US3443296A - Method for constructing a fin-and-tube heat exchanger having a bend formed therein - Google Patents

Method for constructing a fin-and-tube heat exchanger having a bend formed therein Download PDF

Info

Publication number
US3443296A
US3443296A US641941A US3443296DA US3443296A US 3443296 A US3443296 A US 3443296A US 641941 A US641941 A US 641941A US 3443296D A US3443296D A US 3443296DA US 3443296 A US3443296 A US 3443296A
Authority
US
United States
Prior art keywords
tubes
coil
row
fins
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US641941A
Inventor
Dale R Clausing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trane US Inc
Original Assignee
Trane Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trane Co filed Critical Trane Co
Application granted granted Critical
Publication of US3443296A publication Critical patent/US3443296A/en
Assigned to TRANE COMPANY, THE reassignment TRANE COMPANY, THE MERGER (SEE DOCUMENT FOR DETAILS). DELAWARE, EFFECTIVE FEB. 24, 1984 Assignors: A-S CAPITAL INC. A CORP OF DE
Assigned to TRANE COMPANY THE reassignment TRANE COMPANY THE MERGER (SEE DOCUMENT FOR DETAILS). EFFECTIVE 12/1/83 WISCONSIN Assignors: A-S CAPITAL INC., A CORP OF DE (CHANGED TO), TRANE COMPANY THE, A CORP OF WI (INTO)
Assigned to AMERICAN STANDARD INC., A CORP OF DE reassignment AMERICAN STANDARD INC., A CORP OF DE MERGER (SEE DOCUMENT FOR DETAILS). EFFECTIVE 12/28/84 DELAWARE Assignors: A-S SALEM INC., A CORP. OF DE (MERGED INTO), TRANE COMPANY, THE
Assigned to A-S CAPITAL INC., A CORP OF DE reassignment A-S CAPITAL INC., A CORP OF DE MERGER (SEE DOCUMENT FOR DETAILS). Assignors: TRANE COMPANY THE A WI CORP
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/08Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of both metal tubes and sheet metal
    • B21D53/085Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of both metal tubes and sheet metal with fins places on zig-zag tubes or parallel tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D7/00Bending rods, profiles, or tubes
    • B21D7/06Bending rods, profiles, or tubes in press brakes or between rams and anvils or abutments; Pliers with forming dies
    • B21D7/066Bending rods, profiles, or tubes in press brakes or between rams and anvils or abutments; Pliers with forming dies combined with oscillating members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49366Sheet joined to sheet
    • Y10T29/49368Sheet joined to sheet with inserted tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49377Tube with heat transfer means
    • Y10T29/49378Finned tube
    • Y10T29/4938Common fin traverses plurality of tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/51Plural diverse manufacturing apparatus including means for metal shaping or assembling
    • Y10T29/5136Separate tool stations for selective or successive operation on work
    • Y10T29/5137Separate tool stations for selective or successive operation on work including assembling or disassembling station
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/51Plural diverse manufacturing apparatus including means for metal shaping or assembling
    • Y10T29/5188Radiator making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53113Heat exchanger
    • Y10T29/53122Heat exchanger including deforming means

Definitions

  • This invention relates to the art of fin-and-tube heat exchangers and particularly to those heat exchangers comprising a stack of generally planar parallel fins having a plurality of tubes extending normally therethrough.
  • Such tubes may be disposed in a coplanar arrangement as in a one-row heat exchanger coil. Or, they may be arranged in two or more planes as in a two or more row coil. Often a two-row coil is preferred over a one-row coil for the reason that it requires less face area forthe equivalent heat transfer surface.
  • a fin-and-tube heat exchanger coil so that the coil lies generally along two or more intersecting planes
  • a refrigerant condenser coil so that it forms two or more sides of a rectangular condensing unit.
  • Conventionally one-row coils of this type have been bent with tangent type coil bending machines.
  • a tangent type bender fixedly clamps one leg or end of the coil while a bending platen journalled at a fixed center is pivoted to wrap the other leg of the coil over a curved forming die located at the bight of the bend.
  • a bend of final curvature progresses from one end toward the other end of the area to be bent.
  • Patented May 13, 1969 It is also an object to provide a method for constructing a multiple row fin-and-tube heat exchange coil with a discrete bend.
  • This invention includes a method of constructing a fin-and-tube heat exchange coil having a depth of at least two rows of tubes and bent to a predetermined angle com prising the steps of: providing a first plurality of generally straight first tubes; providing a second plurality of generally straight second tubes; providing a plurality of generally planar fins each having a first row of spaced first apertures adapted to receive and embrace a first row of tubes and a second row of spaced second apertures spaced from said first row adapted to receive and embrace a second row of tubes; arranging said fins in generally parallel superposed relation and positioning said first tubes within said first apertures and said second tubes within said second apertures thereby forming a fin-andtube heat exchange coil having spaced first and second rows of tubes respectively whereby the tubes of said first row lie within a first plane and the tubes of said second row lie within a second plane parallel to and spaced a predetermined distance from said first plane; fixedly securing said first tubes to said fins for maintaining a uniform spacing of said fins during
  • FIGURE 1 illustrates the step of arranging the fins on the tubes to form a two-row heat exchange coil
  • FIGURE 2 is an enlarged sectional view of a fragment of the coil of FIGURE 1 and illustrates the subsequent step of expanding the tubes of only one row prior to the step of bending the coil;
  • FIGURE 3 is a section taken at line 33 of FIGURE 4 through a fin-and-tube heat exchanger coil bending machine incorporating aspects of the instant invention and showing the heat exchanger coil of FIGURE 2 mounted therein ready for bending;
  • FIGURE 4 is a side elevation of the coil bending machine shown in FIGURE 3;
  • FIGURE 5 is a view similar to FIGURE 3 after the coil bending machine thereof has been moved through the bending steps;
  • FIGURE 6 is a diagrammatic showing of the relative movement of the two platens of the coil bending machine shown in FIGURES 3-5 as the machine performs the step of bending the heat exchange coil of FIGURE 2 and particularly showing the locus of instant centers of relative motion between the platens of the machine;
  • FIGURE 7 is a view similar to FIGURE 3 showing a modified form of the coil bending machine of FIGURE 3;
  • FIGURE 8 is a view similar to FIGURE 5 showing the modified coil bending machine after the bending step
  • FIGURE 9 is a view similar to FIGURE 6 illustrating the relative platen movement for the modified coil bending machine of FIGURES 7 and 8;
  • FIGURE 10 illustrates the step of expanding the tubes of all rows of the coil subsequent to the coil bending step.
  • FIGURES 1-6 and 10 there is shown a fin-and-tube heat exchange coil 10 having a first row 11 of coplanar parallel laterally spaced tubes 12; a second row 13 of coplanar parallel laterally spaced tubes 14; and a plurality of generally planar rectangular relatively thin heat conductive fins 15 each having a first row 16 and a second row 17 of apertures 18 therein to receive respectively the tubes 12 and 14 of first and second tube rows 11 and 13.
  • the fins 15 are stacked on the tubes in parallel generally spaced relationship. This stacking step is illustrated in FIGURE 1. It will be appreciated that in the alternative the tubes 12 and 14 may be inserted into the apertures 18 of the stacked fins 15.
  • the one manner of arranging the tubes with respect to the fins is considered the full equivalent of the other. It will also be appreciated, as more fully illustrated in FIG- URE 2, that the collar 19 at each aperture 18 is preferably in contact with an adjacent fin whereby the fins become substantially equally spaced prior to bending of the coil. Subsequent to arranging the fins 15 with respect to the tubes 12 and 14, the tubes 12 of row 11 are expanded within the apertures 18 of row 16 to secure a mechanical bond between the fins 15 and the tubes 12 of the first row of tubes. This is accomplished by passing a bullet 20 (FIGURE 2) of larger size through the tubes 12 by any of several methods known to the art of heat exchange coil construction.
  • the expander bullet diameter will be different for different size tubes and is best determined by experiment on the basis of best results.
  • the tubes .14 of row 13 are not expanded at this time so as to permit tubes 13 to slide relative to fin 15 during a subsequent bending step as more fully described hereinafter.
  • the heat exchanger coil assembly 10 is then clamped into the coil bending machine 21 of FIGURES 3-5 or the modified coil bending machine 21a of FIGURES 7, 8 and 9.
  • coil bending machine 21 has two stationary guide plate members 22 fixed in parallel spaced relation. Interposed between guide members 22 are first elongated platen 23 and second elongated platen 24 each having a primary pressure bearing planar surface 25 for supporting a first face of the heat exchanger coil 10. Platens 23 and 24 are so arranged that surfaces 25 are initially coplanar and normal to guide members 22 as shown in FIGURES 3 and 4. Heat exchanger coil 10, following the aforementioned tube expanding step shown in FIGURE 2, is laid upon and clamped to surfaces 25 via a clamp means 26 on each platen.
  • Each clamp means may include a pair of legs 27 extending upwardly from surface 25 at the margins thereof and a clamp plate 28 extending between the free ends of legs 27 for the purpose of applying pressure on the other or second face of coil 10 via bolts 29.
  • Each platen further includes an angle member 30 which presents a secondary pressure bearing surface at the ends of the tubes 12.
  • Members 30 may be integral with or merely attached to the platens as desired.
  • the platens 23 and 24 each have at their adjacent ends a pair of laterally projecting pins 31 which are slidably received in vertically extending guide slots 32 in guide members 22.
  • the platens 23 and 24 each further have at their remote ends a pair of laterally projecting pins 33 which are slidably received in horizontally extending guide slots 34 in guide members 22.
  • platens 23 and 24 may be rotatably guided by pins 31 and 33 and slots 32 and 34 from the position shown in FIGURE 3 to the position shown in FIGURE 5.
  • a hydraulic power cylinder 35 anchored to guide members 22 by pin 36.
  • the piston rod 37 of the hydraulic cylinder 35 may be pivotally connected to links 38 as by bolt 39 which are in turn connected to adjacent ends of platens 23 and 24 at ears 40 as by pins 41. It will thus be appreciated that extension of the power cylinder piston rod 37 causes the platens to move from the position shown in FIGURE 3 to their position shown in FIGURE 5, thereby bending the heat exchanger coil 10 as shown in FIGURE 5. It should be noted that it is not necessary that the platens 23 and 24 contact the fins at any point along the bend of the coil 10 and that there is no substantial movement of the platens relative to the coil fins clamped therein.
  • the heat exchange coil bending machine 21 shown is constructed to provide coil 10 with up to a bend having a neutral axis plane N coinciding with the longitudinal axes of tubes 12.
  • a neutral axis plane N coinciding with the longitudinal axes of tubes 12.
  • pins 31 and 33 and slots 32 and 34 may be determined as follows.
  • Pins 31 and 33 are located on platen 23 at points B and E respectively when the platen is in the position shown in FIGURE 3.
  • Pins 31 and 33 are located on platen 24 at points B and E respectively when the platen is in the position shown in FIGURE 3.
  • the straight vertical diverging slots or grooves 32 are formed in each of guide members 22 connecting between B and D, and B and D for guiding pins 31.
  • the straight horizontal slots or grooves 34 are formed in each of guide members 22 connecting between C and E, and C and E for guiding pins 33.
  • the clamp plates 28 are removed and the bent coil 10 can be removed from machine 21.
  • the hydraulic power cylinder 35 may then be contracted to return the platens to their position of FIGURE 3 for receiving another coil 10.
  • the machine 21 may be designed for a slight over bend to compensate for the slight spring back that is often encountered in bending.
  • FIGURE 6 illustrates the movement of platen 24 relative to platen 23 during the bending step.
  • Platen 24 rotates 180-A relative to platen 23 about an instant center moving relative to platen 23 along a locus or path P.
  • Path P is substantially an arc of 90 /2A having a radius substantially equal to and a center at 8.
  • the radius R of the coil bend from the central axis of curvature T to the neutral axis N is gradually reduced and the bend is effected simultaneously over the entire bend area as shown in FIGURE 6.
  • the tubes 14 of the outside row 13 are expanded such as by passing an expander bullet 42 therethrough as illustrated in FIGURE 10 to secure an efficient heat conductive mechanical connection, especially in the bend area, between the tubes 14 and fins 15.
  • the tubes 12 of row 11 are further expanded at this time with an expander bullet 43 also to secure an efficient heat conductive mechanical connection, especially in the bend area between the tubes 12 and fins 15.
  • Bullet 43 is several thousandths of an inch larger in diameter than first expander bullet 20.
  • the ends of tubes 12 and 14 may then be appropriately connected to provide the desired heat exchanger coil circuits.
  • the platen guide pins 31 and 33 may be transposed with guide slots 32 and 34.
  • the slots formed on the platen members would be curvilinear and thus more difficult to construct than the straight grooves 32 and 34 of FIGURES 3-5.
  • the heat exchanger coil bending machine of FIGURES 3-5 may be simplified by substituting for the plural links 38 thereof a single link 38:: for connecting the inner ends of the platens by pins 31a of the coil bending machine 21a shown in FIGURES 7, 8 and 9.
  • Platens 23a and 244 may be recessed at 44 to accommodate link 38a.
  • the pins 31a are located on platens 23a and 24a (FIGURE 7) at points G and G respectively for vertical movement in slots or grooves 32a on each of guide members 22a which slots extend in parallel relation to vertical axis V from points G to points F and from points G to points F.
  • Points F, F, G and G may be located in the following manner:
  • Link 38a is connected to a piston rod 37a of hydraulic cylinder 35a anchored by pin 36a to guide members 22a for driving movement of the platens 23a and 24a.
  • the operation of the coil bending machine 21a is substantially the same as coil bending machine 21.
  • the machine elements of the modified form of the invention move from a position shown in FIGURE 7 to a position shown in FIGURE 8.
  • platen 24a rotates 180--A relative to platen 23a about an instant center moving relative to platen 23a along a locus or path Q.
  • Path Q is substantially an arc of 90--- /2A having a radius equal to 1rR(180A )/360 and a center S coinciding with pin 31a of platen 23a as shown in FIGURE 9.
  • the platen guide pins 31a and 33 may be transposed with guide slots 32a and 34. Again, however, in such case, the slots formed on the platen members would be curvilinear and thus more difiicult to construct than the straight grooves 32a and 34 of FIG- URES 7 and 8.
  • a method of constructing a fin-and-tube heat exchange coil having a depth of at least two rows of tubes and bent to a predetermined angle comprising the steps of: providing a first plurality of generally straight first tubes; providing a second plurality of generally straight second tubes; providing a plurality of generally planar fins each having a first row of spaced first apertures adapted to receive and embrace a first row of tubes and a second row of spaced second apertures spaced from said first row adapted to receive and embrace a second row of tubes; arranging said fins in generally parallel superposed relation and positioning said first tubes within said first apertures and said second tubes within said second apertures thereby forming a fin-and-tube heat exchange coil having spaced first and second rows of tubes respectively whereby the tubes of said first row lie in a first plane and the tubes of said second row lie in a second plane parallel to and spaced a predetermined distance from said first plane; fixedly securing said first tubes to said fins for maintaining a uniform spacing of said fins during a subsequent coil bending
  • a method of constructing a fin-and-tube heat exchange coil having a depth of at least two rows of tubes and bent to a predetermined angle comprising the steps of providing a first plurality of generally straight first tubes; providing a second plurality of generally straight second tubes; providing a plurality of generally planar fins each having a first row of spaced first apertures adapted to receive and embrace a first row of tubes and a second row of spaced second apertures spaced from said first row of apertures adapted to receive and embrace a second row of tubes; arranging said fins in generally parallel superposed relation and positioning said first tubes within said first apertures and said second tubes within said second apertures thereby forming a fin-and-tube heat exchange coil having spaced first and second rows of tubes respectively whereby the tubes of said first row lie in a first plane and the tubes of said second row lie in a second plane parallel to and spaced a predetermined distance from said first plane; expanding said first tubes within said first apertures to maintain a uniform spacing of said fins during a subsequent coil bending step
  • a method of constructing a fin-and-tube heat exchange coil having a depth of at least two rows of tubes and bent to a predetermined angle comprising the steps of: providing a first plurality of generally straight first tubes; providing a second plurality of generally straight second tubes; providing a plurality of generally planar fins each having a first row of spaced first apertures adatped to receive and embrace a first row of tubes and a second row of spaced second apertures spaced from said first row of apertures adapted to receive and embrace a second row of tubes; arranging said fins in generally parallel superposed relation and positioning said first tubes within said first apertures and said second tubes within said second apertures thereby forming a fin-and-tube heat exchange coil having spaced first and second rows of tubes respectively whereby the tubes of said first row lie in a first plane and the tubes of said second row lie in a second plane parallel to and spaced a predetermined distance from said first plane; and bending a portion of said heat exchange coil to said predetermined angle about a central axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Description

May 13, 1969 D. R. CLAUSING 3,443,295
METHOD FOR CONSTRUCTING A FIN-AND-TUBE HEAT nxcnmema mw we A BEND FORMED THEREIN Filed May 29, 1967 Sheet 01"6 "I I 5 .11- v INVENTOR.
" J DALE R.CLAUSING BY W 7/2 ATTORNEY May 13, 1969 D. R. CLAUSING 3,443,295
METHOD FOR CONSTRUCTING A FIN-AND-TUBE HEAT EXCHANGER HAVING A BEND FORMED THEREIN Filed May 29. 1967 Sheet 2 of 6 FIG. 3
INVENTOR. DALE R. CLAUSING ATTORNEY May 13, 1969 n. R. CLAUSING 3,443,296
' METHOD FOR CONSTRUC'I'ING A FIN-AND-TUBE HEAT EXCHANGER aavme A BEND FORMED THEREIN Filed May 29. 1967 Sheet 3 of e FIG. 5
D 4| 2e -3| k3! 28 25 3 a 25 N\/ q C I 8 l E E 39 INVENTOR.
DALE R. CLAUSING ATTORNEY o. R. CLA USING METHOD FOR CONSTRUCTING A FIN-AND- EXCHAMIER HAVING A BEND FORMED TUBE HEAT THEREIN Sheet 4 May 13, 1969 Filed May 29, 1967 FIG. 7
INVENTOR. DALE R. CLAUSING ATTORNEY Sheet y 1969 o. R. CLAUSING METHOD FOR CONSTRUCTING A FIN-AND-TUBE HEAT EXCHANGER HAVING A BEND FORMED 'I'IUfiREIM Filed May 29, 1967 FIG.
INVENTOR. DALE R. CLAUSING W 4;
ATTORNEY FIG. 9
y 5 D. R. CLAUSING 3,443,296
METHOD FOR CONSTRUCTING A FINAND-TUBE HEAT 1 EXCHANGER rmvme A BEND FORMED THEREIN Filed May 29, 1967 Sheet 6 of 6 FIG. IO
INVENTOR DALE R. CLAUSING ATTORNEY United States Patent US. Cl. 29-1573 Claims ABSTRACT OF THE DISCLOSURE A method and apparatus for constructing a fin-and-tube heat exchanger having a bend formed therein by bending the heat exchanger with apparatus which does not support or contact the heat exchanger fins at the ,situs of the bend, and a method for constructing a multirow fin-and-tube heat exchanger having a bend formed therein to facilitate the bending operation by initially expanding the tubes of only one row to fix the spacial relation of the fins during the bending step and allowing the tubes of the other rows to move freely relative to the fins during the bending operation, to thereby eliminate adverse distortion of the fins especially in the bend area.
Background of the invention This invention relates to the art of fin-and-tube heat exchangers and particularly to those heat exchangers comprising a stack of generally planar parallel fins having a plurality of tubes extending normally therethrough. Such tubes may be disposed in a coplanar arrangement as in a one-row heat exchanger coil. Or, they may be arranged in two or more planes as in a two or more row coil. Often a two-row coil is preferred over a one-row coil for the reason that it requires less face area forthe equivalent heat transfer surface.
In modern air conditioning applications it maybe desirable to ben a fin-and-tube heat exchanger coil so that the coil lies generally along two or more intersecting planes, For example, it may be desirable to arrange a refrigerant condenser coil so that it forms two or more sides of a rectangular condensing unit. Conventionally one-row coils of this type have been bent with tangent type coil bending machines. A tangent type bender fixedly clamps one leg or end of the coil while a bending platen journalled at a fixed center is pivoted to wrap the other leg of the coil over a curved forming die located at the bight of the bend. A bend of final curvature progresses from one end toward the other end of the area to be bent.
I have found that in heat exchanger coils having relatively thin fins or thick tubes and especially in those coils having multiple rows, excessive pressures are imposed upon the fins by conventional tangent bending methods which adversely deform the fins. Such pressures may originate from the relative sliding movement between the pivoted platen and the coil fins and from the localized pressures exerted by the fin forming die on the fins as the coil is form wrapped over the die. In a two or more row coil, these pressures are increased because the neutral axis of the bend cannot coincide with both rows of tubes simutaneously and the tubes of one row tend to slide relative to the fins. This relative tube-to-fin motion produces forces which increase the above mentioned bending pressures.
Summary of the invention It is thus an object of my invention to provide a method to mitigate these pressures which tend to adversely deform the fins of a fin-and-tube heat exchanger coil when being provided with a discrete bend.
Patented May 13, 1969 It is also an object to provide a method for constructing a multiple row fin-and-tube heat exchange coil with a discrete bend.
It is an objective of this invention to provide a novel method of bending a multiple row fin-and-tube heat exchange coil wherein the fin spacing is maintained during the bending steps by mechanically fixing the tubes of one row to the fins prior to bending and allowing the tubes of the other rows to slide freely with respect to the fins.
This invention includes a method of constructing a fin-and-tube heat exchange coil having a depth of at least two rows of tubes and bent to a predetermined angle com prising the steps of: providing a first plurality of generally straight first tubes; providing a second plurality of generally straight second tubes; providing a plurality of generally planar fins each having a first row of spaced first apertures adapted to receive and embrace a first row of tubes and a second row of spaced second apertures spaced from said first row adapted to receive and embrace a second row of tubes; arranging said fins in generally parallel superposed relation and positioning said first tubes within said first apertures and said second tubes within said second apertures thereby forming a fin-andtube heat exchange coil having spaced first and second rows of tubes respectively whereby the tubes of said first row lie within a first plane and the tubes of said second row lie within a second plane parallel to and spaced a predetermined distance from said first plane; fixedly securing said first tubes to said fins for maintaining a uniform spacing of said fins during a subsequent coil bending step; maintaining said second tubes free to move longitudinally within said second apertures; and subsequently bending a portion of said heat exchange coil to said predetermined angle about an axis extending transverse to said first and second tubes and generally parallel to said first and second planes and located more than said predetermined distance from at least one of said planes.
Brief description of the drawings A more complete disclosure of the invention will be revealed as this specification proceeds to describe the invention in detail with reference to the accompanying drawings wherein like elements have been identified by like numerals throughout and in which:
FIGURE 1 illustrates the step of arranging the fins on the tubes to form a two-row heat exchange coil;
FIGURE 2 is an enlarged sectional view of a fragment of the coil of FIGURE 1 and illustrates the subsequent step of expanding the tubes of only one row prior to the step of bending the coil;
FIGURE 3 is a section taken at line 33 of FIGURE 4 through a fin-and-tube heat exchanger coil bending machine incorporating aspects of the instant invention and showing the heat exchanger coil of FIGURE 2 mounted therein ready for bending;
FIGURE 4 is a side elevation of the coil bending machine shown in FIGURE 3;
FIGURE 5 is a view similar to FIGURE 3 after the coil bending machine thereof has been moved through the bending steps;
FIGURE 6 is a diagrammatic showing of the relative movement of the two platens of the coil bending machine shown in FIGURES 3-5 as the machine performs the step of bending the heat exchange coil of FIGURE 2 and particularly showing the locus of instant centers of relative motion between the platens of the machine;
FIGURE 7 is a view similar to FIGURE 3 showing a modified form of the coil bending machine of FIGURE 3;
FIGURE 8 is a view similar to FIGURE 5 showing the modified coil bending machine after the bending step;
FIGURE 9 is a view similar to FIGURE 6 illustrating the relative platen movement for the modified coil bending machine of FIGURES 7 and 8;
FIGURE 10 illustrates the step of expanding the tubes of all rows of the coil subsequent to the coil bending step.
Description of the preferred embodiments Now with reference to the embodiment of the invention disclosed in FIGURES 1-6 and 10 there is shown a fin-and-tube heat exchange coil 10 having a first row 11 of coplanar parallel laterally spaced tubes 12; a second row 13 of coplanar parallel laterally spaced tubes 14; and a plurality of generally planar rectangular relatively thin heat conductive fins 15 each having a first row 16 and a second row 17 of apertures 18 therein to receive respectively the tubes 12 and 14 of first and second tube rows 11 and 13. The fins 15 are stacked on the tubes in parallel generally spaced relationship. This stacking step is illustrated in FIGURE 1. It will be appreciated that in the alternative the tubes 12 and 14 may be inserted into the apertures 18 of the stacked fins 15. For purposes of this invention as defined and claimed, the one manner of arranging the tubes with respect to the fins is considered the full equivalent of the other. It will also be appreciated, as more fully illustrated in FIG- URE 2, that the collar 19 at each aperture 18 is preferably in contact with an adjacent fin whereby the fins become substantially equally spaced prior to bending of the coil. Subsequent to arranging the fins 15 with respect to the tubes 12 and 14, the tubes 12 of row 11 are expanded within the apertures 18 of row 16 to secure a mechanical bond between the fins 15 and the tubes 12 of the first row of tubes. This is accomplished by passing a bullet 20 (FIGURE 2) of larger size through the tubes 12 by any of several methods known to the art of heat exchange coil construction. The expander bullet diameter will be different for different size tubes and is best determined by experiment on the basis of best results. The tubes .14 of row 13 are not expanded at this time so as to permit tubes 13 to slide relative to fin 15 during a subsequent bending step as more fully described hereinafter. The heat exchanger coil assembly 10 is then clamped into the coil bending machine 21 of FIGURES 3-5 or the modified coil bending machine 21a of FIGURES 7, 8 and 9.
Now referring specifically to FIGURES 3, 4 and 5, it will be seen that coil bending machine 21 has two stationary guide plate members 22 fixed in parallel spaced relation. Interposed between guide members 22 are first elongated platen 23 and second elongated platen 24 each having a primary pressure bearing planar surface 25 for supporting a first face of the heat exchanger coil 10. Platens 23 and 24 are so arranged that surfaces 25 are initially coplanar and normal to guide members 22 as shown in FIGURES 3 and 4. Heat exchanger coil 10, following the aforementioned tube expanding step shown in FIGURE 2, is laid upon and clamped to surfaces 25 via a clamp means 26 on each platen. Each clamp means may include a pair of legs 27 extending upwardly from surface 25 at the margins thereof and a clamp plate 28 extending between the free ends of legs 27 for the purpose of applying pressure on the other or second face of coil 10 via bolts 29. Each platen further includes an angle member 30 which presents a secondary pressure bearing surface at the ends of the tubes 12. Members 30 may be integral with or merely attached to the platens as desired.
The platens 23 and 24 each have at their adjacent ends a pair of laterally projecting pins 31 which are slidably received in vertically extending guide slots 32 in guide members 22. The platens 23 and 24 each further have at their remote ends a pair of laterally projecting pins 33 which are slidably received in horizontally extending guide slots 34 in guide members 22. Thus platens 23 and 24 may be rotatably guided by pins 31 and 33 and slots 32 and 34 from the position shown in FIGURE 3 to the position shown in FIGURE 5. To bring about this movement there may be provided a hydraulic power cylinder 35 anchored to guide members 22 by pin 36. The piston rod 37 of the hydraulic cylinder 35 may be pivotally connected to links 38 as by bolt 39 which are in turn connected to adjacent ends of platens 23 and 24 at ears 40 as by pins 41. It will thus be appreciated that extension of the power cylinder piston rod 37 causes the platens to move from the position shown in FIGURE 3 to their position shown in FIGURE 5, thereby bending the heat exchanger coil 10 as shown in FIGURE 5. It should be noted that it is not necessary that the platens 23 and 24 contact the fins at any point along the bend of the coil 10 and that there is no substantial movement of the platens relative to the coil fins clamped therein.
The heat exchange coil bending machine 21 shown is constructed to provide coil 10 with up to a bend having a neutral axis plane N coinciding with the longitudinal axes of tubes 12. Thus, as the coil is bent, those portions of coil 10 above plane N are expected to undergo expansion while those portions of the coil 10 below plane N are expected to undergo compression. The substantially no expansion or compression of the coil takes place at the intersection with plane N. Thus there is little distortion of collars 19 at tubes 12 during the bending step as these collars lie on the neutral axis N.
The location of pins 31 and 33 and slots 32 and 34 may be determined as follows.
(1) Locate a horizontal axis H parallel to and X distance below neutral axis N (FIGURE 3) and locate central vertical axis V normal to axis H. The value of X may be selected as desired.
(2) Locate point B for pin 31 (FIGURE 3) at the inner end of platen 23 on horizontal axis H a distance 1rR(18O-A)/360 to the left of vertical axis V where R is the desired coil bend radius to the neutral axis N and A is the desired coil bend included angle in degrees (see FIGURE 5) and 11' equals 3.1416. For purposes of this example A is selected as 90.
(3) Select a point C (FIGURE 3) on horizontal axis H to the left of point B.
(4) Project from point C a line L upward and toward vertical axis V at an angle to horizontal axis H equal to 90 /2A.
(5) Locate point D on line L to the left of vertical axis V a distance equal to (R-X) cosine /zA.
(6) Locate point B to the left of vertical axis V on horizontal axis H so that the distance between points D and C equals the distance between points B and E.
(7) Locate points B, C, D and E on the right side of vertical axis V in similar manner as points B, C, D and E. Points B, B, C, C, D, D, E and E are points in fixed relation to guide members 22.
Pins 31 and 33 are located on platen 23 at points B and E respectively when the platen is in the position shown in FIGURE 3. Pins 31 and 33 are located on platen 24 at points B and E respectively when the platen is in the position shown in FIGURE 3.
The straight vertical diverging slots or grooves 32 are formed in each of guide members 22 connecting between B and D, and B and D for guiding pins 31. Thus, during the coil bending step, pins 31 on platen 23 move from points B to points D and pins 31 on platen 24 move from points B to points D.
The straight horizontal slots or grooves 34 are formed in each of guide members 22 connecting between C and E, and C and E for guiding pins 33. Thus, during the coil bending step, pins 33 on platen 23 move from points E to points C and pins 33 on platen 24 move from points E to points C.
After the platens have been rotated from the position shown in FIGURE 3 to the position shown in FIGURE 5, the clamp plates 28 are removed and the bent coil 10 can be removed from machine 21. The hydraulic power cylinder 35 may then be contracted to return the platens to their position of FIGURE 3 for receiving another coil 10. The machine 21 may be designed for a slight over bend to compensate for the slight spring back that is often encountered in bending.
FIGURE 6 illustrates the movement of platen 24 relative to platen 23 during the bending step. Platen 24 rotates 180-A relative to platen 23 about an instant center moving relative to platen 23 along a locus or path P. Path P is substantially an arc of 90 /2A having a radius substantially equal to and a center at 8. During the rotation of the platens, the radius R of the coil bend from the central axis of curvature T to the neutral axis N is gradually reduced and the bend is effected simultaneously over the entire bend area as shown in FIGURE 6.
After the bent coil 10 has been removed from the coil bending machine 21 the tubes 14 of the outside row 13 are expanded such as by passing an expander bullet 42 therethrough as illustrated in FIGURE 10 to secure an efficient heat conductive mechanical connection, especially in the bend area, between the tubes 14 and fins 15. The tubes 12 of row 11 are further expanded at this time with an expander bullet 43 also to secure an efficient heat conductive mechanical connection, especially in the bend area between the tubes 12 and fins 15. Bullet 43 is several thousandths of an inch larger in diameter than first expander bullet 20. The ends of tubes 12 and 14 may then be appropriately connected to provide the desired heat exchanger coil circuits.
Referring again to machine 21, it will be appreciated that the platen guide pins 31 and 33 may be transposed with guide slots 32 and 34. However, in such case, the slots formed on the platen members would be curvilinear and thus more difficult to construct than the straight grooves 32 and 34 of FIGURES 3-5.
The heat exchanger coil bending machine of FIGURES 3-5 may be simplified by substituting for the plural links 38 thereof a single link 38:: for connecting the inner ends of the platens by pins 31a of the coil bending machine 21a shown in FIGURES 7, 8 and 9. Platens 23a and 244: may be recessed at 44 to accommodate link 38a. The pins 31a are located on platens 23a and 24a (FIGURE 7) at points G and G respectively for vertical movement in slots or grooves 32a on each of guide members 22a which slots extend in parallel relation to vertical axis V from points G to points F and from points G to points F. Points F, F, G and G may be located in the following manner:
(1) Construct a line M (FIGURE 7) passing through point D downwardly toward vertical axis V at an angle thereto equal to 9O %A. Construct a vertical line 0 passing through point B.
(2) Locate point F at the intersection of lines M and 0.
(3) Locate point G above horizontal axis H on line 0 so that the distance between points E and G is equal to the distance between points C and F. Groove or slot 32a extends along a straight line connecting F and G.
(4) Locate from points B, C and E points G and F and a second groove 32a: on the other side of vertical axis V between points G and F in a similar manner.
Link 38a is connected to a piston rod 37a of hydraulic cylinder 35a anchored by pin 36a to guide members 22a for driving movement of the platens 23a and 24a.
Except for the structural differences just described and their associated functions, the operation of the coil bending machine 21a is substantially the same as coil bending machine 21. During the heat exchange coil bending step the machine elements of the modified form of the invention move from a position shown in FIGURE 7 to a position shown in FIGURE 8. During the bending step platen 24a rotates 180--A relative to platen 23a about an instant center moving relative to platen 23a along a locus or path Q. Path Q is substantially an arc of 90--- /2A having a radius equal to 1rR(180A )/360 and a center S coinciding with pin 31a of platen 23a as shown in FIGURE 9. During the rotation of the platens, the radius R of the coil bend from the central axis of curvature T to the neutral axis N is gradually reduced and the bend is effected simultaneously over the entire bend area as shown in FIGURE 9. Path Q coincides with path P described in connection with the coil bending machine of FIGURES 3-6.
After a coil is bent in bending machine 21a, it is removed and the tubes of the coil are expanded in the same manner as described in connection with coil bending machine 21 following completion of the bend. As with coil bending machine 21, the platen guide pins 31a and 33 may be transposed with guide slots 32a and 34. Again, however, in such case, the slots formed on the platen members would be curvilinear and thus more difiicult to construct than the straight grooves 32a and 34 of FIG- URES 7 and 8.
Having now described in detail preferred exemplary embodiments of my invention, I contemplate that many changesmay be made without departing from the scope or spirit thereof and I desire to be limited only by the following claims.
I claim:
1. A method of constructing a fin-and-tube heat exchange coil having a depth of at least two rows of tubes and bent to a predetermined angle comprising the steps of: providing a first plurality of generally straight first tubes; providing a second plurality of generally straight second tubes; providing a plurality of generally planar fins each having a first row of spaced first apertures adapted to receive and embrace a first row of tubes and a second row of spaced second apertures spaced from said first row adapted to receive and embrace a second row of tubes; arranging said fins in generally parallel superposed relation and positioning said first tubes within said first apertures and said second tubes within said second apertures thereby forming a fin-and-tube heat exchange coil having spaced first and second rows of tubes respectively whereby the tubes of said first row lie in a first plane and the tubes of said second row lie in a second plane parallel to and spaced a predetermined distance from said first plane; fixedly securing said first tubes to said fins for maintaining a uniform spacing of said fins during a subsequent coil bending step; maintaining said second tubes free to move longitudinally within said second apertures; and subsequentlybending a portion of said heat exchange coil to said predetermined angle about a central axis of curvature extending transverse to said first and second tubes and generally parallel to said first and second planes and located more than said predetermined distance from at least one of said planes.
2. The method as defined by claim 1 wherein said step of fixedly securing said first tubes to said fins is by expanding said first tubes within said first apertures.
3. The method as defined by claim 2 including the step of expanding said second tubes within said second apertures subsequent to said bending step.
4. The method as defined by claim 3 including the step of reexpanding said first tubes within said first apertures subsequent to said bending step.
5. The method as defined by claim 4 wherein said first tubes during said reexpanding step are expanded to a larger internal size than during the initial step of expanding said first tubes.
6. The method as defined by claim 2 including the steps of reexpanding said first tubes within said first apertures subsequent to said bending step.
7. The method as defined by claim 1 wherein said central axis of curvature is located closer to said first row of tubes than said second row of tubes.
8. A method of constructing a fin-and-tube heat exchange coil having a depth of at least two rows of tubes and bent to a predetermined angle comprising the steps of providing a first plurality of generally straight first tubes; providing a second plurality of generally straight second tubes; providing a plurality of generally planar fins each having a first row of spaced first apertures adapted to receive and embrace a first row of tubes and a second row of spaced second apertures spaced from said first row of apertures adapted to receive and embrace a second row of tubes; arranging said fins in generally parallel superposed relation and positioning said first tubes within said first apertures and said second tubes within said second apertures thereby forming a fin-and-tube heat exchange coil having spaced first and second rows of tubes respectively whereby the tubes of said first row lie in a first plane and the tubes of said second row lie in a second plane parallel to and spaced a predetermined distance from said first plane; expanding said first tubes within said first apertures to maintain a uniform spacing of said fins during a subsequent coil bending step; mounting said heat exchange coil on a coil bending machine; maintaining said second tubes free to move longitudinally within said second apertures; bending a portion of said heat exchange coil to said predetermined angle about a central axis of curvature extending transverse to said tubes and generally parallel to said first and second planes and located more than said predetermined distance from at least one of said planes; during said bending step, maintaining the neutral axis of the bend thus formed generally coincident with said first row of tubes and sliding said second tubes longitudinally relative to said fins; removing the bent heat exchange coil from the bending machine; subsequent to said bending step, expanding said second tubes within said second apertures and expanding said first tubes for a second time within said first apertures to a larger size than when expanded the first time.
9. A method of constructing a fin-and-tube heat exchange coil having a depth of at least two rows of tubes and bent to a predetermined angle comprising the steps of: providing a first plurality of generally straight first tubes; providing a second plurality of generally straight second tubes; providing a plurality of generally planar fins each having a first row of spaced first apertures adatped to receive and embrace a first row of tubes and a second row of spaced second apertures spaced from said first row of apertures adapted to receive and embrace a second row of tubes; arranging said fins in generally parallel superposed relation and positioning said first tubes within said first apertures and said second tubes within said second apertures thereby forming a fin-and-tube heat exchange coil having spaced first and second rows of tubes respectively whereby the tubes of said first row lie in a first plane and the tubes of said second row lie in a second plane parallel to and spaced a predetermined distance from said first plane; and bending a portion of said heat exchange coil to said predetermined angle about a central axis of curvature extending transverse to said first and second tubes and generally parallel to said first and second planes and located more than said predetermined distance from at least one of said planes.
10. The method as defined by claim 9 including the further step of passing an expander bullet through the bent portions of at least some of said first and second tubes subsequent to said bending step.
References Cited UNITED STATES PATENTS 2,023,738 12/1935 Mason et a1 29202 2,298,895 10/1942 McKibben ct al. 29-l57.3 2,876,823 3/1959 Knox et al. 72-306 3,200,631 8/1965 Kritzer 72306 3,208,261 9/ 1965 Pasternak 72369 3,253,326 5/1966 Henry et al. 29-1573 JOHN F. CAMPBELL, Primary Examiner.
0 D. C. REILEY, Assistant Examiner.
US. Cl. X.R.
US641941A 1967-05-29 1967-05-29 Method for constructing a fin-and-tube heat exchanger having a bend formed therein Expired - Lifetime US3443296A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US64194167A 1967-05-29 1967-05-29

Publications (1)

Publication Number Publication Date
US3443296A true US3443296A (en) 1969-05-13

Family

ID=24574494

Family Applications (1)

Application Number Title Priority Date Filing Date
US641941A Expired - Lifetime US3443296A (en) 1967-05-29 1967-05-29 Method for constructing a fin-and-tube heat exchanger having a bend formed therein

Country Status (1)

Country Link
US (1) US3443296A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2830690A1 (en) * 1977-07-14 1979-02-01 United Aircraft Prod METHOD AND DEVICE FOR PRODUCING MECHANICAL PIPE CONNECTIONS
US4443921A (en) * 1980-09-01 1984-04-24 Societe Anonyme Des Usines Chausson Method for the manufacture of heat exchangers with curved elements
US4727737A (en) * 1986-12-31 1988-03-01 Heil-Quaker Home Systems, Inc. Method and apparatus for bending a heat exchanger coil
US4831856A (en) * 1987-07-13 1989-05-23 Tru-Cut Die Corp. Heat exchanger coil bending apparatus and method
US4893391A (en) * 1987-06-27 1990-01-16 Kuhlerfabrik Langerer & Reich Gmbh & Co. Kg Method and apparatus for producing round-rolled parts for heat exchangers
CN1058427C (en) * 1993-06-02 2000-11-15 株式会社日立制作所 Apparatus for and method of bending and heat exchanger
JP2016155134A (en) * 2015-02-23 2016-09-01 三菱電機株式会社 Flexure device of heat exchanger
US10584921B2 (en) * 2014-03-28 2020-03-10 Modine Manufacturing Company Heat exchanger and method of making the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2023738A (en) * 1931-01-30 1935-12-10 Bush Mfg Company Means for assembling and securing radiating fins on tubes
US2298895A (en) * 1942-02-28 1942-10-13 Gen Electric Method of making heat exchange units
US2876823A (en) * 1953-06-10 1959-03-10 Bundy Tubing Co Bending pad structure and associated apparatus for bending tube
US3200631A (en) * 1962-08-06 1965-08-17 Peerless Of America Apparatus for effecting reverse bends in dual heat exchange tubing
US3208261A (en) * 1961-12-11 1965-09-28 Peerless Of America Method of forming reverse bends in extruded integral dual-passage heat exchange tubing
US3253326A (en) * 1962-10-11 1966-05-31 Combustion Eng Method of bending concentrically arranged tubes simultaneously

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2023738A (en) * 1931-01-30 1935-12-10 Bush Mfg Company Means for assembling and securing radiating fins on tubes
US2298895A (en) * 1942-02-28 1942-10-13 Gen Electric Method of making heat exchange units
US2876823A (en) * 1953-06-10 1959-03-10 Bundy Tubing Co Bending pad structure and associated apparatus for bending tube
US3208261A (en) * 1961-12-11 1965-09-28 Peerless Of America Method of forming reverse bends in extruded integral dual-passage heat exchange tubing
US3200631A (en) * 1962-08-06 1965-08-17 Peerless Of America Apparatus for effecting reverse bends in dual heat exchange tubing
US3253326A (en) * 1962-10-11 1966-05-31 Combustion Eng Method of bending concentrically arranged tubes simultaneously

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2830690A1 (en) * 1977-07-14 1979-02-01 United Aircraft Prod METHOD AND DEVICE FOR PRODUCING MECHANICAL PIPE CONNECTIONS
US4443921A (en) * 1980-09-01 1984-04-24 Societe Anonyme Des Usines Chausson Method for the manufacture of heat exchangers with curved elements
US4727737A (en) * 1986-12-31 1988-03-01 Heil-Quaker Home Systems, Inc. Method and apparatus for bending a heat exchanger coil
US4893391A (en) * 1987-06-27 1990-01-16 Kuhlerfabrik Langerer & Reich Gmbh & Co. Kg Method and apparatus for producing round-rolled parts for heat exchangers
US4831856A (en) * 1987-07-13 1989-05-23 Tru-Cut Die Corp. Heat exchanger coil bending apparatus and method
CN1058427C (en) * 1993-06-02 2000-11-15 株式会社日立制作所 Apparatus for and method of bending and heat exchanger
US10584921B2 (en) * 2014-03-28 2020-03-10 Modine Manufacturing Company Heat exchanger and method of making the same
JP2016155134A (en) * 2015-02-23 2016-09-01 三菱電機株式会社 Flexure device of heat exchanger

Similar Documents

Publication Publication Date Title
US8033018B2 (en) Method for manufacturing tube and fin heat exchanger with reduced tube diameter
US4584765A (en) Apparatus for assembling tubes in a heat exchanger
US3443296A (en) Method for constructing a fin-and-tube heat exchanger having a bend formed therein
US9182179B2 (en) Holder for pipe in heat exchanger, method and device for manufacturing heat exchanger using said holder, and air conditioner and/or outdoor unit having said heat exchanger
US4780955A (en) Apparatus for making a tube and fin heat exchanger
US3597956A (en) Apparatus for constructing a fin-and-tube heat exchanger having a bend formed therein
US3468009A (en) Method for constructing a fin-and-tube heat exchanger having a bend formed therein
US7340935B2 (en) Equipment for producing corrugate fin
JPH0253132B2 (en)
US4727737A (en) Method and apparatus for bending a heat exchanger coil
US1319837A (en) Method for reducing rods and tubes.
US3499309A (en) Rotatable punch for tube bender
US5127155A (en) Method of tension expanding tube to plate and apparatus therefor
US4876779A (en) Apparatus and method for manufacturing plate fin coils of different configurations
US3345726A (en) Method and apparatus for making finned tubing
US1437953A (en) Plate-bending press
US2181107A (en) Method of making cross-fin coils
US3869917A (en) Conduit bender
US4619025A (en) Method of making coils
US3736787A (en) Method and apparatus for forming convoluted metal annulus
NO132027B (en)
US3535907A (en) Press and methods for forming magnetic cores
KR101328325B1 (en) Bucking prevented apparatus and bucking prevented system for hot rolled coiling strip using the same
JP6333195B2 (en) Heat exchanger bending equipment
US4633942A (en) Slit fin coil and the method of making coils

Legal Events

Date Code Title Description
AS Assignment

Owner name: TRANE COMPANY, THE

Free format text: MERGER;ASSIGNOR:A-S CAPITAL INC. A CORP OF DE;REEL/FRAME:004334/0523

AS Assignment

Owner name: AMERICAN STANDARD INC., A CORP OF DE

Free format text: MERGER;ASSIGNORS:TRANE COMPANY, THE;A-S SALEM INC., A CORP. OF DE (MERGED INTO);REEL/FRAME:004372/0349

Effective date: 19841226

Owner name: TRANE COMPANY THE

Free format text: MERGER;ASSIGNORS:TRANE COMPANY THE, A CORP OF WI (INTO);A-S CAPITAL INC., A CORP OF DE (CHANGED TO);REEL/FRAME:004372/0370

Effective date: 19840224

AS Assignment

Owner name: A-S CAPITAL INC., A CORP OF DE

Free format text: MERGER;ASSIGNOR:TRANE COMPANY THE A WI CORP;REEL/FRAME:004432/0765

Effective date: 19840224