en) ANALOGY PROCEDURE FOR THE PREPARATION OF THERAPEUTICALLY EFFECTIVE SUBSTITUTED TRIAZOLS