US3372918A - Apparatus for maintaining pressuretight seal on blast furnace bells - Google Patents

Apparatus for maintaining pressuretight seal on blast furnace bells Download PDF

Info

Publication number
US3372918A
US3372918A US511835A US51183565A US3372918A US 3372918 A US3372918 A US 3372918A US 511835 A US511835 A US 511835A US 51183565 A US51183565 A US 51183565A US 3372918 A US3372918 A US 3372918A
Authority
US
United States
Prior art keywords
bell
opening
supporting
lock
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US511835A
Inventor
Stephen W Wheeler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Republic Steel Corp
Original Assignee
Republic Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Republic Steel Corp filed Critical Republic Steel Corp
Priority to US511835A priority Critical patent/US3372918A/en
Priority to US752400*A priority patent/US3552589A/en
Application granted granted Critical
Publication of US3372918A publication Critical patent/US3372918A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/18Bell-and-hopper arrangements

Definitions

  • This invention relates to apparatus and the process for operation thereof for maintaining a tight seal on bells used in the operation of blast furnaces. More specifically, it relates to apparatus and process for grinding or pulverizing any material which collects on the bell and otherwise prevents close contact of the bell with the bell seat of the hopper with which the bell is intended to make pressure-tight contact.
  • the bell used in preventing escape of the pressurized gas within the blast furnace while the charge is being added is capable of effecting a seal between the bell and the seat against which the bell is intended to rest. This is necessary in order that the desired high pressure can be maintained over a long period of time, that is for the period between relinings of the furnace, which is 2 to 5 years depending on the type of furnace operation.
  • the surface of the bell coming into contact with the bell seat can be kept clean of foreign material, which would otherwise prevent a gas-tight seal, by imparting to the bell just prior to its coming into contact with the seat a small degree of rotation, namely 1-10 degrees, just sufficient to grind together the respective surfaces and thereby clean, grind-or lap the sealing surfaces of the bell and the bell seat of the hopper each time the bell is closed.
  • the manner of imparting the rotation to the bell is particularly timed and. designed to effect the rotation just prior to the contact of the hell with the bell seat thereby effecting the grinding and also using the friction of the surfaces to stop the rotation of the bell.
  • the desired degree of rotation and timing of the rotation is effected by an adjustable slanted cam which presses against a lever arm as the rod supporting the bell moves upward in effecting the closing of the bell.
  • This lever arm is in contact with and appropriately actuates a clutch which effects the turning of the supporting rod for the bell.
  • This clutch is turned by the lever arm. The clutch rotates the supporting rod only during the upper passage of the rod. During the downward passage of the supporting rod the clutch rides freely.
  • the turning of the blast furnace bells for the prior art purpose of distributing the charge as suggested by various references involves the turning of the bell at least 90 between opening and closing the bell, in order to effect more even or uniform distribution of the charge into the blast furnace.
  • the small bell is adapted to turn and effect discharge of its load onto the big bell thereby distributing the charge evenly on the big bell which, upon lowering, discharges the load into the blast furnace.
  • the turning or the rotation of the bell is effected on the auxiliary bell.
  • the charging chute 15 is rotated.
  • the big bell is also rotated, but in this case the big bell has an oblong configuration instead of the conical design generally used, in each sequence of opening and closing of the bell.
  • the purpose for rotating the large bell is likewise to effect a more even distribution of the charge into the blast furnace.
  • the main bell has a diameter of at least about 12 feet and a weight of at least about 15 tons.
  • the bell is supported by a rod of relatively small diameter.
  • the rotation of the rod about its linear axis produces a torque in the rod.
  • the inertia of the bell at rest is not overcome immediately upon turning of the rod at its upper end. Since the hell does not turn immediately, a twisting torsion is created in the rod. Consequently, it is in the last part of the upward movement of the hell that the rotation of the bell is effected. This: rotation occurs just prior to and at the time of contact of the bell with the bell seat.
  • FIG. 1 is a front elevational view of the top part of a blast furnace showing the respective charging devices.
  • FIG. 2 is a perspective view of the rotating means portion of FIG. 1.
  • FIG. 3 is a top cross-sectional view of the rotating means portion of FIG. 1 taken at lines 33.
  • FIG. 4 is an enlarged view of the rotating means portion shown in FIG. 1 showing the adjustable cam and clutch which effect rotation of the supporting rod and large bell.
  • FIG. 5 shows a side elevational view of the adjustable cam and supporting structure taken at line 55 of FIG. 4.
  • hopper 1 is shown as the charge inlet for blast furnace 2 with very large bell 3 shown in position to seal the hopper from the interior of the blast furnace.
  • This large bell 3 is supported by rod 4 which in turn is supported by rod 4' connected to rod 4 through rotating device 5.
  • Lever 6 is connected to the top of supporting arm 4' and is used to raise and lower the bell 3 through supporting rods 4 and 4'.
  • Chute 7 feeds into the top of hopper 1 upon lowering of auxiliary bell 8 supported by sleeve 9 which encircles rod 4.
  • Sleeve 9 and the auxiliary hell are raised and lowered by a means which, for purposes of simplicity, is not shown in the drawing.
  • Funnel 10 feeds into the top of chute 7. The charge is emptied into the chute by a standard type of skip which is not shown in the drawing.
  • lever 11 is fastened to the top of supporting rod 4 by means of overrunning clutch 12.
  • Clutch 12 will turn in one direction by movement of lever 11 to effect rotation of the supporting arm 4 and also bell 3 supported thereby, but when lever 11 is rotated in the opposite direction, the clutch rides freely without turning supporting rod 4.
  • Lever 11 and clutch 12 ride up and down as the bell is raised or lowered.
  • Yoke guide 13 is fixed to an independent support 14 which does not move with any movement of supporting rod 4 or hell 3.
  • Adjustable cam 15 is fastened to the yoke guide 13 by means of crossbar 16.
  • Crossbar 17 has a groove 18 therein by which this crossbar fits around a portion of yoke guide 13 and moves along the length thereof.
  • Lever 11 also has a groove 19 at the end thereof in which adjustable cam 15 is received.
  • a Selsyn transmitter which transmits a signal of rotary motion to'a Selsyn receiver (not shown) located on the furnace operating floor. This device indicates how fast the bell is rotating, and how much it rotates for each closing operation of the bell.
  • the overrunning clutch 12 rotates the large furnace bell, preferably clockwise, as the bell is being closed on the upstroke.
  • the clutch is activated by the lever 11 which is keyed to the driving case of the clutch.
  • the inner hub of the clutch is keyed to the bell rod.
  • the lever 11 actuates the clutch to turn rod 4 only on the upstroke and this in turn as explained above turns the large bell only toward the end of the upstroke.
  • the lever arm rotates in the reverse direction but does not actuate turning of the rod 4 or the hell 3 since the clutch moves freely in this direction.
  • the amount of rotation and the rotary acceleration can be adjusted by changing the slant of the adjustable cam or Wedge bar or even its shape.
  • the rotary motion of the bell is stopped by the sliding of the bell on the bell seat of the bell hopper.
  • This sliding motion cleans, grinds or laps the sealing surfaces of the bell and of the bell seat each time the bell is closed.
  • Coke, lime dust and moisture on the bell serve as lapping compound.
  • This intermittent but uni-directional continual grinding action as the bell is rotated upon coming into closing contact with the bell seat assures a tight seat-seal and minimizes, and often completely overcomes, the possibility of wire-drawing caused by escaping dust ladened gases from high pressure blast furnaces, thereby minimizing or avoiding the resulting erosion described above.
  • the large bell makes about four complete revolutions per week, which involves about 1400 closing operations of the bell. It is found that the bell turns about 1 degree each time it is closed, which means a travelling distance of 1.5 inches on a 15 ft. diameter bell seat. With such operation, the wire-drawing is practically eliminated.
  • the arc of rotation is in the range of 1 to 10.
  • a suitable practice is found to be a rotation of approximately 1.
  • a pressure seal charging apparatus for a pressurized blast furnace comprising:
  • (0) a main bell adapted to close said bottom opening, and movable with respect to said lock, whereby said main bel'l may be in a closed position with respect to said lock during the charging of materials into said materials lock, and thereafter lowered to open said bottom opening and thereby discharge said materials from said lock;
  • auxiliary bell adapted to move upward and downward with said auxiliary bell in its closing and opening operations of said top opening, said auxiliary bell supporting means having a cylindrical opening extending through the length of said supporting means;
  • a rotating means adapted to rotate said main bell as said main bell is being moved upward into contact with the corresponding bell seat, said rotating means being attached to the upper end of said supporting arm for said main bell and adapted to support the main bell and said supporting arm, said rotating means comprising:
  • an overrunning clutch attached to the upper end of said main bell supporting rod and adapted to rotate said supporting rod and thereby said main bell when turned in one direction and not to turn said supporting rod and said main bell when turned in the opposite direction,
  • a pressure seal charging apparatus of claim 1 in which said main bell has a diameter of at least 12 feet and a weight of at least 15 tons.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)

Description

March 12, 1968 s. W. WHEELER 3,372,918
APPARATUS FOR MAINTAINING FEESSURE-TIGHT $EAL 0N BLAST FURNACE BELLS Filed Dec. 6, 1965 2 Sheets-$heet 1 v INVENTOR STEPHEN W. WHEELER ATTORNEY March 12, 1968 s. W WHEELER 3,372,918
APPARATUS FOR MAINTAINING PRES5URE-TIGHT SEAL ON BLAST FURNACE BELLS Filed Dec. 6, 1965 2 Sheets-Sheet 2 INVENTOR STEPHEN W. WHEELER BY WM? g ATTORNEY United States Patent 3,372,918 APPARATUS FOR MAENTAINING PRESSURE- TIGHT SEAL 0N BLAST FURNACE BELLS Stephen W. Wheeler, Youngstown, Ohio, assignor t0 Republic Steel Corporation, Cleveland, Ohio, a
corporation of New Jersey Filed Dec. 6, 1965, Ser. No. 511,835 2 Claims. (Cl. 26627) This invention relates to apparatus and the process for operation thereof for maintaining a tight seal on bells used in the operation of blast furnaces. More specifically, it relates to apparatus and process for grinding or pulverizing any material which collects on the bell and otherwise prevents close contact of the bell with the bell seat of the hopper with which the bell is intended to make pressure-tight contact. a
With the advent of high pressure operation of blast furnaces which increases the production capacity and effects other improvements in the operation of the furnace, it is imperative that the bell used in preventing escape of the pressurized gas within the blast furnace while the charge is being added is capable of effecting a seal between the bell and the seat against which the bell is intended to rest. This is necessary in order that the desired high pressure can be maintained over a long period of time, that is for the period between relinings of the furnace, which is 2 to 5 years depending on the type of furnace operation.
furnace), commences with accompanying erosion of the bell in the adjacent areas. This erosion eventually causes leakage even when the surface of the bell is clean. This results in increasing amounts of wire drawing and accelerates the wear or erosion on the hell or bell seat.
It is presently common practice in such cases to gradually lower the top pressure of the furnace to insure that the bell and seat last until it is time to shut down the furnace for reliuing. Because of the lowering of the pressure in the furnace, either intentionally to decreasethe wire drawing, or as a result of the'considerable escape of gas from the top of the furnace, the production of the furnace is gradually decreased. Obviously, therefore, this escape of gas or wire drawing and the accompanying erosion interfere with the production capacity of the blast furnace.
In accordance with the present invention, it has been found that the surface of the bell coming into contact with the bell seat can be kept clean of foreign material, which would otherwise prevent a gas-tight seal, by imparting to the bell just prior to its coming into contact with the seat a small degree of rotation, namely 1-10 degrees, just sufficient to grind together the respective surfaces and thereby clean, grind-or lap the sealing surfaces of the bell and the bell seat of the hopper each time the bell is closed.
While bells have previously been rotated for other purposes and in other manners, the timing of the rotation .in order to create a grinding effect between the surfaces of the bell and the bell seat and to effect only a small degree of rotation sufficient to produce the grinding effect, has not previously been contemplated. For example, the small bell has been rotated 90 or 180 in order to distribute the charge and thereby prevent uneven distribution in the furnace bed. There the degree of rotation is much greater, and much sooner in the sequence of operation of the bell than in the present invention. Moreover, in
and is rotated at least 3,372,918 Patented Mar. 12, 1968 the present instance, the manner of imparting the rotation to the bell is particularly timed and. designed to effect the rotation just prior to the contact of the hell with the bell seat thereby effecting the grinding and also using the friction of the surfaces to stop the rotation of the bell.
Since the large bell in a blast furnace of present day design weighs approximately 25 tons, and is supported by a rod of relatively small diameter and approximately 40 ft. long, the effect of rotating the bell is similar to having a fly wheel in movement. As a result, there is considerable energy for effecting the grinding action between the contacting surfaces and thereby pulverizing any foreign material on either of the surfaces. The lapping effect also aids in smoothing into any pitted or eroded areas whatever foreign material might be on the surfaces. This aids in effecting a seal between the surfaces.
The desired degree of rotation and timing of the rotation is effected by an adjustable slanted cam which presses against a lever arm as the rod supporting the bell moves upward in effecting the closing of the bell. This lever arm is in contact with and appropriately actuates a clutch which effects the turning of the supporting rod for the bell. This clutch is turned by the lever arm. The clutch rotates the supporting rod only during the upper passage of the rod. During the downward passage of the supporting rod the clutch rides freely.
As indicated above, the turning of the blast furnace bells for the prior art purpose of distributing the charge as suggested by various references, involves the turning of the bell at least 90 between opening and closing the bell, in order to effect more even or uniform distribution of the charge into the blast furnace.
In most cases in these prior art designs, the small bell is adapted to turn and effect discharge of its load onto the big bell thereby distributing the charge evenly on the big bell which, upon lowering, discharges the load into the blast furnace. In all such cases, the turning or the rotation of the bell is effected on the auxiliary bell. In one .case, namely Andrews Patent 1,811,702, the charging chute 15 is rotated. In this same design the big bell is also rotated, but in this case the big bell has an oblong configuration instead of the conical design generally used, in each sequence of opening and closing of the bell. Moreover, the purpose for rotating the large bell is likewise to effect a more even distribution of the charge into the blast furnace. This is accomplished by the fact that some of the material drops off the short dimension, or side 34, and some of the charge drops off the edge of the longer dimension so that this latter material is distributed closer to the side Walls of the blast furnace. None of these devices show an arrangement or method of rotating the bells only a few degrees and only just prior to the meeting of the surfaces of the bell and the bell seat.
In present day'design, the main bell has a diameter of at least about 12 feet and a weight of at least about 15 tons. The bell is supported by a rod of relatively small diameter. The rotation of the rod about its linear axis produces a torque in the rod. Because of the large weight and large diameter of the bell the inertia of the bell at rest is not overcome immediately upon turning of the rod at its upper end. Since the hell does not turn immediately, a twisting torsion is created in the rod. Consequently, it is in the last part of the upward movement of the hell that the rotation of the bell is effected. This: rotation occurs just prior to and at the time of contact of the bell with the bell seat.
As stated above the rotation of the bell is effected through only a few degrees. This degree of rotation is, at the time of contact, only enough to effect. a small amount of grinding between the surfaces before the frictional forces bring the bell to a stop. If rotation is much greater after contact the abrasion of the bell and bell seat is excessive. The rotation has been found generally satisfactory at 12 but in no case over 10.
In the drawings:
FIG. 1 is a front elevational view of the top part of a blast furnace showing the respective charging devices.
FIG. 2 is a perspective view of the rotating means portion of FIG. 1.
FIG. 3 is a top cross-sectional view of the rotating means portion of FIG. 1 taken at lines 33.
FIG. 4 is an enlarged view of the rotating means portion shown in FIG. 1 showing the adjustable cam and clutch which effect rotation of the supporting rod and large bell.
FIG. 5 shows a side elevational view of the adjustable cam and supporting structure taken at line 55 of FIG. 4.
The invention is best illustrated by reference to these drawings.
In FIG. 1, hopper 1 is shown as the charge inlet for blast furnace 2 with very large bell 3 shown in position to seal the hopper from the interior of the blast furnace. This large bell 3 is supported by rod 4 which in turn is supported by rod 4' connected to rod 4 through rotating device 5. Lever 6 is connected to the top of supporting arm 4' and is used to raise and lower the bell 3 through supporting rods 4 and 4'.
Chute 7 feeds into the top of hopper 1 upon lowering of auxiliary bell 8 supported by sleeve 9 which encircles rod 4. Sleeve 9 and the auxiliary hell are raised and lowered by a means which, for purposes of simplicity, is not shown in the drawing. Funnel 10 feeds into the top of chute 7. The charge is emptied into the chute by a standard type of skip which is not shown in the drawing.
In the rotating device shown in greater detail in FIGS. 2, 3, 4 and 5, lever 11 is fastened to the top of supporting rod 4 by means of overrunning clutch 12. Clutch 12 will turn in one direction by movement of lever 11 to effect rotation of the supporting arm 4 and also bell 3 supported thereby, but when lever 11 is rotated in the opposite direction, the clutch rides freely without turning supporting rod 4. Lever 11 and clutch 12 ride up and down as the bell is raised or lowered. Yoke guide 13 is fixed to an independent support 14 which does not move with any movement of supporting rod 4 or hell 3. Adjustable cam 15 is fastened to the yoke guide 13 by means of crossbar 16.
While supporting rods 4 and 4 and turning device 5 move up and down with the movement of the large bell, yoke guide 13 and adjustable cam 15 are fixed in position. Crossbar 17 has a groove 18 therein by which this crossbar fits around a portion of yoke guide 13 and moves along the length thereof. Lever 11 also has a groove 19 at the end thereof in which adjustable cam 15 is received.
As lever arm 11 passes up and down in accordance with the movement of the large bell 3 and its supporting devices, one of the side walls 20 of groove 19 comes into contact with adjustable cam 15. Cam 15 is adjusted to such a position that when lever 11 travels upward, toward the end of its upward path, cam 15 comes into contact with sidewall 20 of lever 11. A force is imparted thereby through lever 11 and clutch 12 to rotate support ing rod 4, and eventually the large hell 3 is rotated a few degrees just before the bell 3 comes into contact with bell seat 3' at the bottom of hopper 1.
At the bottom of supporting arm 17', there is supported a Selsyn transmitter which transmits a signal of rotary motion to'a Selsyn receiver (not shown) located on the furnace operating floor. This device indicates how fast the bell is rotating, and how much it rotates for each closing operation of the bell.
To overcome frictional forces, there is incorporated into the supporting structure a large anti-friction selfaligning bearing 27 which supports the bell and bell rod. The overrunning clutch 12 rotates the large furnace bell, preferably clockwise, as the bell is being closed on the upstroke. As pointed out above, the clutch is activated by the lever 11 which is keyed to the driving case of the clutch. The inner hub of the clutch is keyed to the bell rod. The lever 11 actuates the clutch to turn rod 4 only on the upstroke and this in turn as explained above turns the large bell only toward the end of the upstroke. On the downstroke, the lever arm rotates in the reverse direction but does not actuate turning of the rod 4 or the hell 3 since the clutch moves freely in this direction.
The amount of rotation and the rotary acceleration can be adjusted by changing the slant of the adjustable cam or Wedge bar or even its shape.
The rotary motion of the bell is stopped by the sliding of the bell on the bell seat of the bell hopper. This sliding motion cleans, grinds or laps the sealing surfaces of the bell and of the bell seat each time the bell is closed. Coke, lime dust and moisture on the bell serve as lapping compound. This intermittent but uni-directional continual grinding action as the bell is rotated upon coming into closing contact with the bell seat assures a tight seat-seal and minimizes, and often completely overcomes, the possibility of wire-drawing caused by escaping dust ladened gases from high pressure blast furnaces, thereby minimizing or avoiding the resulting erosion described above.
In a typical blast furnace operation operating according to this invention, it is found that the large bell makes about four complete revolutions per week, which involves about 1400 closing operations of the bell. It is found that the bell turns about 1 degree each time it is closed, which means a travelling distance of 1.5 inches on a 15 ft. diameter bell seat. With such operation, the wire-drawing is practically eliminated.
In operating the main bell in accordance with this invention, it is found that only a few degrees of rotation are required to produce the grinding effect which pulverizes the foreign material on the surfaces of the bell and the respective bell seat so as to effect a much more efficient gas seal. Advantageously, the arc of rotation is in the range of 1 to 10. A suitable practice is found to be a rotation of approximately 1.
While certain features of this invention hav been described in detail with respect to various embodiments thereof, it will, of course, be apparent that other modifications can be made within the spirit and scope of this invention and it is not intended to limit the invention to the exact details shown above except insofar as they are defined in the following claims:
The invention claimed is:
1. A pressure seal charging apparatus for a pressurized blast furnace comprising:
(a) a materials lock having a generally cylindrical top opening and a generally cylindrical bottom opening and defining an enclosure except for said openings;
(b) an auxiliary bell adapted to close said top opening and movable with respect to said lock, whereby material may be deposited in said enclosure through said top opening, and the top opening thereafter closed;
(0) a main bell adapted to close said bottom opening, and movable with respect to said lock, whereby said main bel'l may be in a closed position with respect to said lock during the charging of materials into said materials lock, and thereafter lowered to open said bottom opening and thereby discharge said materials from said lock;
(d) a supporting means for said auxiliary bell adapted to move upward and downward with said auxiliary bell in its closing and opening operations of said top opening, said auxiliary bell supporting means having a cylindrical opening extending through the length of said supporting means;
,(e) a supporting rod for said main bell extending through and beyond the said cylindrical opening in said supporting means for said auxiliary bell;
(f) a rotating means adapted to rotate said main bell as said main bell is being moved upward into contact with the corresponding bell seat, said rotating means being attached to the upper end of said supporting arm for said main bell and adapted to support the main bell and said supporting arm, said rotating means comprising:
(1) an overrunning clutch attached to the upper end of said main bell supporting rod and adapted to rotate said supporting rod and thereby said main bell when turned in one direction and not to turn said supporting rod and said main bell when turned in the opposite direction,
(2) a lever attached to said clutch and extending a considerable distance therefrom, its extreme end having a slot therein,
(3) an adjustable cam extending into said slot of said lever,
(4) a protruding ar-m extending from said rotating means having a yoke at the extreme end of said arm,
(5) a vertically extending yoke guide fastened to .a supporting means independent of and separated from said rotating means and adapted to fit into said yoke and to guide said yoke in its upward and downward paths as said supporting arm and said main bell are raised and lowered, said adjustable cam being fastened to said yoke guide and adjusted at an angle so that as the rotating means is moved upward with the supporting .arm for said main bell, the adjustable cam strikes the side of the said groove of said lever and causes a rotating movement of said lever about the center line of said clutch attached to the top of said supporting arm, said adjustable cam being positioned at such an angle that it activates said lever and said clutch to rotate said supporting bar and said main bell prior to and during the initial contact of said main bell with said bell seat whereby a grinding effect is produced between the two said surfaces; and
(g) a means for raising and lowering said rotating means and thereby also said supporting arm and said main bell.
2. A pressure seal charging apparatus of claim 1 in which said main bell has a diameter of at least 12 feet and a weight of at least 15 tons.
References Cited UNITED STATES PATENTS 1,831,066 11/1931 Gleason 214-37 1,899,307 2/1933 Boynton et a1 21437 2,718,971 9/1955 Juengling 266-25 3,116,842 1/1964 Mohr 214-37 I. SPENCER OVERHOLSER, Primary Examiner. E. MAR, Assistant Examiner.

Claims (1)

1. A PRESSURE SEAL CHARGING APPARATUS FOR A PRESSURIZED BLAST FURNACE COMPRISING: (A) A MATERIALS LOCK HAVING A GENERALLY CYLINDRICAL TOP OPENING AND A GENERALLY CYLINDRICAL BOTTOM OPENING AND DEFINING AN ENCLOSURE EXCEPT FOR SAID OPENINGS; (B) AN AUXILIARY BELL ADAPTED TO CLOSE SAID TOP OPENING AND MOVABLE WITH RESPECT TO SAID LOCK, WHEREBY MATERIAL MAY BE DEPOSITED IN SAID ENCLOSURE THROUGH SAID TOP OPENING; AND THE TOP OPENING THEREAFTER CLOSED; (C) A MAIN BELL ADAPTED TO CLOSE SAID BOTTOM OPENING, AND MOVABLE WITH RESPECT TO SAID LOCK, WHEREBY SAID MAIN BELL MAY BE IN A CLOSED POSITION WITH RESPECT TO SAID LOCK DURING THE CHARGING OF MATERIALS INTO SAID MATERIALS LOCK, AND THEREAFTER LOWERED TO OPEN SAID BOTTOM OPENING AND THEREBY DISCHARGE SAID MATERIALS FROM SAID LOCK; (D) A SUPPORTING MEANS FOR SAID AUXILIARY BELL ADAPTED TO MOVE UPWARD AND DOWNWARD WITH SAID AUXILIARY BELL IN ITS CLOSING AND OPENING OPERATIONS OF SAID TOP OPENING, SAID AUXILIARY BELL SUPPORTING MEANS HAVING A CYLINDRICAL OPENING EXTENDING THROUGH THE LENGTH OF SAID SUPPORTING MEANS; (E) A SUPPORTING ROD FOR SAID MAIN BELL EXTENDING THROUGH AND BEYOND THE SAID CYLINDRICAL OPENING IN SAID SUPPORTING MEANS FOR SAID AUXILIARY BELL; (F) A ROTATING MEANS ADAPTED TO ROTATE SAID MAIN BELL AS SAID MAIN BELL IS BEING MOVED UPWARD INTO CONTACT WITH THE CORRESPONDING BELL SEAT, SAID ROTATING MEANS BEING ATTACHED TO THE UPPER END OF SAID SUPPORTING ARM FOR SAID MAIN BELL AND ADAPTED TO SUPPORT THE MAIN BELL AND SAID SUPPORTING ARM, SAID ROTATING MEANS COMPRISING:
US511835A 1965-12-06 1965-12-06 Apparatus for maintaining pressuretight seal on blast furnace bells Expired - Lifetime US3372918A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US511835A US3372918A (en) 1965-12-06 1965-12-06 Apparatus for maintaining pressuretight seal on blast furnace bells
US752400*A US3552589A (en) 1965-12-06 1968-03-04 Process for maintaining pressure tight seal on blast furnace bells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US511835A US3372918A (en) 1965-12-06 1965-12-06 Apparatus for maintaining pressuretight seal on blast furnace bells

Publications (1)

Publication Number Publication Date
US3372918A true US3372918A (en) 1968-03-12

Family

ID=24036647

Family Applications (1)

Application Number Title Priority Date Filing Date
US511835A Expired - Lifetime US3372918A (en) 1965-12-06 1965-12-06 Apparatus for maintaining pressuretight seal on blast furnace bells

Country Status (1)

Country Link
US (1) US3372918A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1831066A (en) * 1928-09-24 1931-11-10 Gas Machinery Co Automatic fuel-charging device
US1899307A (en) * 1931-08-31 1933-02-28 Brassert & Co Distributing large bell for blast furnaces
US2718971A (en) * 1952-03-24 1955-09-27 Senior Juengling And Knall Pressure responsive sealing devices
US3116842A (en) * 1961-06-28 1964-01-07 Mohr & Sons John Gas seal structure for high top pressure operation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1831066A (en) * 1928-09-24 1931-11-10 Gas Machinery Co Automatic fuel-charging device
US1899307A (en) * 1931-08-31 1933-02-28 Brassert & Co Distributing large bell for blast furnaces
US2718971A (en) * 1952-03-24 1955-09-27 Senior Juengling And Knall Pressure responsive sealing devices
US3116842A (en) * 1961-06-28 1964-01-07 Mohr & Sons John Gas seal structure for high top pressure operation

Similar Documents

Publication Publication Date Title
US4040530A (en) Shaft furnace feed device
US3799367A (en) Discharge system for a shaft-type furnace
US3706387A (en) Blast furnace charging apparatus for high top pressure
US2429481A (en) Sealing means for revolving distributor for charging iron blast furnaces
US3372918A (en) Apparatus for maintaining pressuretight seal on blast furnace bells
US3152703A (en) Blast furnace sealing apparatus
US3302805A (en) Materials distributor of a blast furnace
US3780890A (en) Furnace charging apparatus
US3552589A (en) Process for maintaining pressure tight seal on blast furnace bells
US3070242A (en) Distributor seal
US4116345A (en) Charging apparatus for shaft furnaces and method
US4878655A (en) Furnace charging throat construction
US4307987A (en) Shaft furnace charging apparatus
US4143777A (en) Blast furnace charging device
US3764027A (en) Blast furnace high top pressure charging system
US3554393A (en) Charging device for a furnace
US4026427A (en) Charging apparatus for receptacles
US3429463A (en) Shaft furnace feeding device and method
US3542219A (en) Raw material charging apparatus in a shaft furnace
US3695466A (en) Charging apparatus for the furnace
US955885A (en) Blast-furnace-charging apparatus.
US2897984A (en) Charging apparatus for blast furnace
US2004381A (en) Manufacture of hydraulic cement and the like
US2965249A (en) Charging devices for shaft furnaces
US1459984A (en) Furnace-charging apparatus