US3379233A - Slicing machine having automatic controls for producing groups of preselected weight - Google Patents

Slicing machine having automatic controls for producing groups of preselected weight Download PDF

Info

Publication number
US3379233A
US3379233A US638671A US63867167A US3379233A US 3379233 A US3379233 A US 3379233A US 638671 A US638671 A US 638671A US 63867167 A US63867167 A US 63867167A US 3379233 A US3379233 A US 3379233A
Authority
US
United States
Prior art keywords
signal
weight
product
circuit
sliced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US638671A
Inventor
Frank S Kasper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amtron Inc
Original Assignee
Amtron Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amtron Inc filed Critical Amtron Inc
Priority to US638671A priority Critical patent/US3379233A/en
Application granted granted Critical
Publication of US3379233A publication Critical patent/US3379233A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/27Means for performing other operations combined with cutting
    • B26D7/30Means for performing other operations combined with cutting for weighing cut product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/141With means to monitor and control operation [e.g., self-regulating means]
    • Y10T83/148Including means to correct the sensed operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/182With means to weigh product

Definitions

  • the present invention relates to means for effecting commercial slicing operations, and more particularly t0 means for .accurately controlling the production of groups of sliced food products of preselected weight.
  • Sliced food products e.g. bacon
  • various statutes and regulations demand that each sliced group must have the weight specied on the packaging when offered to the consumer. Yet for efficient production, the weight must not substantially exceed this specified weight.
  • the production of the sliced group, including the necessary weighing and weight correction operations must be accomplished as quickly as possible and with minimum labor costs.
  • a significant drawback to accurate weight control of sliced food products stems from the fact that the sliced group cannot satisfactorily be brought up to the requisite minimum weight by the addition of a number of small portions or pieces of the product if the product is to receive the acceptance of consumers.
  • FIGURE 1 is a diagrammatic illustration of an automatic slicing apparatus, which is capable of effecting the production of groups of sliced food products in accordance with the present invention, and the associated control circuit for the slicing apparatus;
  • FIGURE 2 is a more detailed block logic diagram of the control circuit illustrated in FIGURE 1;
  • FIGURES 3-7 when assembled as shown in FIGURE 8, constitute the detailed schematic of the control circuit depicted in FIGURE 2.
  • the apparatus includes a scale whereto the sliced meat is delivered, la slicing mechanism which supplies the meat to the scale, a conveying means which transports the sliced meat in discrete groups (Le. as dictated by weight) away from the scale, and a control means for effecting these operations in reliable, automatic fashion.
  • sliced food products eg. bacon
  • the apparatus includes a scale whereto the sliced meat is delivered, la slicing mechanism which supplies the meat to the scale, a conveying means which transports the sliced meat in discrete groups (Le. as dictated by weight) away from the scale, and a control means for effecting these operations in reliable, automatic fashion.
  • the control means functions so that the product (e.g. bacon) is sliced onto a moving scale conveyor until such time as a preselected weight accumulation is sensed by the scale.
  • the system is conditioned to respond to a preselected light weight before being rendered effective (e.g. an accumulation of l5 ounces of the sliced product when slicing discrete one pound groups).
  • the control means functions to deactuate the slicing mechanism and stop the moving scale conveyor.
  • the system remains at rest for a preselected period of time after which la true weight reading is taken. A signal is produced in response to the true weight reading and this signal is converted into a time signal by the control circuit.
  • This time signal results in the slicing mechanism being rendered effective to slice an additional amount of the product, thereby bringing that sliced group up to the exact weight.
  • the conveying means is rendered effective to rapidly transport the sliced product group away from the slicer before the slicing of another group of the product is commenced.
  • FIGURE l presents a diagrammatic representation of automatic slicing apparatus i6 which effects the production of accurate weight groups of sliced food products in accordance with the present invention and pursuant to a mode of operation dictated by a control circuit 11.
  • the apparatus 10 preferably includes a work table 12 on and relative to which product P is moved during slicing operations effected by the apparatus 10 under the control of the circuit 11.
  • the apparatus 10 includes a product feed carriage mechanism I3 that effects the advancement of the product P relative to the table 12 and a rotary slicing or cutting blade 14 that is continuously driven in a conventional manner by a motor 16 through a shaft 16a.
  • the operation of the product feed carriage mechanism 13 is preferably dictated by a hydraulically operated piston cylinder arrangement 13a that effects the selective advancement of a product engaging member 13b in response to the high speed actuation of a valving mechanism 15 that controls the supply of the carriage actuating hydratilic fluid to the cylinder 13a.
  • Slices of the product P are severed by the driven rotary cutting blade 14 and are deposited on a relatively short scale conveyor 17 that is selectively driven by a variable speed motor 18.
  • the scale conveyor 17 supplies the sliced product to an intermediate conveyor 19 that is similarly controlled by a variable speed motor 20 and which, in turn, supp-lies the sliced product groups to a single speed conveyor 21 associated with suitable packaging apparatus (not shown).
  • a weight responsive transducer 22 (FIGURE 2) is associated with a scale mechanism 23 for the scale conveyor 17, and an electro-mechanical lift head mechanism 24 is similarly associated with this scale conveyor so as to preclude the scale mechanism 23 from being actuated during selected periods of a cycle of operation as dictated by the control circuit 11.
  • the lift head effectively replaces the spring action in the scale conveyor to allow the scale conveyor to be rapidly returned to a weight responsive condition after a weight measurement has been effected.
  • the position of the rotary cutting blade 14 is detected by a pair of transducers 26, each of which preferably includes a xedly mounted glass reed switch 26a having a pair of normally open contacts that are closed by a magnetic switch actuating element 2Gb that is secured to the driven shaft 16a associated with the cutting blade 14.
  • a pair of transducers 26 each of which preferably includes a xedly mounted glass reed switch 26a having a pair of normally open contacts that are closed by a magnetic switch actuating element 2Gb that is secured to the driven shaft 16a associated with the cutting blade 14.
  • One of the glass reed switches 26a is located so that the contacts of the glass reed switch are transiently closed at a time when the rotary cutting blade is positioned so that it is appropriate to advance the product feed carriage and accordingly the product P and thereby initiate a slicing operation.
  • the apparatus of the present invention include a multiple conveyor arrangement (ie.
  • variable speed scale conveyor 17, the variable speed intermediate conveyor 19 and the constant speed take-away conveyor 21 the independently operable, variable speed scale conveyor 17, the variable speed intermediate conveyor 19 and the constant speed take-away conveyor 21
  • promptly responsive product feed carriage mechanism 13 the promptly responsive product feed carriage mechanism 13
  • control circuit 11 which selectively dictates the operation of these vari ous components to insure that accurate weight groups of sliced product are automatically yielded by the apparatus and supplied via the conveyor 21 to suitable packaging means.
  • the control circuit 11 preferably includes a signal source 31 such as an oscillator circuit that produces a substantially constant output signal.
  • This output signal is supplied to the transducer 22 associated with the scale mechanism 23, to a rough weight signal circuit 32, and to a weight difference signal circuit 33.
  • the transducer 22 is preferably a conventional form of linear voltage differential transformer including a primary winding and a split secondary winding which is coupled to the primary winding by a movable coupling Y element that is physically joined to the scale.
  • the transducer 22 supplies a signal through a signal path 22a to the input of the rough weight signal circuit 32. This signal is received by the input circuitry of the rough weight signal circuit 32 along with the control circuit signal that is supplied to this same circuitry through a signal path 31a from the control circuit signal source 31.
  • the input circuitry of the rough weight signal circuit 32 is conditioned to respond to a preselected light weight accumulation of sliced product on the scale conveyor 17 (eg. an accumulation of approximately l5 ounces of the sliced product when slicing discrete one pound groups).
  • the input circuitry for the weight difference signal circuit 33 is conditioned to yield a signal that is indicative of the difference in the weight of the sliced product that is actually accumulated on the scale conveyor and the desired final weight (eg. 16 ounces). Assuming that a complete slicing operation has just been initiated, the rough weight signal circuit 32 continuously monitors the output from the transducer 22.
  • the input circuit of the rough weight signal circuit When an amount of sliced product having a weight equal to or greater than the preselected light weight is deposited on the scale conveyor 17, the input circuit of the rough weight signal circuit produces a signal indicative of the occurrence of this condition. This output signal is fed to the weight difference signal circuit 33 through a signal path 32a along with the signal that is continuously applied to the circuit 33 by the control circuit signal source 31 through signal path 31b.
  • the rough weight signal circuit 32 indicates the accumulation of the preselected light weight of sliced product on the scale conveyor 17 by supplying an output signal through a signal path 32h to a time delay circuit 34.
  • the time delay circuit Upon receipt of this signal and assuming the normal operational mode of the apparatus 11i and the associated control circuit 11, the time delay circuit initiates the running of consecutive first and second delay periods and supplies operating signals to various of the control means for the operative components of the slicing apparatus 10. More specifically, upon receipt of an output signal from the rough weight signal circuit 32, ⁇ the time delay circuit 34 supplies a control signal to the product feed carriage control circuit 35 through a signal path 34a and a control signal to a conveyor motor control circuit 35 through a signal path 34b.
  • control circuits are dictating, respectively, the normal advance of the product P relative to the rotary cutting blade 14 and the driving of the conveyors 17 and 19 at a normal operational speed.
  • the conveyor motor control circuit 36 Upon receipt of the output signal from the time delay circuit 3d, the conveyor motor control circuit 36 causes the driving motor 1S and the associated scale conveyor 17 to be ⁇ brought to an immediate stop. At the same time, the feed carriage control circuit 35 is conditioned to stop the advancement of the product feed carriage; however, this does not occur until the end of slice transducer 26 indicates that the slicing operation then in progress is completed.
  • the final reading of the weight of the accumulated sliced product is effected during the sec ond time delay period immediately upon termination of the first time delay period. Accordingly, as the first delay period times out (ie. due to variations in the conductive state of components within the time delay circuit 34, as hereinafter more fully set forth), other components of the time delay circuit are rendered eiiective to initiate the running of the second delay period during which the final weight reading is taken. As a result of the final weight reading, an error signal is produced to actuate the slicing apparatus 10 and thereby automatically yield the additional amount of sliced product necessary to bring the then accumulated light weight group on the scale con veyor 17 up to the desired final weight.
  • the output from the time delay circuit 34 maintains the driving motor for the conveyor17 and the product feed carriage in the stopped condition.
  • the output from the time delay circuit during this period conditions an actual weight error computer circuit 37 for operation so that this error computer circuit produces an error signal that is accurately indicative of the amount of additional sliced product that is needed to complete the sliced group then being processed.
  • the actual weight error computer 37 senses and responds to the output from the weight difference signal circuit 33 that is supplied to this computer circuit through a signal path 33a.
  • the output from the weight difference signal circuit 33 is a signal that represents the actual Weight of the sliced pro-duct on the scale 17 and is indicative of the weight difference between the amount of this accumulated sliced product and the desired final Weight of the sliced product group.
  • the actual Weight error computer 37 receives the weight difference signal from the circuit 33 -and translates this weight difference signal into an error signal during the second time delay period that is utilized to actuate the feed carriage control circuit 35 through a signal path 37a.
  • This error signal causes the control circuit 37 to be operated (ie. the product P to be advanced) for the period of time necessary to yield the additional amount of sliced product that is demanded to complete a sliced product group having the desired final weight (eg. one pound).
  • the error signal produced by the computer circuit 37 is not supplied to the feed carriage control circuit 35 until the second time delay period terminates as reflected by a signal supplied to the computer circuit 37 from the time delay circuit 34 through a signal path 34C.
  • an output signal is supplied to the product feed carriage control circuit 35 from the circuit 34 to condition the product feed carriage for operation.
  • the product feed carriage is not rendered effective until the beginning of slice transducer 26 is actuated to indicate that the rotary slicing blade 14 is properly positioned to initiate a slicing operation.
  • a signal is coupled to the actual weight error computer 37 to initiate the read out of the error signal.
  • the product feed carriage mechanism 13 is also actuated at this time and remains in an actuated state to advance the product to the rotary slicing blade 14 until the error signal terminates at which time the product feed carriage is immediately halted.
  • a typical operational cycle of the apparatus is concluded at the end of the error signal as sensed and responded to both by the conveyor motor control circuit 36 and a lift head circuit 38 that controls the operation of the lift head mechanism 24. More specifically, when the error signal is conclude-d, the motor control circuit 36 is provided with an input signal through a signal path 37C. This causes the motor control circuit to initiate high speed operation of the driving motors 18 and 2t) and, accordingly, of the conveyors 17 and 19. As a result, the accurate weight, sliced product group that has just been yielded by the apparatus 10 is at least partially removed from the scale conveyor 17 and delivered to the intermediate conveyor 10 so that a subsequent slicing operation can be initiated without undue delay.
  • the high speed operation of the conveyors 17 and 19 also facilitates the adequate spacing of the individual groups of the sliced product.
  • the spacing of the groups of sliced product is further effected by the operation of the lift head mechanism 24 in response to the signal that is supplied to the lift head control circuit 38 from the actual weight error computer 37 through a signal path 37C.
  • this lift head control circuit also includes timing circuitry so that the lift head mechanism is loperated for a period of time greater than that during which the high speed operation of the conveyors 17 and 19 occurs.
  • the reason for this preferred mode of operation is that the reversion of the scale conveyor 17 from a high speed operational mode to the normal speed operational mode could perhaps be accompanied by fluctuations of the scale mechanism. Inasmuch as this might cause a cycle of operation to be prematurely initiated, the lift head mechanism 24 precludes the scale mechanism from sensing any such mechanical fluctuations.
  • the lift head mechanism As the operating cycle of the lift head control circuit 38 is terminated, the lift head mechanism is deactivated and rapidly returns the scale conveyor to a weight responsive conditioning and the entire control circuit 11 is conditioned for a subsequent cycle of operation. However, during the period when the lift head mechanism is in an actuated condition, the lift head control circuit 33 creates inhibiting conditions in the control circuit which precludes any of the operational components from being rendered effective prematurely.
  • the present invention contemplates an accurate and sophisticated approach to .the production of accurate weight groups of sliced products (eg. food products such as bacon, cold cuts, etc.). Consequently, a typical operational cycle of the apparatus 10 as dictated by the control circuit 11 is preferably carried out so that the error signal generated by the actual Weight error computer circuit 37 dictates the production of a commercially acceptable partial slice (i.e. the apparatus is operated within less than one slice limits). While this obviously depends upon the ⁇ weight difference between the light weight condition to which the input circuitry of the rough Weight signal circuit 32 is set to respond, companies marketing prepackaged groups of sliced food products are concerned with eicient, low cost production operations and with consumer acceptance of their product.
  • sliced products eg. food products such as bacon, cold cuts, etc.
  • the actual weight error computer circuit 37 can be preconditioned so that it will produce at least a minimum error signal each time it is actuated so as to yield at least a minimum fractional slice that will satisfy consumer demand without substantial give-away on overweight product groups.
  • the product groups which will be of a weight such that no additional sliced product will be added to the group even when the circuit is conditioned to operate in this latter mode.
  • FIGURES 2-7 The control circuit 11 and the various signal paths which are diagrammatically illustrated in FIGURE 1 are depicted in full and complete detail in FIGURES 2-7.
  • the stationarily mounted, split secondary Winding 22a of the transducer 22 is coupled to the stationarily mounted, primary Winding 22b by a movable coupling element 22C that is directly connected to the scale head for movement therewith.
  • the normal physical relationship of these elements is such that the signal supplied to the primary winding 22b from the signal source 31 causes a maximum signal to be produced by the transducer 22 when there is no sliced product on the scale conveyor 17.
  • the coupling between the primary and split secondary winding is directly varied to yield a signal, the magnitude of which reflects the weight of the accumulated sliced material.
  • the output from the signal source 31 supplies one input to a unit gain difference amplifier 42 in the rough Weight signal circuit 32 through a weight difference potentiometer 44.
  • the output from the oscillator 40 is also connected through an actual weight potentiometer 46 and is supplied to one input of a difference amplifier 48 in the weight difference Signal circuit 33.
  • the winding 22a supplies the other input to the amplifier 42, and the output of this circuit supplies the other input to the amplifier 48.
  • the weight difference potentiometer 44 in the input to the rough weight signal circuit 32 allows the input signal to this circuit from the source or ⁇ oscillator 31 to be selectively preset. Accordingly, circuit conditions are established so that the amplifier 42 in the rough weight signal circuit responds to and produces a signal indicative of the accumulation of at least the preselected light weight amount of sliced product on the scale conveyor 17. Specically, an adjustment is preferably made in the potentiometer 44 so that the amplifier 42 responds to an accumulated weight which is approximately one ounce light when one pound groups of sliced products are being produced by the apparatus 10.
  • the rough weight signal circuit 32 is placed in a conductive state such that a conventional Schmitt trigger circuit 53 in the output thereof produces an output pulse.
  • the output from the difference amplilier is amplified and fed through a conventional rectifier and lter circuit 51 that yields a D.C. signal which only changes the conductive state of the Schmitt trigger circuit when the amplitude of this signal is above a preset level.
  • the output pulse from the circuit 53 is supplied to the time delay circuit 34 to cause the scale conveyor and the product feed carriage to be brought to a rapid stop.
  • the output signal from the circuit 32 is fed through an inhibitor 56 to trigger a one-shot multivibrator 58 in the time delay circuit 34.
  • the output pulse from the one-shot multivibrator 53 dictates the running of the rst time delay period and, in the illustrated embodiment, this pulse has a duration of approximately 226 milliseconds.
  • This time delay pulse is supplied through an or circuit 60, and emitter follower 62 and is fed to an output lead ⁇ 64.
  • the output lead 64 is connected to an or circuit 6 in the conveyor motor control circuit 36.
  • the output of the or circuit 66 is supplied to a stop input 67 of a variable speed motor drive circuit 70 and renders the motor 18 for the scale conveyor 17 transiently ineffective. In the absence of this signal, the motor for the scale conveyor runs this conveyor at a normal speed.
  • the lead 64 is also connected to an or" circuit 74 in the feed carriage control circuit 35, and the signal developed on the lead 64 is supplied through this or circuit to an inhibitor circuit 78.
  • the inhibitor 78 is in an inhibit condition and does not respond to the signal from the or circuit 74 because a negative signal is supplied to the control lead 80 thereof from an inhibitor circuit 82.
  • the inhibit signal from the inhibitor 82 is present until the position of the cutting blade 14 is such that the contacts of the end of slice switch 26a are closed indicating that a full slice has been completed. When the end of slice switch contacts close, the negative input that :is supplied to the inhibitor 82 is grounded through these closed contacts and a resistor 83.
  • the signal from the or circuit 74 is supplied through the inhibitor circuit 78 and is fed to and changes the conductive state of a flip-flop circuit 86.
  • the output of the flip-flop circuit 86 controls the stop-start valving mechanism 15 associated with the product feed carriage 13a.
  • the valving mechanism 1S stops the product feed carriage when the inhibitor 78 supplies a signal from the or circuit 74,
  • the hydraulic valving mechanism 15 is selected to be fast acting, having a preferred cycling speed of 7-9 milliseconds.
  • control circuit 11 senses the accumulation of the preselected light weight on the scale conveyor 17 and responds by immediately stopping the scale conveyor and by halting the product feed carriage when the slice in progress has been completed and before another slicing operation is commenced. After these operations are completed and the first delay period ends, the control circuit 11 initiates the actual weight determination and error signal generating cycles.
  • the output from the one-shot multivibrator S is also supplied through an inverter 88 to a signal end detector (S.E.D.) 90, which provides (by differentiation, an output pulse corresponding to the end of the first delay period (i.e. the 226-millisecond duration of the output pulse from multivibrator 58).
  • the output of the signal end detector 90 is fed through an inhibitor 92 to actuate another one-shot multivibrator 94 and initiate the second time delay period. That is, the output from the multivibrator 94, which has a duration of approximately 25 milliseconds, controls the actua weight read-time period. Since the signal end detector 90 pro vides an output only at the end of the output pulse from the multivibrator 58, the beginning of the output pulse from the multivibrator 94 occurs approximately 226 mil- 8 liseconds after both the scale conveyor motor 72 and the feed mechanism 22 have been halted. This 226-millisecond delay period after the scale conveyor is halted allows the scale to fully come to rest thereby eliminating potential errors in the actual weight scale reading due to mechanical vibrations stemming from the impact effect of the slices on the scale conveyor 17.
  • the output of multivibrator 94 goes to an input of the or circuit 60, passes through this or circuit and the emitter follower 62 and is supplied to the lead 64.
  • This signal on the lead 64 maintains the product feed mechanism 13a and the scale conveyor in the stopped condition created initially by the output from the multivibrator 58 at the start of the first time delay period.
  • the output from the multivibrator 94 also goes through an emitter follower 96, a hold-over circuit 93, and a diode to the inhibit lead 102 of the inhibitor S6.
  • the hold-over circuit 98 is a capacitive network, which when charged prevents the further rough weight triggering of the multivibrator 58 until a complete weighing cycle is completed.
  • the output from the multivibrator 94 is fed through a lead 104 to a voltage to time (V-T) converter circuit 106 in the actual weight error computer 37.
  • V-T voltage to time
  • the V-T converter circuit 106 takes the difference weight signal supplied from the weight difference signal circuit 33 through the lead 136 and converts it into an error signal that actuates the product feed mechanism 13a for an accurate time period suiiicient to slice the needed additional weight of material.
  • the additional weight error signal is generated after the termination of the 25-millisecond delay period, during which time this error signal is computed by the circuit 106.
  • High operational accuracy in the production of the signal is achieved because errors due to vibrations and other sources are integrated in the V-T converter circuit over the read-time period, e.g., an average weight reading for ⁇ the entire 25-millisecond period is produced.
  • a suitable voltage to time converter circuit 106 is of the type disclosed in Patent No. 3,162,326.
  • This circuit employs a transformer having a substantially rectangular hysteresis loop magnetic core.
  • the circuit functions to integrate the volt-seconds of the input signal during the read time, and the output error signal is produced during the time it takes to reestablish initial core conditions.
  • the read time is a constant 25 milliseconds
  • the error time pulse is directly proportional to the integrated input voltage, i.e., the averaged weight difference measurement.
  • a signal end detector (S.E.D.) 110 in the time delay circuit 34 also responds to the end of the 226-millisecond period and produces an output pulse that is supplied through a diode 112 to a lead 114.
  • the lead 114 transmits this pulse to a conventional flip-flop circuit 116 in the motor control circuit 36 and causes this circuit to change conductive states so that a signal is fed through a diode 118 to one of the two inputs of a nor circuit 122.
  • This signal at one input of the nor circuit 122 prevents any output signal from being produced.
  • an emitter follower circuit 134 cannot be actuated to supply a signal to the lead 124.
  • the product feed carriage and scale conveyor stop signal is removed from the output lead 64 of the time delay circuit 34 and is no longer applied to the or circuit 74 in the product feed carriage control circuit 35. Therefore, the ip-iiop circuit is conditioned to be reset and actuate the valving mechanism into the start position. However, this action cannot take place until the negative potential supplied to the input of the inverter 128 is removed by the closing of the beginning of slice switch contacts (i.e. indicating that the blade 14 is properly positioned to begin slicing a full slice).
  • the mechanism 15 is actuated, the product feed carriage is advanced and continues to be advanced until the end of the error signal. During this time, the necessary additional slice is produced to bring the Weight of the sliced group up to the desired final weight.
  • the inverter 128 When the beginning of slice switch 26a is actuated to initiate the nal slicing operation, the inverter 128 provides a signal through a lead 132 to reset the flip-flop circuit 116 in the motor control circuit 36. When this occurs, the aforedescribed blocking signal at the one input of the nor circuit 122 is removed. The nor circuit 122 then provides a signal to the lead 124 through the emitter follower 134 and this signal actuated the V-T converter so that the error signal is read out.
  • the error signal from the converter i.e. a negative output pulse
  • the lead 146 provides a stop signal input to the variable speed motor drive circuit 7d so as to hold the scale conveyor 17 in the stopped condition while the weight correction is being made.
  • the iiip-op circuit 116 provides no input to an inverter 148 in the motor control circuit 36. Therefore, the inverter 148 provides an output signal through the or circuit 66 to provide a stop signal for the motor 1S during this brief time interval.
  • the termination of the error signal on the output lead 13S of the V-T converter 106 is responded to by a signal end detector (S.E.D.) 15).
  • the output from the detector 150 is fed to a second (high speed) input 154 of the motor drive circuit 70 through a lead 152.
  • the motor drive circuit 70 thereupon causes the conveyor 19 and scale conveyor 17 to go into a high speed removal mode of operation to quickly carry the completed and accurate weight sliced group at least partially off of the scale conveyor.
  • the motor drive circuit 70 preferably incorporates an adjustable self-timing network including an externally adjustable impedance element so that the high speed operation of the drive motors 1S and 2G of the conveyors 17 and 19 can be selectively varied. Because of the self-timing feature, the high speed operation of the motors 18 and 20 terminates automatically and the conveyors 17 and 19 return to their normal advancing rate independent of the operation of the remaining portion of the control circuit 11.
  • the signal supplied to the lead 154 (ie. the output from the signal end detector 150) is also fed to the input of a one-shot multivibrator circuit 156 in the lift head control circuit 38.
  • the multivibrator 156 When supplied with this signal, the multivibrator 156 is actuated into an alternate conductive state for a period of time dictated by the components which comprise the multivibrator, When driven into the alternate conductive state, the multivibrator circuit 156 produces an output signal that brings the weight correction portion of the operating cycle to a halt.
  • the lift head mechanism 24 is actuated lby the output from the multivibrator circuit so that adequate spacing of successive sliced -groups is achieved.
  • the high speed operation of the conveyors 17 and 19 complements the operation of the lift head mechanism 24 in yielding the necessary spacing between the successive groups of sliced product.
  • the timing circuitry of the motor drive circuit 7) preferably times out to halt the high speed operation of the conveyors prior to the time that the lift head is again deactuated. As previously pointed out, this is effected so that mechanical disturbances, which can occur when the conveyors return to their normal speed operation, are not transmitted to the responsive scale mechanism 23.
  • the multivibrator circuit 156 supplies a signal through the emitter followers 160 and 162 and through a lead 164 so that an inhibit signal is fed to the inhibitor 82 in the feed carriage control circuit 35. At the same time, this signal is fed through the or circuit 74 and is supplied to the input lead of the inhibitor circuit 78. The signal that is supplied through the inhibitor circuit 78 actuates the flip-flop circuit 86 so that the valving mechanism 15 is activated and the product feed carriage is brought to a stop. Consequently, the carriage feed mechanism 13 immediately interrupts the advancement of the product P to the rotary slicing blade 14.
  • the previously established operating conditions for the circuit 11 and apparatus 1G are preferably such that the partial or feathered out slice that is yielded when the product feed carriage is abruptly stopped nevertheless is an acceptable slice.
  • the V-T converter 106 can be preset to insure that a minimum error signal is produced to yield a slice of at least Ipreselected minimum dimensions.
  • the operation of the valving mechanism 15 at the end of the error signal can be tied in with the closing of the end of slice switch 26a. The choice in this matter is dictated ⁇ by the self-imposed requirements of the producer and packager of the sliced product.
  • the output of the emitter follower 162 provides an inhibit signal to the V-T converter circuit 106.
  • the output from the emitter follower 162 is fed through an inverter circuit 166 and is supplied to the input of a signal end detector (SJ-3D.) 16S in the actual weight error computer 37.
  • the signal end detector 168 responds to provide a signal to the inhibit lead of the inhibitor circuit 142. This inhibiting signal prevents any signal from being supplied from the V-T converter 156 at the beginning of the next succeeding cycle of operation.
  • the output from the emitter follower 160 is fed to an inverter circuit 179 and it is the output of this circuit that dictates the operation of the lift head mechanism 25.
  • the output of the inverter causes this electromechanical device to be rendered effective in a conventional manner so as to preclude the scale from being operated during the period that the multivibrator 156 is in the alternate conductive state.
  • the lift head mechanism 24 is deactuated and the entire control circuit is conditioned for a subsequent cycle of operation.
  • a subsequent operating cycle has started automatically.
  • This subsequent cycle of operation is conditioned to be initiated when the multivibrator circuit 156 returns to its normal conductive state thereby removing the stop signal from the lead 164 at the input to the or circuit 74. That is, when the multivibrator circuit 156 times out, 'the valving mechanism actuates the product feed carriage to the start condition and a slicing cycle is initiated when the beginning of slice switch 26a is closed. Since the lift head mechanism is deactuated at this time, the scale conveyor 17 is again weight responsive.
  • the scale conveyor 17 is running at the normal advancing rate and the sliced product accumulates there- 1 1 on in shingled fashion until a rough weight signal is generated by the circuit 32 to initiate the error correction phase of the operating cycle as recited above.
  • the control circuit 11 responds to this condition by precluding the occurrence of the weight correction phase of the operating cycle. That is, the control circuit 11 responds to this condition by precluding the further actuation of the product feed carriage and no additional sliced product is supplied to the scale conveyor.
  • the output signal from the weight difference signal circuit 33 has a magnitude such that the inhibitor circuit 92 in the time delay circuit 34 is actuated. Accordingly, the ⁇ multivibrator circuit 94, the operation of which defines the second time delay period, is prevented from being triggered and the second time delay period is never initiated.
  • an over-Weight detector circuit 178 in the time delay circuit 34 senses the termination of the first time delay period as dictated by the multivibrator circuit 58 and also senses that the second time delay period does not occur (Le. the multivibrator circuit 94 is not triggered into conduction).
  • one input to the over-weight detecing circuit 17S is connected to the output of the multivibrator circuit 94 while the other input lead is connected through a signal end detector circuit 18) to the output of the multivibrator circuit ⁇ 58.
  • the over-weight detecting circuit Upon sensing the aforedescribed conditions, the over-weight detecting circuit produces an output signal that is supplied to the high speed lead 154 of the motor drive circuit 70.
  • This signal which causes the motor drive circuit to be operated so that the conveyors 17 and 19 are actuated into the high speed operating mode, corresponds to the signal that is supplied from the signal end detector 150 in the error computer circuit 37 'during a normal cycle of operation.
  • the remaining portion of the operating cycle corresponds to the concluding phase of a normal operating cycle when an error correction signal has been generated and just terminated.
  • the various individual circuits which comprise the control circuit 11 are conventional circuits, and the components which comprise these circuits are specified in detail. These component values reflect the values employed in one embodiment of the control circuit so that the automatic production of accurate weight groups of sliced food products is effected by the apparatus as recited above.
  • a capacitor designation such as 10/20 refers to l() mfd. 20 V.D.C.
  • a designation such as .001 refers to .001 mfd. 200 V.D.C. and that all resistors are rated at 1/z-watt unless otherwise indicated.
  • the potentiometers 44 and 46 can both be adjusted as desired. However, if after a period of slicing, it appears that the rough weight groups are unduly under the final desired weight or so close to it as to render the final slicing operation almost superfluous, compensating adjustments are preferably made only in the potentiometer 44. In this connection, corrective adjustments in the potentiometer 44 at the input to the rough weight signal circuit 32 also yield compensating changes in the difference weight signal circuit 33.
  • the present invention provides improved means for carrying out the production of accurate weight groups of sliced food products.
  • the invention is particularly suited to the meat packing industry but has obvious utility in other elds as Well.
  • the various changes in and/or modifications of the invention necessary to adapt it for use in a particular environment and/or to facilitate carrying out a particular form of slicing operation are clearly contemplated by the foregoing and by the accompanying claims.
  • Apparatus for automatically effecting the production of groups of sliced product of a desired final weight which apparatus comprises a slicer; product feed' means for selectively advancing said product to said slicer; scale means for receiving slices of said product as said feed mechanism advances said product to said Slicer; and control means connected to said scale means and said product feed means for selectively dictating the operation thereof, said control means including means for sensing the accumulation on said scale means of a partial product group having at least a preselected weight and for producing a signal in response to the accumulation of at least said preselected weight, ⁇ means connected to said responsive means for interrupting the operation of said product feed means in response to a signal from said -responsive means, means actuated by the signal from said responsive means for effecting an accurate weight measurement of said partial product group after a preselected period of delay, means for converting said accurate weight measurement into a control signal, and means for actuating said product feed means for a preselected period of time in accordance with additional product to said partial product group and thereby yield a
  • Apparatus for automatically effecting the production of groups of sliced -product of a desired final weight which apparatus comprises a slicer; Aproduct feed means for selectively advancing said product to said slicer; scale means for receiving slices of said product as said feed mechanism advances said product to said slicer; and control means connected to said scale means and said product feed means for selectively dictating the operation of said scale means and of said product feed' means so that an said control signal so as to add ⁇ initial and a final slicing function isnormally effected during each cycle of operation to yield a sliced product group of the desired final weight, said control means including means for sensing the accumulation on said scale means of a partial product group having at least a preselected weight and for producing a signal in response to the accumulation of at least said preselected weight, means connected to said responsive means for transiently interrupting the operation of said product feed means and for terminating said initial slicing function in response to a signal from said responsive means, means actuated by the signal from said responsive means for effecting an accurate Weight
  • Apparatus for automatically effecting the production of groups of sliced product of a desired final weight which apparatus comprises a slicer; product feed means for selectively advancing said product to said slicer; a scale conveyor for receiving slices of said product as said product feed means advances said product to said slicer; a second conveyor situated to receive sliced product groups from said scale conveyor; and control means connected to said conveyors and said product feed means for selectively dictating the operation thereof, said control means including means for sensing the accumulation on said scale conveyor of a partial product group having at least a preselected weight and for producing a signal in response to the accumulation of at least said preselected weight, said preselected weight being less than said desired final Weight by a selectively variable amount, means connected to said responsive means for interrupting the operation of said product feed means and for stopping said scale conveyor in response to a signal from said responsive means, means actuated Aby the signal from said responsive means for effecting an accurate weight measurement of said 4partial product group after a preselected period of delay, said period of delay being sucient to
  • Apparatus for automatically effecting the production of groups of sliced product of a desired final weight which apparatus comprises a slicer; product feed means for selectively advancing said product to said slicer; a scale conveyor for receiving slices of said product as said product feed means advances said product -to said slicer; and control means connected to said scale conveyor and said product feed means for selectively dictating the operation of said scale conveyor and of said product feed means so that an initial and a final slicing function is normally effected during each cycle of operation to yield a sliced product group of the desired final Weight
  • said control means including means for sensing the accumulation on said scale conveyor of a partial product group having at least a preselected weight and for producing a signal in response to the accumulation of at least said preselected weight, means connected to said responsive means for transiently interrupting the operation of said scale conveyor and said product feed means and for terminating said initial slicing function in response to a signal from said responsive means, means actuated by the signal from said responsive means for effecting an accurate weight measurement of said partial
  • Apparatus for automatically effecting the production of groups of sliced product of a desired final Weight which apparatus comprises a slicer; product feed means for selectively advancing said product to said slicer; a scale conveyor for receiving slices of said product as said product feed means advances said product to said slicer; a second conveyor situated to receive sliced product groups from said scale conveyor; and control means connected to said conveyors and said product feed means for selectively dictating the operation thereof, said control means including means for sensing the accumulation on said scale conveyor of a partial product group having at least a preselected weight and for producing a signal in response to the accumulation of at least said preselected Weight, said preselected weight being less than said desired final weight by a selectively variable amount, means connected to said responsive means for interrupting the operation of said product feed means and for stopping said scale conveyor in response to a signal from said responsive means, means actuated by the signal from said responsive eans for effecting an accurate Weight measurement of said partial product group after a preselected period of delay, said period of delay being sufiici
  • product feed means for selectively advancing said product to said slicer
  • scale means for receiving slices of said product as said feed means advances said product to said slicer
  • first electronic control means connected to said scale means and said product feed means for halting said product feed means when an apparent weight of sliced product approximately, but less than, said preselected weight is deposited on said scale;
  • second electronic control means for comparing the weight of said product on said scale with said preselected final Weight amount to develop an elec- 15 tronic control signal indicative of the difference therebetween;
  • time delay means for preventing effective measurement of the weight value of said sliced product for a predetermined time interval on said halting of said advancing means to thereby avoid possible errors in true weight attendant depositing of said slices on said scale means.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Meat, Egg Or Seafood Products (AREA)

Description

F. s KASPER 3,379,233 MACHINE HAVING AUTOMATIC CONTROLS FOR PRODUCING April 23, 1968 SLCINC' GROUPS OF PR'ESELECTED WEIGHT Original Filed April 6. 1965 7 Sheets-Sheet l umh m ummm mmJ/,MQFEES moum :www wmwuwnw t6; a Q4 UMG .6x58 P tm mou ammi www. QN, JKM. Smm. w fw. hm.\ SR. muvSom DUM .Eu 29m .229m M, Wmfi Smm. Pz m? nozem OMPZOU ...Suu E28 Nm. \m. 9m.: y t ...58 wm. .MW Smm. mp6s. 95528 /RNN Aprll 23, 1968 F. s. KASPER 3,379,233
SLICINC' MACHINE HAVING AUTCMATIC CONTROLS FOR PRODUCING GROUPS 0F PRESELECTED WEIGHT Original Filed April 6,- 1965 7 Sheets-Sheet 2 prnl 23, 1968 F. s. KASPER 3,379,233
SLICINF: MACHINE HAVING AUOIAIIC CONTROLS FOR PRODUCING GROUPS OF PRESELECTED WEIGHT 'Griginal Filed April 6, 1965 7 Sheets-Sheet :5
Apnl 23, 196s F. s. KASPER 3,379,233
SLICINC': MACHINE HAVING AUTOMATIC CONTROLS FOR PHODUCING GROUPS OF PRESELECTED WEIGHT Original Filed April G, 1965 '7 Sheets-Sheet 4 pml 23, 1968 F. s. KAsPaR 3,379,233
SLICING MACHINE HAVING AUTOMATIC CONTROLS FOR PRODUCING GROUPS OF PRESELECTED WEIGHT Original Filed April 6, 1965 7 Sheets-Sheet b f 1 0J mesa; 20m? 25a/9%@ Ewa/6Min@ prll 23, 1968 F. sA KASPER 3,379,233
SLIOINO MACHINE HAVING AUTOMATIC CONTROLS FOR PRODUOING GROUPS oF PRESBLEOTED WEIGHT Original Filed April 6, 1965 L saff sy/vc,
ENO QF SLCE SYNC,
l /g4 w $2 Kn N659 IN 659 @m ZAK-598A /f mesa April 23. 196s TO VA LV E F. s. KAsPi-:R 3,379,233
SLICINC' MACHINE HAVING AUTOMATIC CONTROLS FOR PRODUCING GROUPS' OF PRESELECTED WEIGHT 7 Sheets-Sheet 7 TO LJFT HEAD United States Patent O 3,379,233 SLICING MACHINE HAVING AUTQMATIC CGN- TROLS EUR PRUDUCING GRGUPS F PRESE- LECTED WEIGHT Frank S. Kasper, Hazel Crest, Ill., assignor to Amtron, Inc., Midlothian, Ill., a corporation of Illinois Continuation of application Ser. No. 445,887, Apr. 6, 1965. This application May 15, 1967, Ser. No. 638,671 9 Claims. (Cl. 14d-94) This application is a continuation of application Ser. No. 445,887, filed Apr. 6, 1965, now abandoned.
The present invention relates to means for effecting commercial slicing operations, and more particularly t0 means for .accurately controlling the production of groups of sliced food products of preselected weight.
Sliced food products (e.g. bacon) present difficulties to the manufacturer in that .the sliced product must be delivered to the consumer in Iaccurate weight groups. In this connection, various statutes and regulations demand that each sliced group must have the weight specied on the packaging when offered to the consumer. Yet for efficient production, the weight must not substantially exceed this specified weight. Moreover, the production of the sliced group, including the necessary weighing and weight correction operations, must be accomplished as quickly as possible and with minimum labor costs. A significant drawback to accurate weight control of sliced food products stems from the fact that the sliced group cannot satisfactorily be brought up to the requisite minimum weight by the addition of a number of small portions or pieces of the product if the product is to receive the acceptance of consumers.
It is an object of the present invention to provide means for eecting the production of discrete, accurate weight groups of sliced food products.
It is a further object of the present invention to provide automatic control means for product slicing apparatus for effecting slicing operations so as to yield increased weight accuracy inthe groups of sliced product, increased production efticiency, improved appearance of the individual sliced product groups, and an overall lower product cost to the consumer.
It is a further object of the present invention to provide a combined scale-slicer-conveyor control means for achieving the above and other objects of the invention.
Other objects and advantages will become apparent from the following detailed description of one preferred embodiment of the invention, particularly when considered in conjunction with the accompanying drawings, wherein:
FIGURE 1 is a diagrammatic illustration of an automatic slicing apparatus, which is capable of effecting the production of groups of sliced food products in accordance with the present invention, and the associated control circuit for the slicing apparatus;
FIGURE 2 is a more detailed block logic diagram of the control circuit illustrated in FIGURE 1; and
FIGURES 3-7, when assembled as shown in FIGURE 8, constitute the detailed schematic of the control circuit depicted in FIGURE 2.
In accordance with the present invention, accurate preselected amounts of sliced food products (eg. bacon) are yielded by Ian automatic slicing device and supplied via suitable conveying means to 'automatic packaging apparatus. More particularly, the apparatus includes a scale whereto the sliced meat is delivered, la slicing mechanism which supplies the meat to the scale, a conveying means which transports the sliced meat in discrete groups (Le. as dictated by weight) away from the scale, and a control means for effecting these operations in reliable, automatic fashion.
The control means functions so that the product (e.g. bacon) is sliced onto a moving scale conveyor until such time as a preselected weight accumulation is sensed by the scale. Preferably, the system is conditioned to respond to a preselected light weight before being rendered effective (e.g. an accumulation of l5 ounces of the sliced product when slicing discrete one pound groups). When the proper light weight has been reached, the control means functions to deactuate the slicing mechanism and stop the moving scale conveyor. The system remains at rest for a preselected period of time after which la true weight reading is taken. A signal is produced in response to the true weight reading and this signal is converted into a time signal by the control circuit. This time signal results in the slicing mechanism being rendered effective to slice an additional amount of the product, thereby bringing that sliced group up to the exact weight. After this occurs, the conveying means is rendered effective to rapidly transport the sliced product group away from the slicer before the slicing of another group of the product is commenced.
FIGURE l presents a diagrammatic representation of automatic slicing apparatus i6 which effects the production of accurate weight groups of sliced food products in accordance with the present invention and pursuant to a mode of operation dictated by a control circuit 11. The apparatus 10 preferably includes a work table 12 on and relative to which product P is moved during slicing operations effected by the apparatus 10 under the control of the circuit 11. In addition, the apparatus 10 includes a product feed carriage mechanism I3 that effects the advancement of the product P relative to the table 12 and a rotary slicing or cutting blade 14 that is continuously driven in a conventional manner by a motor 16 through a shaft 16a. The operation of the product feed carriage mechanism 13 is preferably dictated by a hydraulically operated piston cylinder arrangement 13a that effects the selective advancement of a product engaging member 13b in response to the high speed actuation of a valving mechanism 15 that controls the supply of the carriage actuating hydratilic fluid to the cylinder 13a.
Slices of the product P are severed by the driven rotary cutting blade 14 and are deposited on a relatively short scale conveyor 17 that is selectively driven by a variable speed motor 18. The scale conveyor 17 supplies the sliced product to an intermediate conveyor 19 that is similarly controlled by a variable speed motor 20 and which, in turn, supp-lies the sliced product groups to a single speed conveyor 21 associated with suitable packaging apparatus (not shown).
A weight responsive transducer 22 (FIGURE 2) is associated with a scale mechanism 23 for the scale conveyor 17, and an electro-mechanical lift head mechanism 24 is similarly associated with this scale conveyor so as to preclude the scale mechanism 23 from being actuated during selected periods of a cycle of operation as dictated by the control circuit 11. As hereinafter described in detail, the lift head effectively replaces the spring action in the scale conveyor to allow the scale conveyor to be rapidly returned to a weight responsive condition after a weight measurement has been effected.
In the illustrated embodiment, the position of the rotary cutting blade 14 is detected by a pair of transducers 26, each of which preferably includes a xedly mounted glass reed switch 26a having a pair of normally open contacts that are closed by a magnetic switch actuating element 2Gb that is secured to the driven shaft 16a associated with the cutting blade 14. One of the glass reed switches 26a is located so that the contacts of the glass reed switch are transiently closed at a time when the rotary cutting blade is positioned so that it is appropriate to advance the product feed carriage and accordingly the product P and thereby initiate a slicing operation. The
glass reed switch of the other transducer 26 is situated so that the contacts thereof are transiently closed when the rotary cutting blade is in a position whereat a complete slice has just been removed from the product P (i.e. a time when it would be appropriate to render the product weight carriage transiently ineffective during an operating cycle).
Those skilled in the art will be generally familiar with various of the structural components of the apparatus since such components are presently employed in forms of commercially available food product slicing equipment. For a more detailed treatment of various of these structural components of the apparatus lil, reference is made to disclosures such as the patent to Dahms et al., Patent No. 3,010,499 and patents referenced therein. Notwithstanding other of the specific structural details, it is preferred that the apparatus of the present invention include a multiple conveyor arrangement (ie. the independently operable, variable speed scale conveyor 17, the variable speed intermediate conveyor 19 and the constant speed take-away conveyor 21), the promptly responsive product feed carriage mechanism 13, and the control circuit 11 which selectively dictates the operation of these vari ous components to insure that accurate weight groups of sliced product are automatically yielded by the apparatus and supplied via the conveyor 21 to suitable packaging means.
In this latter connection, the control circuit 11 preferably includes a signal source 31 such as an oscillator circuit that produces a substantially constant output signal. This output signal is supplied to the transducer 22 associated with the scale mechanism 23, to a rough weight signal circuit 32, and to a weight difference signal circuit 33. The transducer 22 is preferably a conventional form of linear voltage differential transformer including a primary winding and a split secondary winding which is coupled to the primary winding by a movable coupling Y element that is physically joined to the scale. In response to the accumulation of sliced product on the scale conveyor 17, the transducer 22 supplies a signal through a signal path 22a to the input of the rough weight signal circuit 32. This signal is received by the input circuitry of the rough weight signal circuit 32 along with the control circuit signal that is supplied to this same circuitry through a signal path 31a from the control circuit signal source 31.
In accordance with the present invention, the input circuitry of the rough weight signal circuit 32 is conditioned to respond to a preselected light weight accumulation of sliced product on the scale conveyor 17 (eg. an accumulation of approximately l5 ounces of the sliced product when slicing discrete one pound groups). On the other hand, the input circuitry for the weight difference signal circuit 33 is conditioned to yield a signal that is indicative of the difference in the weight of the sliced product that is actually accumulated on the scale conveyor and the desired final weight (eg. 16 ounces). Assuming that a complete slicing operation has just been initiated, the rough weight signal circuit 32 continuously monitors the output from the transducer 22. When an amount of sliced product having a weight equal to or greater than the preselected light weight is deposited on the scale conveyor 17, the input circuit of the rough weight signal circuit produces a signal indicative of the occurrence of this condition. This output signal is fed to the weight difference signal circuit 33 through a signal path 32a along with the signal that is continuously applied to the circuit 33 by the control circuit signal source 31 through signal path 31b. In addition, the rough weight signal circuit 32 indicates the accumulation of the preselected light weight of sliced product on the scale conveyor 17 by supplying an output signal through a signal path 32h to a time delay circuit 34.
Upon receipt of this signal and assuming the normal operational mode of the apparatus 11i and the associated control circuit 11, the time delay circuit initiates the running of consecutive first and second delay periods and supplies operating signals to various of the control means for the operative components of the slicing apparatus 10. More specifically, upon receipt of an output signal from the rough weight signal circuit 32, `the time delay circuit 34 supplies a control signal to the product feed carriage control circuit 35 through a signal path 34a and a control signal to a conveyor motor control circuit 35 through a signal path 34b. Immediately prior to the time that the circuit 34 provides an output signal to the feed carriage control circuit 35 and an output signal to the motor control 36, these control circuits are dictating, respectively, the normal advance of the product P relative to the rotary cutting blade 14 and the driving of the conveyors 17 and 19 at a normal operational speed.
Upon receipt of the output signal from the time delay circuit 3d, the conveyor motor control circuit 36 causes the driving motor 1S and the associated scale conveyor 17 to be `brought to an immediate stop. At the same time, the feed carriage control circuit 35 is conditioned to stop the advancement of the product feed carriage; however, this does not occur until the end of slice transducer 26 indicates that the slicing operation then in progress is completed.
After these components of the apparatus 10 are rendered transiently ineffective for the first delay period dictated by the time delay circuit 34, the vibratory movement of the scale conveyor 17 due to the impact effect of slices delivered thereto from the rotary slicing blade ceases to exist. Consequently, when the final reading of the actual weight of the sliced product accumulated on the scale conveyor is effected, this reading is uneffected by such misleading impact variations.
In this connection, the final reading of the weight of the accumulated sliced product is effected during the sec ond time delay period immediately upon termination of the first time delay period. Accordingly, as the first delay period times out (ie. due to variations in the conductive state of components within the time delay circuit 34, as hereinafter more fully set forth), other components of the time delay circuit are rendered eiiective to initiate the running of the second delay period during which the final weight reading is taken. As a result of the final weight reading, an error signal is produced to actuate the slicing apparatus 10 and thereby automatically yield the additional amount of sliced product necessary to bring the then accumulated light weight group on the scale con veyor 17 up to the desired final weight.
During the running of the second time delay period, the output from the time delay circuit 34 maintains the driving motor for the conveyor17 and the product feed carriage in the stopped condition. In addition, the output from the time delay circuit during this period conditions an actual weight error computer circuit 37 for operation so that this error computer circuit produces an error signal that is accurately indicative of the amount of additional sliced product that is needed to complete the sliced group then being processed. When so conditioned for operation, the actual weight error computer 37 senses and responds to the output from the weight difference signal circuit 33 that is supplied to this computer circuit through a signal path 33a. As generally outlined above, the output from the weight difference signal circuit 33 is a signal that represents the actual Weight of the sliced pro-duct on the scale 17 and is indicative of the weight difference between the amount of this accumulated sliced product and the desired final Weight of the sliced product group.
The actual Weight error computer 37 receives the weight difference signal from the circuit 33 -and translates this weight difference signal into an error signal during the second time delay period that is utilized to actuate the feed carriage control circuit 35 through a signal path 37a. This error signal causes the control circuit 37 to be operated (ie. the product P to be advanced) for the period of time necessary to yield the additional amount of sliced product that is demanded to complete a sliced product group having the desired final weight (eg. one pound). However, the error signal produced by the computer circuit 37 is not supplied to the feed carriage control circuit 35 until the second time delay period terminates as reflected by a signal supplied to the computer circuit 37 from the time delay circuit 34 through a signal path 34C.
Upon termin-ation of the second time delay period (i.e. the delay period during which the necessary error signal is computed), an output signal is supplied to the product feed carriage control circuit 35 from the circuit 34 to condition the product feed carriage for operation. However, the product feed carriage is not rendered effective until the beginning of slice transducer 26 is actuated to indicate that the rotary slicing blade 14 is properly positioned to initiate a slicing operation. When the beginning of slice transducer 26 is so actuated, a signal is coupled to the actual weight error computer 37 to initiate the read out of the error signal. The product feed carriage mechanism 13 is also actuated at this time and remains in an actuated state to advance the product to the rotary slicing blade 14 until the error signal terminates at which time the product feed carriage is immediately halted.
A typical operational cycle of the apparatus is concluded at the end of the error signal as sensed and responded to both by the conveyor motor control circuit 36 and a lift head circuit 38 that controls the operation of the lift head mechanism 24. More specifically, when the error signal is conclude-d, the motor control circuit 36 is provided with an input signal through a signal path 37C. This causes the motor control circuit to initiate high speed operation of the driving motors 18 and 2t) and, accordingly, of the conveyors 17 and 19. As a result, the accurate weight, sliced product group that has just been yielded by the apparatus 10 is at least partially removed from the scale conveyor 17 and delivered to the intermediate conveyor 10 so that a subsequent slicing operation can be initiated without undue delay. The high speed operation of the conveyors 17 and 19 also facilitates the adequate spacing of the individual groups of the sliced product. In this connection, it is preferred that the conveyors 17 and 19 be operated in the high speed mode for a period of time that is preset in the motor control circuit 36, as hereinafter more fully set forth.
The spacing of the groups of sliced product is further effected by the operation of the lift head mechanism 24 in response to the signal that is supplied to the lift head control circuit 38 from the actual weight error computer 37 through a signal path 37C. Preferably, this lift head control circuit also includes timing circuitry so that the lift head mechanism is loperated for a period of time greater than that during which the high speed operation of the conveyors 17 and 19 occurs. The reason for this preferred mode of operation is that the reversion of the scale conveyor 17 from a high speed operational mode to the normal speed operational mode could perhaps be accompanied by fluctuations of the scale mechanism. Inasmuch as this might cause a cycle of operation to be prematurely initiated, the lift head mechanism 24 precludes the scale mechanism from sensing any such mechanical fluctuations.
As the operating cycle of the lift head control circuit 38 is terminated, the lift head mechanism is deactivated and rapidly returns the scale conveyor to a weight responsive conditioning and the entire control circuit 11 is conditioned for a subsequent cycle of operation. However, during the period when the lift head mechanism is in an actuated condition, the lift head control circuit 33 creates inhibiting conditions in the control circuit which precludes any of the operational components from being rendered effective prematurely.
Before treating the control circuit 11 in detail, it should be understood that the present invention contemplates an accurate and sophisticated approach to .the production of accurate weight groups of sliced products (eg. food products such as bacon, cold cuts, etc.). Consequently, a typical operational cycle of the apparatus 10 as dictated by the control circuit 11 is preferably carried out so that the error signal generated by the actual Weight error computer circuit 37 dictates the production of a commercially acceptable partial slice (i.e. the apparatus is operated within less than one slice limits). While this obviously depends upon the `weight difference between the light weight condition to which the input circuitry of the rough Weight signal circuit 32 is set to respond, companies marketing prepackaged groups of sliced food products are concerned with eicient, low cost production operations and with consumer acceptance of their product. In this regard, it is important to yield an acceptable product without constantly producing overweight groups and the present invention is suited to satisfy these requirements. That is, the actual weight error computer circuit 37 can be preconditioned so that it will produce at least a minimum error signal each time it is actuated so as to yield at least a minimum fractional slice that will satisfy consumer demand without substantial give-away on overweight product groups. Obviously, there will be those product groups which will be of a weight such that no additional sliced product will be added to the group even when the circuit is conditioned to operate in this latter mode.
The control circuit 11 and the various signal paths which are diagrammatically illustrated in FIGURE 1 are depicted in full and complete detail in FIGURES 2-7. With specific reference to FIGURE 2, the stationarily mounted, split secondary Winding 22a of the transducer 22 is coupled to the stationarily mounted, primary Winding 22b by a movable coupling element 22C that is directly connected to the scale head for movement therewith. The normal physical relationship of these elements is such that the signal supplied to the primary winding 22b from the signal source 31 causes a maximum signal to be produced by the transducer 22 when there is no sliced product on the scale conveyor 17. However, as the scale head moves in response to sliced product being deposited thereon, the coupling between the primary and split secondary winding is directly varied to yield a signal, the magnitude of which reflects the weight of the accumulated sliced material. v
More specifically, in addition to the primary winding of the linear voltage differential transformer that constitutes the transducer 22, the output from the signal source 31 supplies one input to a unit gain difference amplifier 42 in the rough Weight signal circuit 32 through a weight difference potentiometer 44. The output from the oscillator 40 is also connected through an actual weight potentiometer 46 and is supplied to one input of a difference amplifier 48 in the weight difference Signal circuit 33. The winding 22a supplies the other input to the amplifier 42, and the output of this circuit supplies the other input to the amplifier 48.
The weight difference potentiometer 44 in the input to the rough weight signal circuit 32 allows the input signal to this circuit from the source or `oscillator 31 to be selectively preset. Accordingly, circuit conditions are established so that the amplifier 42 in the rough weight signal circuit responds to and produces a signal indicative of the accumulation of at least the preselected light weight amount of sliced product on the scale conveyor 17. Specically, an adjustment is preferably made in the potentiometer 44 so that the amplifier 42 responds to an accumulated weight which is approximately one ounce light when one pound groups of sliced products are being produced by the apparatus 10. Consequently, when a given slicing cycle progresses to the point where this preselected light Weight is accumulated on the scale, the rough weight signal circuit 32 is placed in a conductive state such that a conventional Schmitt trigger circuit 53 in the output thereof produces an output pulse. In this latter connection, the output from the difference amplilier is amplified and fed through a conventional rectifier and lter circuit 51 that yields a D.C. signal which only changes the conductive state of the Schmitt trigger circuit when the amplitude of this signal is above a preset level. The output pulse from the circuit 53 is supplied to the time delay circuit 34 to cause the scale conveyor and the product feed carriage to be brought to a rapid stop.
More specifically, the output signal from the circuit 32 is fed through an inhibitor 56 to trigger a one-shot multivibrator 58 in the time delay circuit 34. The output pulse from the one-shot multivibrator 53 dictates the running of the rst time delay period and, in the illustrated embodiment, this pulse has a duration of approximately 226 milliseconds. This time delay pulse is supplied through an or circuit 60, and emitter follower 62 and is fed to an output lead `64. The output lead 64 is connected to an or circuit 6 in the conveyor motor control circuit 36. The output of the or circuit 66 is supplied to a stop input 67 of a variable speed motor drive circuit 70 and renders the motor 18 for the scale conveyor 17 transiently ineffective. In the absence of this signal, the motor for the scale conveyor runs this conveyor at a normal speed.
The lead 64 is also connected to an or" circuit 74 in the feed carriage control circuit 35, and the signal developed on the lead 64 is supplied through this or circuit to an inhibitor circuit 78. At various stages of an operating cycle, the inhibitor 78 is in an inhibit condition and does not respond to the signal from the or circuit 74 because a negative signal is supplied to the control lead 80 thereof from an inhibitor circuit 82. The inhibit signal from the inhibitor 82 is present until the position of the cutting blade 14 is such that the contacts of the end of slice switch 26a are closed indicating that a full slice has been completed. When the end of slice switch contacts close, the negative input that :is supplied to the inhibitor 82 is grounded through these closed contacts and a resistor 83. As a result, the signal from the or circuit 74 is supplied through the inhibitor circuit 78 and is fed to and changes the conductive state of a flip-flop circuit 86. The output of the flip-flop circuit 86 controls the stop-start valving mechanism 15 associated with the product feed carriage 13a. The valving mechanism 1S stops the product feed carriage when the inhibitor 78 supplies a signal from the or circuit 74, To insure the rapid `stop and start operation of the product feed carriage 13a, the hydraulic valving mechanism 15 is selected to be fast acting, having a preferred cycling speed of 7-9 milliseconds.
From the foregoing it will be appreciated that the control circuit senses the accumulation of the preselected light weight on the scale conveyor 17 and responds by immediately stopping the scale conveyor and by halting the product feed carriage when the slice in progress has been completed and before another slicing operation is commenced. After these operations are completed and the first delay period ends, the control circuit 11 initiates the actual weight determination and error signal generating cycles. In this connection, the output from the one-shot multivibrator S is also supplied through an inverter 88 to a signal end detector (S.E.D.) 90, which provides (by differentiation, an output pulse corresponding to the end of the first delay period (i.e. the 226-millisecond duration of the output pulse from multivibrator 58). The output of the signal end detector 90 is fed through an inhibitor 92 to actuate another one-shot multivibrator 94 and initiate the second time delay period. That is, the output from the multivibrator 94, which has a duration of approximately 25 milliseconds, controls the actua weight read-time period. Since the signal end detector 90 pro vides an output only at the end of the output pulse from the multivibrator 58, the beginning of the output pulse from the multivibrator 94 occurs approximately 226 mil- 8 liseconds after both the scale conveyor motor 72 and the feed mechanism 22 have been halted. This 226-millisecond delay period after the scale conveyor is halted allows the scale to fully come to rest thereby eliminating potential errors in the actual weight scale reading due to mechanical vibrations stemming from the impact effect of the slices on the scale conveyor 17.
Considering the operation of the control circuit 11 during the accurate weighing cycle, the output of multivibrator 94 goes to an input of the or circuit 60, passes through this or circuit and the emitter follower 62 and is supplied to the lead 64. This signal on the lead 64 maintains the product feed mechanism 13a and the scale conveyor in the stopped condition created initially by the output from the multivibrator 58 at the start of the first time delay period.
The output from the multivibrator 94 also goes through an emitter follower 96, a hold-over circuit 93, and a diode to the inhibit lead 102 of the inhibitor S6. Preferably, the hold-over circuit 98 is a capacitive network, which when charged prevents the further rough weight triggering of the multivibrator 58 until a complete weighing cycle is completed. Finally, the output from the multivibrator 94 is fed through a lead 104 to a voltage to time (V-T) converter circuit 106 in the actual weight error computer 37. The V-T converter circuit 106 takes the difference weight signal supplied from the weight difference signal circuit 33 through the lead 136 and converts it into an error signal that actuates the product feed mechanism 13a for an accurate time period suiiicient to slice the needed additional weight of material. The additional weight error signal is generated after the termination of the 25-millisecond delay period, during which time this error signal is computed by the circuit 106. High operational accuracy in the production of the signal is achieved because errors due to vibrations and other sources are integrated in the V-T converter circuit over the read-time period, e.g., an average weight reading for` the entire 25-millisecond period is produced.
A suitable voltage to time converter circuit 106 is of the type disclosed in Patent No. 3,162,326. This circuit employs a transformer having a substantially rectangular hysteresis loop magnetic core. The circuit functions to integrate the volt-seconds of the input signal during the read time, and the output error signal is produced during the time it takes to reestablish initial core conditions. As the read time is a constant 25 milliseconds, the error time pulse is directly proportional to the integrated input voltage, i.e., the averaged weight difference measurement.
A signal end detector (S.E.D.) 110 in the time delay circuit 34 also responds to the end of the 226-millisecond period and produces an output pulse that is supplied through a diode 112 to a lead 114. The lead 114 transmits this pulse to a conventional flip-flop circuit 116 in the motor control circuit 36 and causes this circuit to change conductive states so that a signal is fed through a diode 118 to one of the two inputs of a nor circuit 122. This signal at one input of the nor circuit 122 prevents any output signal from being produced. As a result, an emitter follower circuit 134 cannot be actuated to supply a signal to the lead 124. As will be understood from the disclosure contained in said Patent No. 3,162,- 326 and from a consideration of the schematic of FIG- URE 5, the computed error signal cannot be read from the converter circuit 106 until a read out signal is supplied to this circuit through the lead 124. Therefore, the error signal is not derived from the computer 37 until the flip-dop circuit 116 again changes state as hereinafter fully described.
At the end of the second delay period defined by the operation of the multivibrator 94, the product feed carriage and scale conveyor stop signal is removed from the output lead 64 of the time delay circuit 34 and is no longer applied to the or circuit 74 in the product feed carriage control circuit 35. Therefore, the ip-iiop circuit is conditioned to be reset and actuate the valving mechanism into the start position. However, this action cannot take place until the negative potential supplied to the input of the inverter 128 is removed by the closing of the beginning of slice switch contacts (i.e. indicating that the blade 14 is properly positioned to begin slicing a full slice). When the mechanism 15 is actuated, the product feed carriage is advanced and continues to be advanced until the end of the error signal. During this time, the necessary additional slice is produced to bring the Weight of the sliced group up to the desired final weight.
When the beginning of slice switch 26a is actuated to initiate the nal slicing operation, the inverter 128 provides a signal through a lead 132 to reset the flip-flop circuit 116 in the motor control circuit 36. When this occurs, the aforedescribed blocking signal at the one input of the nor circuit 122 is removed. The nor circuit 122 then provides a signal to the lead 124 through the emitter follower 134 and this signal actuated the V-T converter so that the error signal is read out. In accordance with the invention, the error signal from the converter (i.e. a negative output pulse) is supplied through a lead 138, an arnplifier 140, an inhibitor circuit 142, and to an output lead 146. The lead 146 provides a stop signal input to the variable speed motor drive circuit 7d so as to hold the scale conveyor 17 in the stopped condition while the weight correction is being made.
In the brief interval between the end of the time delay period defined by the multivibrator 94 and the occurrence of an output from the feed carriage control circuit 35 through the lead 132, the iiip-op circuit 116 provides no input to an inverter 148 in the motor control circuit 36. Therefore, the inverter 148 provides an output signal through the or circuit 66 to provide a stop signal for the motor 1S during this brief time interval.
The termination of the error signal on the output lead 13S of the V-T converter 106 is responded to by a signal end detector (S.E.D.) 15). The output from the detector 150 is fed to a second (high speed) input 154 of the motor drive circuit 70 through a lead 152. The motor drive circuit 70 thereupon causes the conveyor 19 and scale conveyor 17 to go into a high speed removal mode of operation to quickly carry the completed and accurate weight sliced group at least partially off of the scale conveyor.
In accordance with the present invention, the motor drive circuit 70 preferably incorporates an adjustable self-timing network including an externally adjustable impedance element so that the high speed operation of the drive motors 1S and 2G of the conveyors 17 and 19 can be selectively varied. Because of the self-timing feature, the high speed operation of the motors 18 and 20 terminates automatically and the conveyors 17 and 19 return to their normal advancing rate independent of the operation of the remaining portion of the control circuit 11.
The signal supplied to the lead 154 (ie. the output from the signal end detector 150) is also fed to the input of a one-shot multivibrator circuit 156 in the lift head control circuit 38. When supplied with this signal, the multivibrator 156 is actuated into an alternate conductive state for a period of time dictated by the components which comprise the multivibrator, When driven into the alternate conductive state, the multivibrator circuit 156 produces an output signal that brings the weight correction portion of the operating cycle to a halt. At the same time, the lift head mechanism 24 is actuated lby the output from the multivibrator circuit so that adequate spacing of successive sliced -groups is achieved. Obviously, the high speed operation of the conveyors 17 and 19 complements the operation of the lift head mechanism 24 in yielding the necessary spacing between the successive groups of sliced product. However, the timing circuitry of the motor drive circuit 7) preferably times out to halt the high speed operation of the conveyors prior to the time that the lift head is again deactuated. As previously pointed out, this is effected so that mechanical disturbances, which can occur when the conveyors return to their normal speed operation, are not transmitted to the responsive scale mechanism 23.
Considering the termination of an operating cycle, the multivibrator circuit 156 supplies a signal through the emitter followers 160 and 162 and through a lead 164 so that an inhibit signal is fed to the inhibitor 82 in the feed carriage control circuit 35. At the same time, this signal is fed through the or circuit 74 and is supplied to the input lead of the inhibitor circuit 78. The signal that is supplied through the inhibitor circuit 78 actuates the flip-flop circuit 86 so that the valving mechanism 15 is activated and the product feed carriage is brought to a stop. Consequently, the carriage feed mechanism 13 immediately interrupts the advancement of the product P to the rotary slicing blade 14.
Although the advance of the product to the blade is immediately interrupted independent of the actuation of the end of slice transducer switch 26a, the previously established operating conditions for the circuit 11 and apparatus 1G are preferably such that the partial or feathered out slice that is yielded when the product feed carriage is abruptly stopped nevertheless is an acceptable slice. Of course, the V-T converter 106 can be preset to insure that a minimum error signal is produced to yield a slice of at least Ipreselected minimum dimensions. In the alternative, the operation of the valving mechanism 15 at the end of the error signal can be tied in with the closing of the end of slice switch 26a. The choice in this matter is dictated `by the self-imposed requirements of the producer and packager of the sliced product.
In addition to bringing the product feed carriage mechanism 13a to a halt, the output of the emitter follower 162 provides an inhibit signal to the V-T converter circuit 106. In this connection, the output from the emitter follower 162 is fed through an inverter circuit 166 and is supplied to the input of a signal end detector (SJ-3D.) 16S in the actual weight error computer 37. When the multivibrator circuit 156 reverts to its normal conductive state, the signal end detector 168 responds to provide a signal to the inhibit lead of the inhibitor circuit 142. This inhibiting signal prevents any signal from being supplied from the V-T converter 156 at the beginning of the next succeeding cycle of operation.
With reference to the actuation of the lift head mechanism, the output from the emitter follower 160 is fed to an inverter circuit 179 and it is the output of this circuit that dictates the operation of the lift head mechanism 25. Although the lift head is normally in a deactuated state, the output of the inverter causes this electromechanical device to be rendered effective in a conventional manner so as to preclude the scale from being operated during the period that the multivibrator 156 is in the alternate conductive state. When the multivibrator 156 times out and returns to the normal conductive state, the lift head mechanism 24 is deactuated and the entire control circuit is conditioned for a subsequent cycle of operation.
In this connection, after a complete slicing operation has terminated as just described, a subsequent operating cycle has started automatically. This subsequent cycle of operation is conditioned to be initiated when the multivibrator circuit 156 returns to its normal conductive state thereby removing the stop signal from the lead 164 at the input to the or circuit 74. That is, when the multivibrator circuit 156 times out, 'the valving mechanism actuates the product feed carriage to the start condition and a slicing cycle is initiated when the beginning of slice switch 26a is closed. Since the lift head mechanism is deactuated at this time, the scale conveyor 17 is again weight responsive. Moreover, because there is no signal input to the or circuit 66 in the motor control circuit 36, the scale conveyor 17 is running at the normal advancing rate and the sliced product accumulates there- 1 1 on in shingled fashion until a rough weight signal is generated by the circuit 32 to initiate the error correction phase of the operating cycle as recited above.
If the accumulated sliced and shingled product that causes the generation of the rough Weight signal has a weight equal to or in excess of the desired final weight, the control circuit 11 responds to this condition by precluding the occurrence of the weight correction phase of the operating cycle. That is, the control circuit 11 responds to this condition by precluding the further actuation of the product feed carriage and no additional sliced product is supplied to the scale conveyor.
More specifically, if the weight of sliced product accumulated on the scale conveyor 17 is equal to or slightly in excess of the desired final weight, the output signal from the weight difference signal circuit 33 has a magnitude such that the inhibitor circuit 92 in the time delay circuit 34 is actuated. Accordingly, the `multivibrator circuit 94, the operation of which defines the second time delay period, is prevented from being triggered and the second time delay period is never initiated. In addition, an over-Weight detector circuit 178 in the time delay circuit 34 senses the termination of the first time delay period as dictated by the multivibrator circuit 58 and also senses that the second time delay period does not occur (Le. the multivibrator circuit 94 is not triggered into conduction).
As shown, one input to the over-weight detecing circuit 17S is connected to the output of the multivibrator circuit 94 while the other input lead is connected through a signal end detector circuit 18) to the output of the multivibrator circuit `58. Upon sensing the aforedescribed conditions, the over-weight detecting circuit produces an output signal that is supplied to the high speed lead 154 of the motor drive circuit 70. This signal, which causes the motor drive circuit to be operated so that the conveyors 17 and 19 are actuated into the high speed operating mode, corresponds to the signal that is supplied from the signal end detector 150 in the error computer circuit 37 'during a normal cycle of operation. After an output signal is produced by the over-weight detector circuit 178, the remaining portion of the operating cycle corresponds to the concluding phase of a normal operating cycle when an error correction signal has been generated and just terminated.
With reference to FIGURES 'St-8, the various individual circuits which comprise the control circuit 11 are conventional circuits, and the components which comprise these circuits are specified in detail. These component values reflect the values employed in one embodiment of the control circuit so that the automatic production of accurate weight groups of sliced food products is effected by the apparatus as recited above. With specific regard to FIGURES 3-7, it should be understood that a capacitor designation such as 10/20 refers to l() mfd. 20 V.D.C., a designation such as .001 refers to .001 mfd. 200 V.D.C. and that all resistors are rated at 1/z-watt unless otherwise indicated.
It will be appreciated that the foregoing description of the invention is merely illustrative of one preferred structural embodiment and of a preferred mode of. carrying out the production of accurate weight groups of sliced food products. It will also be appreciated that various modifications can be made both in the specific circuit arrangements and in the manner in which the production of the sliced groups is effected. For example, modifications of the apparatus and/ or control circuit might be effected so that a preselected number of slices is yielded by the apparatus 10 after which time a weighing operation is effected to generate the production of the necessary error signal. While operating in this fashion, the apparatus produces the preselected number of slices and this operation is followed by the accurate weighing and weight correction phases as previously described. Obviously, the rough weight sensing operation is preferred since this technique inherently compensates for variations in the characteristics of the product (e.g. density, size, etc.).
In this connection, when a cycle of operation including the aforedescribed rough weight sensing phase is carried out, the amount of sliced product which must be supplied to that already accumulated on the scale conveyor 17 is relatively small in comparison to the amount that has already been produced. Consequently, variations of the type noted above have little effect on the accuracy of the final sliced amount. Moreover, and as 4previously described, adjustments in the output from the V-T converter 106 can be made to compensate for any such variations that might exist or be anticipated and which might otherwise effect the final weight accuracy.
With reference to the preconditioning of the circuit 11 and/or making esired adjustments in the operating characteristics thereof after the apparatus has been carrying out slicing operations for a period of time, the potentiometers 44 and 46 can both be adjusted as desired. However, if after a period of slicing, it appears that the rough weight groups are unduly under the final desired weight or so close to it as to render the final slicing operation almost superfluous, compensating adjustments are preferably made only in the potentiometer 44. In this connection, corrective adjustments in the potentiometer 44 at the input to the rough weight signal circuit 32 also yield compensating changes in the difference weight signal circuit 33.
From the foregoing, it will be appreciated that the present invention provides improved means for carrying out the production of accurate weight groups of sliced food products. The invention is particularly suited to the meat packing industry but has obvious utility in other elds as Well. In this regard, the various changes in and/or modifications of the invention necessary to adapt it for use in a particular environment and/or to facilitate carrying out a particular form of slicing operation are clearly contemplated by the foregoing and by the accompanying claims.
What is claimed is:
1. Apparatus for automatically effecting the production of groups of sliced product of a desired final weight; which apparatus comprises a slicer; product feed' means for selectively advancing said product to said slicer; scale means for receiving slices of said product as said feed mechanism advances said product to said Slicer; and control means connected to said scale means and said product feed means for selectively dictating the operation thereof, said control means including means for sensing the accumulation on said scale means of a partial product group having at least a preselected weight and for producing a signal in response to the accumulation of at least said preselected weight, `means connected to said responsive means for interrupting the operation of said product feed means in response to a signal from said -responsive means, means actuated by the signal from said responsive means for effecting an accurate weight measurement of said partial product group after a preselected period of delay, means for converting said accurate weight measurement into a control signal, and means for actuating said product feed means for a preselected period of time in accordance with additional product to said partial product group and thereby yield a completed group of sliced product having the desired final weight.
2. Apparatus for automatically effecting the production of groups of sliced -product of a desired final weight; which apparatus comprises a slicer; Aproduct feed means for selectively advancing said product to said slicer; scale means for receiving slices of said product as said feed mechanism advances said product to said slicer; and control means connected to said scale means and said product feed means for selectively dictating the operation of said scale means and of said product feed' means so that an said control signal so as to add` initial and a final slicing function isnormally effected during each cycle of operation to yield a sliced product group of the desired final weight, said control means including means for sensing the accumulation on said scale means of a partial product group having at least a preselected weight and for producing a signal in response to the accumulation of at least said preselected weight, means connected to said responsive means for transiently interrupting the operation of said product feed means and for terminating said initial slicing function in response to a signal from said responsive means, means actuated by the signal from said responsive means for effecting an accurate Weight measurement of said partial product group after a preselected period of delay, means for converting said accurate weight measurement into a control signal, means for actuating said product feed means for a preselected period of time in accordance with said control signal to effect said' final slicing function so as to add additional product to said partial product group and thereby yield a completed group of sliced product having the desired final Weight, and means responsive to the sensing of the desired final Weight after said initial slicing function for precluding said final slicing function from being carried out.
3. Apparatus for automatically effecting the production of groups of sliced product of a desired final weight; which apparatus comprises a slicer; product feed means for selectively advancing said product to said slicer; a scale conveyor for receiving slices of said product as said product feed means advances said product to said slicer; a second conveyor situated to receive sliced product groups from said scale conveyor; and control means connected to said conveyors and said product feed means for selectively dictating the operation thereof, said control means including means for sensing the accumulation on said scale conveyor of a partial product group having at least a preselected weight and for producing a signal in response to the accumulation of at least said preselected weight, said preselected weight being less than said desired final Weight by a selectively variable amount, means connected to said responsive means for interrupting the operation of said product feed means and for stopping said scale conveyor in response to a signal from said responsive means, means actuated Aby the signal from said responsive means for effecting an accurate weight measurement of said 4partial product group after a preselected period of delay, said period of delay being sucient to allow any vibration of said scale conveyor to cease, means for converting said accurate weight measurement into a control signal, means for actuating said product feed means for a preselected period of time in accordance With said control signal so as to add additional product to said partial product group and thereby yield a cornpleted group of sliced product having the desired final weight, and means for driving said conveyors at a high speed rate to quickly remove at least a lportion of a completed group from said scale conveyor in anticipation of a subsequent slicing operation.
4. Apparatus for automatically effecting the production of groups of sliced product of a desired final weight; which apparatus comprises a slicer; product feed means for selectively advancing said product to said slicer; a scale conveyor for receiving slices of said product as said product feed means advances said product -to said slicer; and control means connected to said scale conveyor and said product feed means for selectively dictating the operation of said scale conveyor and of said product feed means so that an initial and a final slicing function is normally effected during each cycle of operation to yield a sliced product group of the desired final Weight, said control means including means for sensing the accumulation on said scale conveyor of a partial product group having at least a preselected weight and for producing a signal in response to the accumulation of at least said preselected weight, means connected to said responsive means for transiently interrupting the operation of said scale conveyor and said product feed means and for terminating said initial slicing function in response to a signal from said responsive means, means actuated by the signal from said responsive means for effecting an accurate weight measurement of said partial product group after a preselected period of delay, means for converting said ac curate weight measurement into a control signal, means for actuating said product feed means for a preselected period of time in accordance with said control signal to effect said final slicing function so as to add additional product to said partial product group and thereby yield a completed group of sliced product having a desired final weight, means responsive to the sensing of the desired final weight after said initial slicing function for precluding said final slicing function from being carried out, and means for actuating Said scale conveyor into a high speed operational mode to each group of said desired final weight rapidly away from said slicer.
5. Apparatus for automatically effecting the production of groups of sliced product of a desired final Weight; which apparatus comprises a slicer; product feed means for selectively advancing said product to said slicer; a scale conveyor for receiving slices of said product as said product feed means advances said product to said slicer; a second conveyor situated to receive sliced product groups from said scale conveyor; and control means connected to said conveyors and said product feed means for selectively dictating the operation thereof, said control means including means for sensing the accumulation on said scale conveyor of a partial product group having at least a preselected weight and for producing a signal in response to the accumulation of at least said preselected Weight, said preselected weight being less than said desired final weight by a selectively variable amount, means connected to said responsive means for interrupting the operation of said product feed means and for stopping said scale conveyor in response to a signal from said responsive means, means actuated by the signal from said responsive eans for effecting an accurate Weight measurement of said partial product group after a preselected period of delay, said period of delay being sufiicient to allow any vibration of said scale conveyor to cease, means for converting said accurate weight measurement into a control signal, means for actuating said product feed means for a preselected period of time in accordance with said control signal so as to add additional product to said partial product group and thereby yield a completed group of sliced product having the desired final weight, means for driving said conveyors at a high speed rate for a preselected period of time to quickly remove at least a portion of a completed group from said scale conveyor in anticipation of a subsequent slicing operation, and means for transiently precluding said product feed means from being actuated and for rendering said scale conveyor nonresponsive to weight and mechanical fluctuations until after said high speed operation of said conveyors is cornpleted.
6. Apparatus for automatically effecting the production of groups of sliced product of a preselected final Weight amount comprising:
a slicer;
product feed means for selectively advancing said product to said slicer;
scale means for receiving slices of said product as said feed means advances said product to said slicer;
first electronic control means connected to said scale means and said product feed means for halting said product feed means when an apparent weight of sliced product approximately, but less than, said preselected weight is deposited on said scale;
second electronic control means for comparing the weight of said product on said scale with said preselected final Weight amount to develop an elec- 15 tronic control signal indicative of the difference therebetween;
and means for utilizing said second control signal for slicing only a further amount of said product as is necessary to attain said preselected nal weight amount.
7. The combination according to claim 6 in which said scale means also serves as a conveyor to transport said sliced product at a given rate and further including third electronic control means for momentarily electing a substantial increase in the rate of transport of said conveyor in response to accumulation of said sliced product of said final Weight amount thereon.
`8. The combination according to claim 7 and further comprising:
means for applying an inhibiting signal to said scale at the commencement of slicing each new product group to prevent effective weight measurement thereby for a predetermined time interval which is less than the time required to slice an amount of product corresponding to said approximate weight.
9. The combination according to claim 8 and further comprising:
16 time delay means for preventing effective measurement of the weight value of said sliced product for a predetermined time interval on said halting of said advancing means to thereby avoid possible errors in true weight attendant depositing of said slices on said scale means.
References Cited UNITED STATES PATENTS 2,502,380 3/ 1950 Howard 177-120 2,592,083 4/1952 Vagirn 177-120 2,870,810 1/1959 Folk 146--94 2,898,962 8/1959 Burnett 146--94 2,969,099 1/ 1961 Gillman 146-94 2,989,104 6/ 1961 Good 146--94 3,010,499 11/1961. Dahms et al. 146-94 3,015,350 1/1962 Reichel et al. 146--94 3,027,924 4/ 1962 Gillman 146-94 3,099,304 7/ 1963 Monsees et al 146--94 W. GRAYDON ABERCROMBIE, Primary Examiner.

Claims (1)

1. APPARATUS FOR AUTOMATICALLY EFFECTING THE PRODUCTION OF GROUPS OF SLICED PRODUCT OF A DESIRED FINAL WEIGHT; WHICH APPARATUS COMPRISES A SLICER; PRODUCT FEED MEANS FOR SELECTIVELY ADVANCING SAID PRODUCT TO SAID SLICER; SCALE MEANS FOR RECEIVING SLICES OF SAID PRODUCT AS SAID FEED MECHANISM ADVANCES SAID PRODUCT TO SAID SLICER; AND CONTROL MEANS CONNECTED TO SAID SCALE MEANS AND SAID PRODUCT FEED MEANS FOR SELECTIVELY DICTATING THE OPERATION THEREOF, SAID CONTROL MEANS INCLUDING MEANS FOR SENSING THE ACCUMULATION ON SAID SCALE MEANS OF A PARTIAL PRODUCT GROUP HAVING AT LEAST A PRESELECTED WEIGHT AND FOR PRODUCING A SIGNAL IN RESPONSE TO THE ACCUMULATION OF AT LEAST SAID PRESELECTED WEIGHT, MEANS CONNECTED TO SAID RESPONSIVE MEANS FOR INTERRUPTING THE OPERATION OF SAID PRODUCT FEED MEANS IN RESPONSE TO A SIGNAL FROM SAID RESPONSIVE MEANS, MEANS ACTUATED BY THE SIGNAL FROM SAID RESPONSIVE MEANS FOR EFFECTING AN ACCURATE WEIGHT MEASUREMENT OF SAID PARTIAL PRODUCT GROUP AFTER A PRESELECTED PERIOD OF DELAY, MEANS FOR CONVERTING SAID ACCURATE WEIGHT MEASUREMENT INTO A CONTROL SIGNAL, AND MEANS FOR ACTUAT-
US638671A 1967-05-15 1967-05-15 Slicing machine having automatic controls for producing groups of preselected weight Expired - Lifetime US3379233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US638671A US3379233A (en) 1967-05-15 1967-05-15 Slicing machine having automatic controls for producing groups of preselected weight

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US638671A US3379233A (en) 1967-05-15 1967-05-15 Slicing machine having automatic controls for producing groups of preselected weight

Publications (1)

Publication Number Publication Date
US3379233A true US3379233A (en) 1968-04-23

Family

ID=24560964

Family Applications (1)

Application Number Title Priority Date Filing Date
US638671A Expired - Lifetime US3379233A (en) 1967-05-15 1967-05-15 Slicing machine having automatic controls for producing groups of preselected weight

Country Status (1)

Country Link
US (1) US3379233A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3800894A (en) * 1972-09-08 1974-04-02 Werner & Pfleiderer Device for gravimetrically uniformly feeding of components to a mixing device
US3993148A (en) * 1973-11-27 1976-11-23 Werner & Pfleiderer Method and device for supplying a worm machine with material-partial pieces dosed by weight
DE2941829A1 (en) * 1978-10-27 1980-06-04 Chemetron Corp CONTROL CIRCUIT FOR A DISC CUTTING DEVICE
DE3232045A1 (en) * 1982-08-27 1984-03-01 Kurt 4010 Hilden Warnke Apparatus for cutting up an object, in particular for slicing a loaf of bread
DE3332603A1 (en) * 1983-09-09 1985-03-28 Kurt 4010 Hilden Warnke Switching arrangement for controlling the bread feed of a bread-cutting machine
US4548108A (en) * 1983-08-08 1985-10-22 Cashin Systems Corporation Slicing machine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2502380A (en) * 1947-12-12 1950-03-28 Pneumatic Scale Corp Automatic weighing and packaging apparatus
US2592083A (en) * 1946-07-26 1952-04-08 Edward J Vagim Feed control for automatic weighers
US2870810A (en) * 1955-02-09 1959-01-27 Us Slicing Machine Co Inc Automatic shingling or stacking device for a slicing machine
US2898962A (en) * 1957-03-25 1959-08-11 Swift & Co Meat slicing machine control apparatus
US2969099A (en) * 1958-06-30 1961-01-24 Cashin Inc Apparatus for measuring and segregating sliced products from slicing machines
US2989104A (en) * 1955-03-29 1961-06-20 Albert F Goetze Inc Food slice grouping machine
US3010499A (en) * 1956-02-20 1961-11-28 Emhart Mfg Co Automatic slicing machine for a meat product or the like
US3015350A (en) * 1957-10-14 1962-01-02 Swift & Co Bacon slicer having adjustable control of group size
US3027924A (en) * 1959-09-10 1962-04-03 Cashin Inc Measuring and segregating apparatus
US3099304A (en) * 1961-03-06 1963-07-30 Unexcelled Chemical Corp Apparatus for stacking and weighing sliced food products

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2592083A (en) * 1946-07-26 1952-04-08 Edward J Vagim Feed control for automatic weighers
US2502380A (en) * 1947-12-12 1950-03-28 Pneumatic Scale Corp Automatic weighing and packaging apparatus
US2870810A (en) * 1955-02-09 1959-01-27 Us Slicing Machine Co Inc Automatic shingling or stacking device for a slicing machine
US2989104A (en) * 1955-03-29 1961-06-20 Albert F Goetze Inc Food slice grouping machine
US3010499A (en) * 1956-02-20 1961-11-28 Emhart Mfg Co Automatic slicing machine for a meat product or the like
US2898962A (en) * 1957-03-25 1959-08-11 Swift & Co Meat slicing machine control apparatus
US3015350A (en) * 1957-10-14 1962-01-02 Swift & Co Bacon slicer having adjustable control of group size
US2969099A (en) * 1958-06-30 1961-01-24 Cashin Inc Apparatus for measuring and segregating sliced products from slicing machines
US3027924A (en) * 1959-09-10 1962-04-03 Cashin Inc Measuring and segregating apparatus
US3099304A (en) * 1961-03-06 1963-07-30 Unexcelled Chemical Corp Apparatus for stacking and weighing sliced food products

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3800894A (en) * 1972-09-08 1974-04-02 Werner & Pfleiderer Device for gravimetrically uniformly feeding of components to a mixing device
US3993148A (en) * 1973-11-27 1976-11-23 Werner & Pfleiderer Method and device for supplying a worm machine with material-partial pieces dosed by weight
DE2941829A1 (en) * 1978-10-27 1980-06-04 Chemetron Corp CONTROL CIRCUIT FOR A DISC CUTTING DEVICE
US4226147A (en) * 1978-10-27 1980-10-07 Chemetron Corporation Slice control circuit for a slicing machine
DE3232045A1 (en) * 1982-08-27 1984-03-01 Kurt 4010 Hilden Warnke Apparatus for cutting up an object, in particular for slicing a loaf of bread
US4548108A (en) * 1983-08-08 1985-10-22 Cashin Systems Corporation Slicing machine
DE3332603A1 (en) * 1983-09-09 1985-03-28 Kurt 4010 Hilden Warnke Switching arrangement for controlling the bread feed of a bread-cutting machine

Similar Documents

Publication Publication Date Title
US3379234A (en) Methods of effecting slicing operations
US4226147A (en) Slice control circuit for a slicing machine
US3846958A (en) Apparatus for weighing and segregating sliced bacon from a slicing machine
EP0127463B1 (en) Slicing machine
GB1465384A (en) Apparatus for weighing and segregating sliced bacon from a slicing machine
US3379233A (en) Slicing machine having automatic controls for producing groups of preselected weight
US3411388A (en) Integrated sheet production control system
US5042340A (en) Slice thickness control for an automatic slicing machine
US4941375A (en) Slice thickness control for an automatic slicing machine
US4868759A (en) Master position encoder follower system for film feeding means
US4545447A (en) Apparatus for stacking and weighing sliced food products
US3827319A (en) Weight controlled slicing system
US3508591A (en) Control system for solids slicing
US3142323A (en) Method and apparatus for controlling the slicing operation
US4894976A (en) Missing card circuit for a slicing machine
GB962175A (en) Apparatus for stacking and weighing sliced food products
US3797343A (en) Rapid slicing machine
US3667520A (en) Weight controlled slicing system including gross error detecting means
US3670793A (en) Weight controlled slicing system including variable synchronization control
US3905259A (en) Apparatus for stacking and weighing sliced food products
US3267781A (en) Method and apparatus for presetting material consuming machines to adjust product parameters
US3027924A (en) Measuring and segregating apparatus
US4344341A (en) Slicing apparatus
EP0127461B1 (en) A slicing machine
US3499354A (en) Temperature compensated control systems