US3437789A - Thermally stabilized electronic assembly - Google Patents

Thermally stabilized electronic assembly Download PDF

Info

Publication number
US3437789A
US3437789A US582662A US58266266A US3437789A US 3437789 A US3437789 A US 3437789A US 582662 A US582662 A US 582662A US 58266266 A US58266266 A US 58266266A US 3437789 A US3437789 A US 3437789A
Authority
US
United States
Prior art keywords
thermal
face
base
thermal resistance
electronic assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US582662A
Inventor
Roger Charbonnier
Jean Royer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR34127A external-priority patent/FR93054E/en
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3437789A publication Critical patent/US3437789A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1906Control of temperature characterised by the use of electric means using an analogue comparing device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/041Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction having no base used as a mounting for the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/4823Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a pin of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]

Definitions

  • thermosensitive element for thermal regulation, of a new thermosensitive element, the temperature coeificient of which is positive and very high.
  • a thermosensitive element of this type is known under the trade name of Resistance C.T.P. E.220ZZ/03. It is manufactured in Belgium by Manufacture Belge de Lampes Electriques.
  • thermosensitive elements of this type are characterized by a known, relative-linear variation of resistance with temperature.
  • the variation of resistance is very abrupt around a critical reference temperature which can be made to depend on the chemical composition of the thermosensitive element.
  • a critical reference temperature within the range of 30 C. and 120 C. is quite normal. In the illustrated applications subsequently described, the critical reference temperature is approximatively 80 C.
  • the rate of variation of resistance can also be changed by controlling the composition of the materials used. The rate can vary between and 90% per degree Centigrade.
  • the thermosensitive elements are made of various compositions according to the value of the desired critical reference temperature and the extent of the range of regulation.
  • the thermosensitive element is a ceramic made from a ferroelectric material doped with a small quantity of one or two metal modifiers of convenient valence subsequently fritted at a carefully chosen temperature.
  • ferroelectric materials those selected are the Perovskites such as BaTiO mixed titanates of barium and strontium (Ba, Sr) TiO mixed titanates of barium and lead (Ba, Pb) TiO mixed tantalates of sodium and potassium (Na, K) TaO or niobiate of potassium KNbO
  • the conditions of fritting of the Perovskites are preferably so deter-mined that the amount of oxygen in the ceramic obtained should be stoichiometric.
  • metal modifiers whichcan be associated according to their valence with the above Perovs'kites, it is desirable to use antimony, tungsten, niobium, zirconium, yttrium, cerium, and lanthanum. This list is obviously not limitative and all compositions which present a rapid growth of electric resistance in a range of one side and the other of a critical reference temperature can be used for the realization of an electronic component with individual thermal regulation in accordance with the object of the present invention.
  • thermosensitive element When to such a thermosensitive element is applied a substantially constant voltage, it can present in the neighborhood of its critical temperature a rapid diminution in the consumed power. To a first approximation, this phenomenon can be compared to a thermal discontinuity. Hence, this sudden diminution in the consumed power makes it possible to use the thermosensitive element as a temperature sensor, a reference comparator, an amplifier, and an active component.
  • an electronic assembly of the type comprising at least one circuit element mounted on a support of heat-sensitive material which produces a rapid increase in electrical resistance over a so-called regulation range which is located on each side of a critical reference temperature, said support and said element being interconnected by means of electric current conductors comprising connector-pins mounted in a base, characterized in that said heat-sensitive support, preferably presented in the form of a pastille, both faces of which are metallized and connected to two of said conductors, has one of said faces or so-called hot face being adapted to carry said circuit element and connected to the surrounding atmosphere through a high-value parasitic thermal resistance whilst the other face or so-called cold face is connected to the surrounding atmosphere through a thermal resistance having a value which is small with respect to the preceding resistance.
  • This type of electronic assembly will be referred to hereinafter as an electronic assembly of the type defined.
  • some temperature differences may appear, in this embodiment, between the terminals of the electronic circuit elements to be regulated, which is a major drawback, especially in the case of semiconductor circuits elements to be regulated, which is a major drawback, especially in the case of semiconductor circuits.
  • Another cause of disturbance in the circuits will consist in the variable potential differences which may appear at some points of the conductors where two different metals generally are welded.
  • Yet a further object of this invention is to provide an electronic assembly of the type defined, wherein the cold face of said heat-sensitive support is fixed to an electrically insulating and heat-conducting plate which is mounted at the ends of said connector-pins, substantially parallel to said base, said connector-pins thus forming support columns for said plate.
  • FIG. 1 is a sectional diagrammatic view of an electronic assembly of the type specified, as disclosed in the previously discussed copending application;
  • FIG. 2 is a circuit diagram which includes the thermal resistances in the electronic assembly illustrated in FIG. 1;
  • FIG. 3 is a sectional diagram of the new arrangement in accordance with the present invention.
  • FIG. 4 is a circuit diagram which includes the thermal resistances in the electronic assembly illustrtaed in FIG. 3 and FIG. 5 illustrates in perspective an exemplified embodiment of a temperature-regulated electronic assembly built in accordance with the present invention.
  • FIGS. 1 and 2 Before starting the description of the electronic assembly in accordance with this invention, reference will be had to FIGS. 1 and 2, with a view to illustrate the operation of the embodiment of the electronic assembly of the type specified which is disclosed in the previously discussed copending application.
  • a circuit element E for instance a transistor, is in thermal Contact with the top face of a heat-sensitive pastille T, the underface of which is secured to an insulating plate P which is in turn fixed to the base S of the component.
  • the connector-pin C is mounted across the base S and connected at point B to the connecting wire F which joins the terminal A of the circuit element E.
  • FIG. 2 illustrates the connections between the thermal resistances which exist in the device of FIG. 1, the base S constituting the ground potential. Between the point A and ground are disposed the thermal resistance R of the plate P and the thermal resistance R of the heat-sensitive pastille T and of the circuit element E.
  • the thermal flux I which is produced by the heat-sensitive pastille T when the said pastille is energized from the supply voltage from external circuits is developed in a hot region in the interior of said pastille T.
  • the hot region to which the thermal fiux I is thus applied is separated from the point A by a first thermal resistance R and from its underface by a second thermal resistance R with R R
  • a thermal resistance R which is constituted by the complete assembly of connecting wires F.
  • a thermal resistance R which is constituted by the different connector-pins C.
  • the thermal resistances R and R will generally have the same order of magnitude (approximately 40 C./w.) whereas the sum of the thermal resistances R and R will be of the order of 1,000 C./w. It can therefore be considered as a. first approximation that the thermal potential V at the point A is equal to I(R -l-R Moreover, since R is small compared with R the thermal flux within all of the Conductors F is V /R Said thermal flux is high and produces a thermal gradient within the mass of the circuit element E to be temperature-regulated which is not negligible.
  • the different extremities B of the connector-pins C are accordingly heated to different temperatures. Since the points B usually consist of welded junctions formed of two different metals (gold wires in the case of the conductors F and Kovar in the case of the connector-pins C, for example) thermocouples are created and develop potential diferences which vary from one point B to the other. This is a further cause of disturbance in the circuits which it is desired to regulate.
  • FIG. 3 shows diagrammatically the arrangement in accordance with the invention
  • the heat-sensitive pastille T is fixed to an electrically-insulating and heat-conducting plate D which is supported on small columns constituted b the connector-pins C of 4 the component. All of the remaining elements shown are identical with the corresponding elements of FIG. 1.
  • FIG. 4 represents the electrical analogy of the thermal resistances employed in FIG. 3 and shows that, in this new form of construction, the thermal resistance R is connected between the points A and B whilst the thermal leak resistance which is connected to the cold face of the heat-sensitive pastille T is represented by R'
  • R thermal leak resistance which is connected to the cold face of the heat-sensitive pastille T
  • the reference 50 designates a metal base mounted on an annular flange 52 over which the component cover (not shown) is intended to be fitted.
  • the base 50 is provided for example with eight insulating lead-in bushings such as the bushing 53 whereby eight connector-pins 54 68 are mounted in the base 50.
  • a ceramic plate 70 is attached to the extremities of the connector-pins 54 68 which constitute small columns for supporting said plate 70.
  • a heat-sensitive pastille 72 formed of a material which exhibits a rapid increase in electrical resistance over a regulation range which is located on each side of a critical reference temperature.
  • the underface of the pastille 72 is metallized and welded to a disc 74 which possesses good heat conductivity and good electrical insulation properties.
  • the underface of said pastille 72 is connected by means of a conductor 76 to the metal sector 55 which is welded to the extremity of the connector-pin 54.
  • the underface of the disc 74 is metallized and carries a pair of transistors such as the transistor 78.
  • the three terminals of the transistor 78 are respectively connected by means of the conductors 80, 82 and 84 to the connectorpins 56, 58 and 60 which are respectively welded to the metal sectors 57, 59 and 61 of the top faces of the plate 70.
  • the practical advantage of a component as shown in FIG. 5 will be immediately evident when consideration is given to the diagram of thermal resistances of said component as shown in FIG. 4.
  • the component is of special interest in the case of low-power transistors which are employed, for example, for the purpose of forming the first stage of an amplifier
  • the power which is really dissipated in the two transistors of a differential input amplifier is mw. at a maximum. If the minimum power which is dissipated within the heat-sensitive pastille 72 (or the pastille T in FIG. 3) is 90 mw., a minimum power of 100 mw. is accordingly dissipated within said pastille.
  • the material which constitutes the plate 70 of FIG. 3 has good heat conductivity and therefore that said plate can be considered as isothermal.
  • the different thermocouples which are constituted by the welded junctions of the connector-pins 56 64 and the connecting wires such as 80, 82 and 84 are at a same temperature and therefore give rise to a same potential difference.
  • the result thereby achieved is that the parasitic voltage sources which were created by the temperature differences observed in the first embodiment at the extremities of the connector-pins of the component are accordingly eliminated in the new embodiment which is contemplated in the present invention.
  • a further appreciable advantage of the present embodiment lies in the ease of construction of a component in accordance with FIG. 5.
  • the invention is not limited to the embodiment of FIG. 5.
  • a mode of attachment by flattening or swagging could readily be adopted in the place of welding.
  • An electronic assembly comprising: a base; at least one circuit component; a support of thermosensitive material presenting a rapid increase of electric resistance in a range of regulation situated on both sides of a critical reference temperature, said support having first and second faces, said first face being in thermal contact with said circuit component; a plurality of electric current conductors mounted on the periphery of said base, said conductors having rigid portions of substantially the same length on one side of said base, substantially at right angles to the surface thereof, a thermally conductive plate of electrically insulating material mounted at the ends of said rigid portions substantially parallel to said base, said plate being in thermal contact with said second face, and means connecting said circuit component and the first and second faces of said thermosensitive support to said electric current conductors, said first face being coupled to the ambient temperature through a first thermal resistance, said second face being coupled to the ambient temperature through a second thermal resistance, said first thermal resistance being substantially larger than said second thermal resistance.
  • thermosensitive support are metallized
  • said plate being a ceramic dis having first and second faces
  • the second face of said disc being metallized and welded to the second face of said thermosensitive support and the first face of said disc having a metallized portion and a nonmetallized portion
  • said plurality of rigid conductor portions including a first conductor portion in contact with the nonmetallized portion of said first face and with said second metallized face of said disc, a second conductor portion in contact with a first metallized portion of said first face and a plurality of further conductor portions respectively in contact with further metallized portion-s of said first face, the said means connecting said first metallized portion to the first metallized face of said thermosensitive support and said further metallized portions to said electric component.

Description

April 8,' 1969 I 3,437,789 7 THERMALLY STABILIZED ELECTRONIC ASSEMBLY I I Filed Sept. 28, 1966 R. CHARBONNIER ET AL Sheet April 8, 1969 QHARBONNIER ET AL THERMALLY- STABILIZED ELECTRONIC ASSEMBLY Filed Sept. 28, 1966 Sheet -Roger Charbonnier, 15 Rue Emile,
United States Patent 3,437,789 THERMALLY STABILIZED ELECTRONIC ASSEMBLY Meudon 92, France,
and Jean Royer, 22 bis Par de Montretout, Saint- Cloud 75, France Filed Sept. 28, 1966, Ser. No. 582,662 Claims priority, application France, Oct. 7, 1965, 34,127 Int. Cl. Hb 1/02, 11/00 U.S. Cl. 219209 2 Claims This invention relates to thermally-stabilized assemblies and, more particularly, to electronic circuit assemblies in which the respective components are thermally stabilized.
In the copending application Ser. No. 470,161, filed on July 7, 1965, now Patent No. 3,387,113, for Electronic Assembly, there is disclosed the use, for thermal regulation, of a new thermosensitive element, the temperature coeificient of which is positive and very high. A thermosensitive element of this type is known under the trade name of Resistance C.T.P. E.220ZZ/03. It is manufactured in Belgium by Manufacture Belge de Lampes Electriques.
The thermosensitive elements of this type are characterized by a known, relative-linear variation of resistance with temperature. However, the variation of resistance is very abrupt around a critical reference temperature which can be made to depend on the chemical composition of the thermosensitive element. A critical reference temperature within the range of 30 C. and 120 C. is quite normal. In the illustrated applications subsequently described, the critical reference temperature is approximatively 80 C. The rate of variation of resistance can also be changed by controlling the composition of the materials used. The rate can vary between and 90% per degree Centigrade. The thermosensitive elements are made of various compositions according to the value of the desired critical reference temperature and the extent of the range of regulation. In general, the thermosensitive element is a ceramic made from a ferroelectric material doped with a small quantity of one or two metal modifiers of convenient valence subsequently fritted at a carefully chosen temperature. Among the different families of useable ferroelectric materials, those selected are the Perovskites such as BaTiO mixed titanates of barium and strontium (Ba, Sr) TiO mixed titanates of barium and lead (Ba, Pb) TiO mixed tantalates of sodium and potassium (Na, K) TaO or niobiate of potassium KNbO It will be noted that the conditions of fritting of the Perovskites are preferably so deter-mined that the amount of oxygen in the ceramic obtained should be stoichiometric. Among the metal modifiers whichcan be associated according to their valence with the above Perovs'kites, it is desirable to use antimony, tungsten, niobium, zirconium, yttrium, cerium, and lanthanum. This list is obviously not limitative and all compositions which present a rapid growth of electric resistance in a range of one side and the other of a critical reference temperature can be used for the realization of an electronic component with individual thermal regulation in accordance with the object of the present invention.
When to such a thermosensitive element is applied a substantially constant voltage, it can present in the neighborhood of its critical temperature a rapid diminution in the consumed power. To a first approximation, this phenomenon can be compared to a thermal discontinuity. Hence, this sudden diminution in the consumed power makes it possible to use the thermosensitive element as a temperature sensor, a reference comparator, an amplifier, and an active component.
More specifically, in the copending application above referred to, there is disclosed an electronic assembly of the type comprising at least one circuit element mounted on a support of heat-sensitive material which produces a rapid increase in electrical resistance over a so-called regulation range which is located on each side of a critical reference temperature, said support and said element being interconnected by means of electric current conductors comprising connector-pins mounted in a base, characterized in that said heat-sensitive support, preferably presented in the form of a pastille, both faces of which are metallized and connected to two of said conductors, has one of said faces or so-called hot face being adapted to carry said circuit element and connected to the surrounding atmosphere through a high-value parasitic thermal resistance whilst the other face or so-called cold face is connected to the surrounding atmosphere through a thermal resistance having a value which is small with respect to the preceding resistance. This type of electronic assembly will be referred to hereinafter as an electronic assembly of the type defined.
In the copending application referred to above, there was also described a particular embodiment of the invention in which the cold face of the heat-sensitive pastille was in contact with an insulating plate secured to the base of the component. This embodiment makes it possible to obtain a regulation of the characteristics of electronic components which satisfies the majority of commercial requirements. However, a more extensive study of the operation of this embodiment has shown that, in a few special cases, such an arrangement was attended by certain disadvantages.
In particular, some temperature differences may appear, in this embodiment, between the terminals of the electronic circuit elements to be regulated, which is a major drawback, especially in the case of semiconductor circuits elements to be regulated, which is a major drawback, especially in the case of semiconductor circuits. Another cause of disturbance in the circuits will consist in the variable potential differences which may appear at some points of the conductors where two different metals generally are welded.
It is an object of the present invention to provide a modified embodiment of the electronic assembly disclosed in the previously discussed copending application, which is free of the above drawbacks.
It is another object of the present invention to provide an electronic assembly of the type defined, wherein the thermal flux within the conductors which are connected to the terminals of the circuit component which it is desired to regulate is decreased to a considerable extent.
Yet a further object of this invention is to provide an electronic assembly of the type defined, wherein the cold face of said heat-sensitive support is fixed to an electrically insulating and heat-conducting plate which is mounted at the ends of said connector-pins, substantially parallel to said base, said connector-pins thus forming support columns for said plate.
These and other objects of the invention will become apparent from the following description, reference being had to the accompanying drawings, in which:
FIG. 1 is a sectional diagrammatic view of an electronic assembly of the type specified, as disclosed in the previously discussed copending application;
FIG. 2 is a circuit diagram which includes the thermal resistances in the electronic assembly illustrated in FIG. 1;
FIG. 3 is a sectional diagram of the new arrangement in accordance with the present invention;
FIG. 4 is a circuit diagram which includes the thermal resistances in the electronic assembly illustrtaed in FIG. 3 and FIG. 5 illustrates in perspective an exemplified embodiment of a temperature-regulated electronic assembly built in accordance with the present invention.
Before starting the description of the electronic assembly in accordance with this invention, reference will be had to FIGS. 1 and 2, with a view to illustrate the operation of the embodiment of the electronic assembly of the type specified which is disclosed in the previously discussed copending application.
According to FIG. 1 a circuit element E, for instance a transistor, is in thermal Contact with the top face of a heat-sensitive pastille T, the underface of which is secured to an insulating plate P which is in turn fixed to the base S of the component. The connector-pin C is mounted across the base S and connected at point B to the connecting wire F which joins the terminal A of the circuit element E.
It is to be understood that there are a plurality of such connector-pins and wires, which need not be shown in the diagram of FIG. 1 but connect the terminals of circuit element E and the faces of pastille T to external circuits, not illustrated.
FIG. 2 illustrates the connections between the thermal resistances which exist in the device of FIG. 1, the base S constituting the ground potential. Between the point A and ground are disposed the thermal resistance R of the plate P and the thermal resistance R of the heat-sensitive pastille T and of the circuit element E. The thermal flux I which is produced by the heat-sensitive pastille T when the said pastille is energized from the supply voltage from external circuits is developed in a hot region in the interior of said pastille T. It may be shown that the hot region to which the thermal fiux I is thus applied is separated from the point A by a first thermal resistance R and from its underface by a second thermal resistance R with R R There is developed between all of the points A and all of the points B which correspond to the various connecting wires and pins a thermal resistance R which is constituted by the complete assembly of connecting wires F. Between all of the points B and ground, there appears a thermal resistance R; which is constituted by the different connector-pins C.
It may be shown that the thermal resistances R and R will generally have the same order of magnitude (approximately 40 C./w.) whereas the sum of the thermal resistances R and R will be of the order of 1,000 C./w. It can therefore be considered as a. first approximation that the thermal potential V at the point A is equal to I(R -l-R Moreover, since R is small compared with R the thermal flux within all of the Conductors F is V /R Said thermal flux is high and produces a thermal gradient within the mass of the circuit element E to be temperature-regulated which is not negligible. In as much as the different conductors F which interconnect the various terminals of the circuit elements E to the pins C have different lengths, the thermal flux within each of said conductors is different. As a consequence, not-negligible temperature differences will appear between the terminals of the circuit elements to be regulated.
Furthermore, as a result of the different thermal fluxes which pass through them, the different extremities B of the connector-pins C are accordingly heated to different temperatures. Since the points B usually consist of welded junctions formed of two different metals (gold wires in the case of the conductors F and Kovar in the case of the connector-pins C, for example) thermocouples are created and develop potential diferences which vary from one point B to the other. This is a further cause of disturbance in the circuits which it is desired to regulate.
Referring now to FIG. 3 which shows diagrammatically the arrangement in accordance with the invention, the heat-sensitive pastille T is fixed to an electrically-insulating and heat-conducting plate D which is supported on small columns constituted b the connector-pins C of 4 the component. All of the remaining elements shown are identical with the corresponding elements of FIG. 1.
FIG. 4 represents the electrical analogy of the thermal resistances employed in FIG. 3 and shows that, in this new form of construction, the thermal resistance R is connected between the points A and B whilst the thermal leak resistance which is connected to the cold face of the heat-sensitive pastille T is represented by R' It has been shown in the previously discussed copending application that a thermal resistance of relatively small value must be interposed between the base of the assembly and the cold face of the heat-sensitive pastille. In the embodiment of FIG. 3, this thermal resistance is constituted by connecting the different connector-pins C in parallel. Consequently, the value of said thermal resistance will be known with accuracy. Under these conditions, the temperature of the points B to which the connecting wires F are joined is appreciably higher than the temperature which prevailed in the embodiment of my copending application. It follows as a result that, along the connecting wires F which join the terminals A of the circuit element to be regulated to the extremities B of the connector-pins, a small thermal potential difference is established which, in addition, is identical from one connector to the other. Under these conditions, the parasitic thermal resistance which is constituted by the wires F which serve to connect the circuit element E to the hot face of the heat-sensitivepastille T is in parallel only with the thermal resistance of said pastille and no longer, as in the embodiment of my copending application, with the thermal resistance of the heat-sensitive pastille and of the insulating plate which is fixed to the base. It results that the influence of said parasitic thermal resistance is considerably decreased.
The properties and advantages of the invention will in any case become more readily apparent from the description of the electronic assembly illustrated in FIG. 5. In this figure, the reference 50 designates a metal base mounted on an annular flange 52 over which the component cover (not shown) is intended to be fitted. The base 50 is provided for example with eight insulating lead-in bushings such as the bushing 53 whereby eight connector-pins 54 68 are mounted in the base 50. A ceramic plate 70 is attached to the extremities of the connector-pins 54 68 which constitute small columns for supporting said plate 70. There are disposed on the top face of the plate 70 seven metallic sectors 55 67 whilst the underface of said plate 70 is metallized by means of a metal film which is connected to the extremity of the connector-pin 68. There is welded to said metal film the top face of a heat-sensitive pastille 72 formed of a material which exhibits a rapid increase in electrical resistance over a regulation range which is located on each side of a critical reference temperature. The underface of the pastille 72 is metallized and welded to a disc 74 which possesses good heat conductivity and good electrical insulation properties. In addition, the underface of said pastille 72 is connected by means of a conductor 76 to the metal sector 55 which is welded to the extremity of the connector-pin 54. The underface of the disc 74 is metallized and carries a pair of transistors such as the transistor 78. The three terminals of the transistor 78 are respectively connected by means of the conductors 80, 82 and 84 to the connectorpins 56, 58 and 60 which are respectively welded to the metal sectors 57, 59 and 61 of the top faces of the plate 70.
The practical advantage of a component as shown in FIG. 5 will be immediately evident when consideration is given to the diagram of thermal resistances of said component as shown in FIG. 4. The component is of special interest in the case of low-power transistors which are employed, for example, for the purpose of forming the first stage of an amplifier In fact, in such a case, the power which is really dissipated in the two transistors of a differential input amplifier is mw. at a maximum. If the minimum power which is dissipated within the heat-sensitive pastille 72 (or the pastille T in FIG. 3) is 90 mw., a minimum power of 100 mw. is accordingly dissipated within said pastille. If it is assumed, for example, that the difference between the top temperature limit of the range of regulation of the heatsensitive pastille T and the maximum ambient temperature is 30 C., we therefore have as maximum value of the thermal resistance R (FIG. 2) or R (FIG. 4):300 C./w. If we assume by way of example that R =R' -=270 C./W. and R =30 C./w. in the devices which are shown diagrammatically in FIGS. 2 and 4, we have between the points A and B a thermal potential ditference:V V =10(V V In other words, in the case of FIGS. 3 and 4, the thermal gradients within the conductors F and especially within the transistors E are ten times lower than in the case of FIGS. 1 and 2.
The practical value of the new form of construction in accordance with the present invention will therefore be readily apparent from the specific example which has just been given as an illustration only.
It must be added that the material which constitutes the plate 70 of FIG. 3 has good heat conductivity and therefore that said plate can be considered as isothermal. Under these conditions, it can be stated definitely that the different thermocouples which are constituted by the welded junctions of the connector-pins 56 64 and the connecting wires such as 80, 82 and 84 are at a same temperature and therefore give rise to a same potential difference. The result thereby achieved is that the parasitic voltage sources which were created by the temperature differences observed in the first embodiment at the extremities of the connector-pins of the component are accordingly eliminated in the new embodiment which is contemplated in the present invention.
A further appreciable advantage of the present embodiment lies in the ease of construction of a component in accordance with FIG. 5. In fact, in order to manufacture said component on an industrial scale, it is a very simple matter to fix the pastille 72 on the plate 70, then to fix the transistors 78 on the underface of said pastille, in such a manner as to constitute a subassembly which can subsequently be mounted without difficulty on the connector-pins 54 68 of a base 50. I
As will be readily understood, the invention is not limited to the embodiment of FIG. 5. For example, it will be noted that, in order to attach the conductors 80, 82 and 84 at the extremities of the connector-pins '56, 58 and 60 to the sectors 57, 59 and 61, a mode of attachment by flattening or swagging could readily be adopted in the place of welding.
What is claimed is:
1. An electronic assembly comprising: a base; at least one circuit component; a support of thermosensitive material presenting a rapid increase of electric resistance in a range of regulation situated on both sides of a critical reference temperature, said support having first and second faces, said first face being in thermal contact with said circuit component; a plurality of electric current conductors mounted on the periphery of said base, said conductors having rigid portions of substantially the same length on one side of said base, substantially at right angles to the surface thereof, a thermally conductive plate of electrically insulating material mounted at the ends of said rigid portions substantially parallel to said base, said plate being in thermal contact with said second face, and means connecting said circuit component and the first and second faces of said thermosensitive support to said electric current conductors, said first face being coupled to the ambient temperature through a first thermal resistance, said second face being coupled to the ambient temperature through a second thermal resistance, said first thermal resistance being substantially larger than said second thermal resistance.
2. An electronic assembly as claimed in claim 1, wherein the faces of said thermosensitive support are metallized, said plate being a ceramic dis having first and second faces, the second face of said disc being metallized and welded to the second face of said thermosensitive support and the first face of said disc having a metallized portion and a nonmetallized portion, said plurality of rigid conductor portions including a first conductor portion in contact with the nonmetallized portion of said first face and with said second metallized face of said disc, a second conductor portion in contact with a first metallized portion of said first face and a plurality of further conductor portions respectively in contact with further metallized portion-s of said first face, the said means connecting said first metallized portion to the first metallized face of said thermosensitive support and said further metallized portions to said electric component.
References Cited UNITED STATES PATENTS 6/1962 Wolfskill 219210 6/1968 Charbonnier 2l9209 US. Cl. X.R. 2l9501, 510; 3l7235

Claims (1)

1. AN ELECTRONIC ASSEMBLY COMPRISING: A BASE; AT LEAST ONE CIRCUIT COMPONENT; A SUPPORT OF THERMOSENSITIVE MATERIAL PRESENTING A RAPID INCREASE OF ELECTRIC RESISTANCE IN A RANGE OF REGULATION SITUATED ON BOTH SIDES OF A CRITICAL REFERENCE TEMPERATURE, SAID SUPPORT HAVING FIRST AND SECOND FACES, SAID FIRST FACE BEING IN THERMAL CONTACT WITH SAID CIRCUIT COMPONENT; A PLURALITY OF ELECTRIC CURRENT CONDUCTORS MOUNTED ON THE PERIPHERY OF SAID BASE, SAID CONDUCTORS HAVING RIGID PORTIONS OF SUBSTANTIALLY THE SAME LENGTH ON ONE SIDE OF SAID BASE, SUBSTANTIALLY AT RIGHT ANGLES TO THE SURFACE THEREOF, A THERMALLY CONDUCTIVE PLATE OF ELECTRICALLY INSULATING MATERIAL MOUNTED AT THE ENDS OF SAID RIGID PORTIONS SUBSTANTIALLY PARALLEL TO SAID BASE, SAID PLATE BEING IN THERMAL CONTACT WITH SAID SECOND FACE, AND MEANS CONNECTING SAID CIRCUIT COMPONENT AND THE FIRST AND SECOND FACES OF SAID THERMOSENSITIVE SUPPORT TO SAID ELECTRIC CURRENT CONDUCTORS, SAID FIRST FACE BEING COUPLED TO THE AMBIENT TEMPERATURE THROUGH A FIRST THERMAL RESISTANCE, SAID SECOND FACE BEING COUPLED TO THE AMBIENT TEMPERATURE THROUGH A SECOND THERMAL RESISTANCE, SAID FIRST THERMAL RESISTANCE BEING SUBSTANTIALLY LARGER THAN SAID SECOND THERMAL RESISTANCE.
US582662A 1965-10-07 1966-09-28 Thermally stabilized electronic assembly Expired - Lifetime US3437789A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR34127A FR93054E (en) 1965-03-02 1965-10-07 Electronic component with built-in thermal regulation.

Publications (1)

Publication Number Publication Date
US3437789A true US3437789A (en) 1969-04-08

Family

ID=8589949

Family Applications (1)

Application Number Title Priority Date Filing Date
US582662A Expired - Lifetime US3437789A (en) 1965-10-07 1966-09-28 Thermally stabilized electronic assembly

Country Status (3)

Country Link
US (1) US3437789A (en)
CH (1) CH445165A (en)
DE (1) DE1564542A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090212041A1 (en) * 2006-09-01 2009-08-27 Werner Kahr Heating Element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT403418B (en) * 1996-03-06 1998-02-25 Hella Kg Hueck & Co Compact circuit arrangement on a ceramic base plate having a semiconductor component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3038056A (en) * 1957-06-21 1962-06-05 Robertshaw Fulton Controls Co Electrical heating and temperature regulating apparatus
US3387113A (en) * 1964-07-09 1968-06-04 Charbonnier Roger Electronic assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3038056A (en) * 1957-06-21 1962-06-05 Robertshaw Fulton Controls Co Electrical heating and temperature regulating apparatus
US3387113A (en) * 1964-07-09 1968-06-04 Charbonnier Roger Electronic assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090212041A1 (en) * 2006-09-01 2009-08-27 Werner Kahr Heating Element
US8373100B2 (en) * 2006-09-01 2013-02-12 Epcos Ag Heating element

Also Published As

Publication number Publication date
DE1564542A1 (en) 1970-01-22
CH445165A (en) 1967-10-15

Similar Documents

Publication Publication Date Title
US3444399A (en) Temperature controlled electronic devices
US2792538A (en) Semiconductor translating devices with embedded electrode
US3632451A (en) Thermoelectric device having parallel circuits interconnected at equal potential points
US2762857A (en) Thermoelectric materials and elements utilizing them
US3614480A (en) Temperature-stabilized electronic devices
US3414704A (en) Self-regulating heating device
US3070644A (en) Thermoelectric generator with encapsulated arms
US3387113A (en) Electronic assembly
US3391311A (en) Constant current gain composite transistor
US3363150A (en) Glass encapsulated double heat sink diode assembly
US3749879A (en) Apparatus for providing controlled temperature ambient
US3437789A (en) Thermally stabilized electronic assembly
US3674568A (en) Hybrid thermoelectric generator
US3411955A (en) Thermoelectric device
US3878357A (en) Component oven
US2951105A (en) Thermoelectric compositions and elements and devices using them
US5055140A (en) Thermoelectric element using semiconductive ceramic material
US3231794A (en) Thermal coupling of parallel connected semiconductor elements
US3210617A (en) High gain transistor comprising direct connection between base and emitter electrodes
KR20180029409A (en) Thermoelectric element
US3017522A (en) Electrical semiconductor cooling by use of peltier effect
US2952724A (en) Constant energy source
US3260900A (en) Temperature compensating barrier layer semiconductor
US3018312A (en) Thermoelectric materials
US3646666A (en) Fabrication of semiconductor devices